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ABSTRACT
Wetlands are very complex yet pivotal ecosystems on Earth. They
serve as habitats for various flora and fauna. Alongside, wetlands
are crucial for biogeochemical exchange between the Earth’s sur-
face and its atmosphere. A large proportion of organic carbon is
sequestered in wetlands and plays a substantial role in the carbon
cycle. The planning and management of wetlands depend a lot
upon a reliable wetland model. The underlying complex dynamics
of wetlands hinder the modelling of wetland extent. This study for
the first time considers multivariate nonlinear dynamical system
modelling using Nonlinear Autoregressive with Exogenous Inputs
(NARX) model class. The data consists of weather variables and wet-
land fractions for two wetland sites falling under Asia and Africa.
The model is simulated using fresh testing data and can predict
wetland extent satisfactorily for both sample sites. The accuracy of
the models is quantified using Root Mean square Error (RMSE) and
Mean Absolute Error (MAE). A transparent NARX structure reveals
the dynamical elements for the potential planning and management
of wetlands.
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1 INTRODUCTION
Wetland is an important ecosystem responsible for harbouring a
wide range of biodiversity. A typical wetland system comprises
complex biogeochemical processes at both micro and macro scales.
Whilst the entire planet Earth is witnessing a surge in the aver-
age temperature it becomes imperative to conserve the carbon in
form of various vegetation including peatlands and wetlands [4].
Along with the sequestration of carbon, wetlands are responsible
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for methane exchange with the atmosphere and thus incorpora-
tion of wetland dynamics in climate projection is very important.
Nonetheless, the complex and nonlinear dynamical processes com-
plicate wetland modelling. Until now, the practitioners have mostly
relied upon analytical models [8] representing the inundation dy-
namic of a land surface but that approach has its own limitations.
In this study, a system approach is applied which considers wet-
lands as a complex nonlinear dynamical system having multiple
inputs and a single output of interest, known as, wetland fraction
(𝑓𝑤 ), which is the fraction of inundated land area. The modelling
methodology is system identification, which is often considered a
grey box approach. Contrary to the other data-driven nonlinear
modelling techniques, the grey box is a transparent model struc-
ture derived from the system’s data and consisting of model terms.
This approach enables the reasonable abstraction of the wetlands’
complexities through the usage of environmental data containing
the underlying dynamics of the system. The model terms are trans-
parent enough to tease apart the characteristics of wetland systems
like the extent to which a particular variable is influencing the
output of interest, 𝑓𝑤 .

For the first time, a system identification method is applied to
obtain multivariate wetland models. The contribution of this study
is, obtaining Multiple Input Single Output (MISO) wetland models
using Nonlinear Autoregressive Moving Average with Exogenous
Inputs (NARX) model class under the realm of system identification.
The 𝑓𝑤 data used in this study is prepared through remote sensing
techniques whereas weather data are employed as the input vari-
ables [7]. The study takes into account two sample sites altogether
from Asia and Africa. This modelling approach serves two purposes.
Firstly, the identification of multivariate wetland model structure
reveals the interrelationship among the weather variables and 𝑓𝑤 .
Secondly, the forecasting of 𝑓𝑤 for the management of wetlands in
the advent of changing climate.

The paper is structured into various sections. The following
section reviews some related works and establishes the rationale
behind this study. Section 3 details the materials such as data used in
this study. The same section will also describe the used methodolo-
gies such as nonlinear system identification. Section 4 will present
all the major results and discuss their significance. Finally, the paper
will be concluded with some future directions for this work.

2 RELATEDWORKS
Peatlands are considered a very important class of wetlands be-
cause of their ability to sequester a large amount of organic carbon.
This results in a significant contribution of these wetlands to the
global carbon cycle. A study [4] integrates the Dynamic Global
Vegetation Model (DGVM), wetland model, and dynamics of peats
to investigate the impact of these wetlands on the carbon cycle. The
wetland model part is adapted from the TOPMODEL framework,
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which is one of the popular approaches for analysing the inunda-
tion dynamics of a land surface. The TOPMODEL [2] considers the
topography for calculating the hydrological state of a given surface.
The TOPMODEL needs Compound Topographic Index (CTI) to
parametrise the model which induces uncertainties resulting from
the approximations linked with CTIs. These uncertainties lead to
incorrect estimation of wetlands and thus require a more robust
approach such as obtaining high-resolution CTI parameters [6]. A
project known as, WETCHIMP [8] compared ten models by simu-
lating wetland extent across the world and comparing them with
the observation data. The models within the WETCHIMP project
exhibited significant inconsistency when compared to the observed
values of wetland extent. The review of the above kinds of the liter-
ature suggests that process-driven analytical modelling of wetland
dynamics has some limitations, and an alternative framework can
be explored. Recently, a data-driven framework for wetland mod-
elling applied NARX modelling for a Single Input Single Output
(SISO) system wherein the surface temperature is considered as
input and 𝑓𝑤 is the output of interest [1]. This literature presents a
satisfactory wetland model for three sample sites corresponding to
the Amazon basin, Africa, and Asia as far as forecasting the wet-
land extent is considered. However, a univariate approach hinders
the relationship of 𝑓𝑤 with other environmental variables such as
precipitation. The purpose of the proposed grey box NARX model
in the literature is not fully served in the absence of a multivariate
model structure. The present study is an extension of [1] wherein
more than one input variable are used for obtaining NARX model
structures corresponding to the sample wetland sites.

3 MATERIALS AND METHODS
3.1 Multivariate wetland modelling: a nonlinear

system identification
System identification methodology has its origin in control theory
but in the last few decades it has found applications inmultiple areas
[3]. This is essentially a data-driven dynamical system modelling
approach. For nonlinear systems, this methodology offers NARX
model class. A NARX structure typically consists of a combination
of linear and nonlinear regressor terms representing the systems’
dynamics. The data corresponding to a system contains useful
information relevant to the system. Contrary to other competing
data-driven modelling methodologies such as deep learning, NARX
enables a grey box picture. This means, the model terms are visible
and the dynamics of the system can be teased apart with the help
of model structure as well as with the estimated parameter values.
The overall model structure in conjunction with their parameter
values represents a nonlinear function of the associated variables.

In this study, two wetland sites are considered for modelling and
simulation of their wetland extent, represented by 𝑓𝑤 . Therefore,
the output of interest is 𝑓𝑤 . The observed value of 𝑓𝑤 is obtained
using remote sensing technology [7]. Amongst the various environ-
mental variables, precipitation and average surface temperature are
considered input variables. These two variables are easily available
through the various weather models and therefore the wetland
model can also be used to forecast the variations in the wetland
extent. The water cycle is crucial to model the inundation dynamics
and hence considering precipitation values indirectly accounts for

water intake and potential runoff. Similarly, the surface tempera-
ture is a key variable affecting the evaporation and eventually the
extent of the wetland at a given time. Thus, two input variables
and one output variable form the basis of this modelling study. In
system theory terminology, this can be referred to as a Multiple
Input Single Output (MISO) system. Both the input variables are
shown using Fig. 1.

3.2 NARX modelling
NARX is a data-driven dynamical system modelling approach con-
sisting of broadly two major steps, namely, model structure detec-
tion and parameter estimation. The structure of a NARX model
is very transparent typically consisting of difference and differen-
tial equations. In its simplest form, it can be a Single Input Single
Output (SISO) model. A SISO model despite being very simple can
serve the modelling objectives especially if the point of interest is
mainly forecasting. However, the purpose of the NARX modelling
approach is not fully harnessed if we are unable to visualise the
individual dynamical element within the system. Therefore, for
many practical applications, multivariate models are employed. A
general NARX structure is represented as [3],

𝑦 (𝑡) =𝐹 [𝑦 (𝑡 − 1), 𝑦 (𝑡 − 2), ..., 𝑦 (𝑡 − 𝑘),
𝑥 (𝑡 − 𝑑), 𝑥 (𝑡 − 𝑑 − 1), ..., 𝑥 (𝑡 − 𝑑 − 𝑙)] + 𝑒 (𝑡), (1)

where 𝑦 (𝑡) represents system’s output, 𝑥 (𝑡) denotes input, 𝑒 (𝑡)
stands for noise sequences, 𝑘 is the maximum lag of the system’s
output, 𝑙 is the maximum lag of system’s input, 𝐹 is a nonlinear
function, and 𝑑 represents the time-delay. In this study, the input
consists of precipitation and average surface temperature whereas
the output of interest is 𝑓𝑤 . Hence, it should be termed as a MISO
system corresponding to which NARX models are obtained.

The linear-in-the-parameters representation of the NARX model
is,

𝑦 (𝑡) =
𝑀∑︁
𝑖=1

\𝑖𝜙𝑖 (𝑡) + 𝑒 (𝑡) (2)

In the eq. 2, 𝑦 (𝑡) with 𝑡 = 1, 2, ..., 𝑁 is the output, 𝜙𝑖 (𝑡), with
𝑖 = 1, 2, ..., 𝑀 represents regressor terms, \𝑖 , with 𝑖 = 1, 2, ..., 𝑀 are
the model parameters, 𝑒 (𝑡) denotes noise sequence. From the eq.
2, it can be inferred that 𝑀 represents the total number of model
terms. From the implementation point of view, the eq. 2 can be
transformed into,

𝒚 = Φ𝜽 + 𝒆 (3)
where, 𝒚 = [𝑦 (1), 𝑦 (2), ..., 𝑦 (𝑁 )]𝑇 , 𝜽 = [\1, \2, ..., \𝑀 ]𝑇 ,
𝒆 = [𝑒 (1), 𝑒 (2), ..., 𝑒 (𝑁 )]𝑇 , Φ = [𝜙1, 𝜙2, ..., 𝜙𝑀 ]. The equation 3
allows estimation of the parameter vector 𝜽 [3].

In this study, Forward RegressionOrthogonal Least Square (FROLS)
algorithm is used for obtaining a parsimonious NARX model struc-
ture. The FROLS principle allows the ranking of the terms based
on their contribution to explaining the variance of the output. The
contribution of each term is quantified by Error Reduction Ratio
(ERR). The sum of ERR values of all the terms in a NARX model is
1, but instead of considering all the terms, a parsimonious model
is preferred in most cases to avoid data overfitting. In this study,
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Figure 1: Time series plots of input variables − Average surface temperature and Precipitation

a Python library, SysIdentPy [5] was used to obtain satisfactory
NARX models representing the dynamics of both the wetland sites.

This work is intended for performing multivariate modelling
and simulation of wetland dynamics using sample sites from Asia
and Africa. Surface temperature (𝑥1) and precipitation (𝑥2) were
considered as inputs whereas, the output (𝑦) is wetland fraction
(𝑓𝑤 ). The maximum possible lag for all the variables was set as 12
due to the cyclic nature of the data. All the variables are expected to
show similarity after 12 data points, therefore, 𝑘 and 𝑙 equal to 12 is
a reasonable choice. The order of polynomials in a NARX term is set
to 3 for describing the nonlinearity of the system satisfactorily. All
the variables are available as time series data starting from January
2000 until December 2012. The entire data was split into a training
set consisting of data from January 2000 until December 2010 and
the rest of the data was assigned to the testing set. The SysIdentPy
library was used to train the NARX model for each sample site and
the models were simulated using the test data.

4 RESULTS
In this section, the NARX model structure for both the sample sites,
their estimated parameters, and ERR value of each term as well as
a model simulation based on testing data will be presented. The
NARX-MISO model for the Asian wetland site is presented through
Table 1. The NARXmodel for the Asian site consists of six terms and
interestingly only precipitation is used as input in the model. The
FROLS algorithm picks up a term based on their contribution and
in this case, none of the terms consisting of average temperature
was selected by the algorithm. The first term is an autoregressive
term having a time lag equal to 12 and is the most significant as
well with ERR approximately equal to 0.96. However, to explain
the overall dynamics of the Asian wetland system, other remaining
terms are also included.

Term No. Regressors Parameters ERR
1 𝑦 (𝑡 − 12) 1.1232 0.9613
2 𝑦 (𝑡 − 12)2𝑦 (𝑡 − 7) -45.1572 0.0040
3 𝑥2 (𝑡 − 12)𝑦 (𝑡 − 11)𝑦 (𝑡 − 5) 0.0292 0.0046
4 𝑦 (𝑡 − 12)𝑦 (𝑡 − 7)𝑦 (𝑡 − 1) 34.8029 0.0030
5 𝑦 (𝑡 − 12)2𝑦 (𝑡 − 4) -17.7382 0.0039
6 𝑥2 (𝑡 − 12)𝑦 (𝑡 − 11)𝑦 (𝑡 − 6) -0.0118 0.0011

Table 1: NARX-MISO model for Asian wetland

For a simpler interpretation of the Asian NARX model structure
(Table 1), the eq. 4 can be referred.

𝑦 (𝑡) = 1.1232 · 𝑦 (𝑡 − 12) − 45.1572 · 𝑦 (𝑡 − 12)2𝑦 (𝑡 − 7), ...,
−0.0118 · 𝑥2 (𝑡 − 12)𝑦 (𝑡 − 11)𝑦 (𝑡 − 6)

(4)

Similarly, the NARX model corresponding to the African wet-
land is shown in Table 2. In this case, also, the model is mainly
driven by an autoregressive term having a time lag equal to 12.
However, unlike the Asian wetland system, both input variables,
namely, average surface temperature and precipitation constitute
the model structure. The ERR value of the first term suggests a
very strong contribution to the term. Nonetheless, to explain the
wetland dynamic of this site satisfactorily, the rest of the terms are
also included by the FROLS algorithm. A simple representation of
the model can be made through the eq. 5.

𝑦 (𝑡) = −0.6350 · 𝑦 (𝑡 − 12) + 0.0909 · 𝑥1 (𝑡 − 12)𝑦 (𝑡 − 1), ..., +
537.3041 · 𝑦 (𝑡 − 10)𝑦 (𝑡 − 9)𝑦 (𝑡 − 5) (5)

The performance of both the models is summarised in Table 3
using Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). Themodel predicted output of both the NARX-MISOmodels
are shown through simulation in Fig. 2.
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Figure 2: Model predicted output (MPO) simulation for both the sample wetland sites −Asia and Africa

Term No. Regressors Parameters ERR
1 𝑦 (𝑡 − 12) -0.6350 0.9884
2 𝑥1 (𝑡 − 12)𝑦 (𝑡 − 1) 0.0909 0.0038
3 𝑦 (𝑡 − 11) 0.2971 0.0011
4 𝑦 (𝑡 − 11)𝑦 (𝑡 − 10)𝑦 (𝑡 − 7) -515.1535 0.0005
5 𝑦 (𝑡 − 12)𝑦 (𝑡 − 10)𝑦 (𝑡 − 7) 3165.6270 0.0003
6 𝑥2 (𝑡 − 12)𝑦 (𝑡 − 5)2 0.0333 0.0002
7 𝑥1 (𝑡 − 12)𝑦 (𝑡 − 1)2 -2.9164 0.0007
8 𝑥1 (𝑡 − 12)𝑦 (𝑡 − 10)𝑦 (𝑡 − 7) -1.7832 0.0001
9 𝑥2 (𝑡 − 1)𝑦 (𝑡 − 9)𝑦 (𝑡 − 3) 0.0219 0.0001
10 𝑦 (𝑡 − 10)𝑦 (𝑡 − 9)𝑦 (𝑡 − 5) 537.3041 0.0001

Table 2: NARX-MISO model for African wetland

Site RMSE MAE
Asia 0.0183 0.0138
Africa 0.0015 0.0011

Table 3: Summary of the performance of the NARX models
in predicting 𝑓𝑤 for the years 2011-2012.

5 CONCLUSION
This study presents a multivariate data-driven dynamical system
modelling of wetland sites. Altogether two sample sites were con-
sidered, one from Asia and another from Africa. A monthly data
comprising average surface temperature, precipitation, and wet-
land fraction were used in this work. The purpose of modelling
was to obtain a simple transparent dynamic model able to incorpo-
rate the nonlinearity of the system as well as possess a reasonable
prediction accuracy. Moreover, the model was also required to be
transparent to exhibit the interrelationship among the variables to
augment the management of wetlands. Therefore, NARX model
class was chosen for modelling the wetland dynamics. The model
was trained using the data points starting from January 2000 until
December 2010 and the data from January 2011 until December

2012 were used for model testing purposes. The model simulation
and their performance measures are very satisfactory considering
the constraints such as the availability of limited data. In future,
a more holistic picture would be presented by combining more
wetland sites across different continents. In addition to the weather
variables, vegetation, and soil inputs such as net primary produc-
tivity and soil water content could be considered for developing
a more robust NARX model. This modelling approach could also
be harnessed to simulate the impact of climate change on wetland
dynamics.
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