
Received: 26 June 2022 - Revised: 18 August 2022 - Accepted: 13 December 2022 - IET Software
DOI: 10.1049/sfw2.12085

OR I G INAL RE SEARCH

A model for developing dependable systems using a component‐
based software development approach (MDDS‐CBSD)

Hasan Kahtan1 | Mansoor Abdulhak2,3 | Ahmad Salah Al‐Ahmad4 |
Yehia Ibrahim Alzoubi4

1Cardiff School of Technologies, Cardiff
Metropolitan University, Cardiff, UK

2KNOWBIS Solutions & Consultancy, Selangor,
Malaysia

3University Prince Mugrin, Madinah, Saudi Arabia

4Management Information Systems Department,
American University of the Middle East, Kuwait,
Kuwait

Correspondence

Hasan Kahtan, Cardiff School of Technologies,
Cardiff Metropolitan University, Llandaff Campus,
Western Avenue, Cardiff CF5 2YB, UK.
Email: hkahtan@cardiffmet.ac.uk

Abstract
Component‐based software development (CBSD) is an emerging technology that in-
tegrates existing software components to swiftly develop and deploy big and complex
software systems with little engineering effort, money, and time. CBSD, on the other
hand, has difficulties with security trust, particularly dependability. When a system pro-
vides the desired outcomes while causing no harm to the environment, it is said to be
dependable. Dependability encompasses several attributes, including availability, confi-
dentiality, integrity, reliability, safety, and maintainability. Developing dependable
component software is achieved by embedding dependability attributes in CBSD. Thus,
the CBSD model must address the dependability attributes. Hence, the objectives of this
work are: (1) to propose a model for developing a dependable system using component‐
based software development approach (hereafter the model is referred to as MDDS‐
CBSD), which aims to mitigate software component vulnerabilities, and (2) to assess the
proposed model. The best‐practice method was used to frame the CBSD architecture
phases and processes, as well as embed the six dependability attributes. The MDDS‐
CBSD architecture was evaluated using expert opinion. The MDDS‐CBSD was also
used to develop an information and communications technology (ICT) portal using an
empirical study method. Vulnerability Assessment Tools were used to assess the devel-
oped ICT portal's dependability. The MDDS‐CBSD may be used to create web appli-
cation systems and to protect them from attacks. Model developers may use CBSD to
describe and assess dependability attributes at any point during the model development
process. The reliability of this model can also let companies utilise CBSD with
confidence.

KEYWORD S
component‐based software development, dependability attributes, software architecture, software development
management, software engineering, software security development

1 | INTRODUCTION

CBSD is an emerging technology that builds systems by
combining existing software components. CBSD focusses on
composing software systems rather than programming soft-
ware. Assuming that certain parts of a large software system
recur frequently, common parts must be written once and
reused many times rather than written repeatedly [1, 2]. At the

same time, CBSD has a number of advantages, from increasing
programmer productivity to reducing software development
costs [3]. Software reuse can help meet demands for faster
delivery, lower software production and maintenance costs,
and better quality. Thus, CBSD's main goal is to reduce overall
software development costs. That is, software development
and maintenance must be less costly. CBSD is also required for
faster software delivery. For this reason, the software industry

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2022 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Soft. 2022;1–17. wileyonlinelibrary.com/journal/sfw2 - 1

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1049/sfw2.12085
https://orcid.org/0000-0001-6521-7081
mailto:hkahtan@cardiffmet.ac.uk
https://orcid.org/0000-0001-6521-7081
https://ietresearch.onlinelibrary.wiley.com/journal/17518814
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fsfw2.12085&domain=pdf&date_stamp=2022-12-30

has adopted CBSD to rapidly build and deploy large, complex
software systems with minimal engineering effort. The soft-
ware must fit within a competitive market window. It also aims
to produce high‐quality software that meets process re-
quirements with minimal failures [4–10].

Using CBSD in software development, however, has its
drawbacks. Moradian and Håkansson [11] claim that in-
terdependencies between software components cause issues
during integration. Thus, early in the CBSD cycle, dependability
attributes of software components must be considered.
Furthermore, pervasive computing raises serious questions
about current development models' reliability. Because CBSD is
a software engineering approach, its reliability is unknown [12].

A component may also fail to meet an application's re-
quirements due to differences in requirements and cycles
[13–15]. First, changes at the application level (e.g. modifying a
few components or updating new versions) can cause system
failure [16–19]. Second, reusing defective components may
erode software system trust. So critical systems, such as military
systems, require an exceptional software development process
[20]. This process' main goals are to validate the system's
implementation's consistency with its requirements [21–23].

2 | CBSD APPLICATIONS: RELATED
WORK

The CBSD approach emerged in the late 1990s, when reusable
components were incorporated into development processes.
The component base is the basic element of the current software
system, and CBSD is a technique that uses existing software
codes [24]. With this technique, software applications need not
be developed from scratch [25]. This technique also facilitates
the assembly of software applications using reusable software
codes, thereby improving time and budget constraints on soft-
ware development [6]. CBSD is widely used by middleware
platforms and tools and has become the mainstream for current
software development. CBSD design for distributed networks
(including the Internet) has promoted e‐commerce and may
expand business markets considerably. Furthermore, CBSD
utilises software components that are easier to produce and
more pervasive than ever before [24, 26, 27].

Unlike traditional software development approaches,
CBSD offers a range of benefits and manages complex systems
[24]. Software systems consist of a series of components into
which software functions and non‐functional properties are
implemented separately. CBSD promotes the employment of
effective specialists who can develop reusable components
within the scope of their expertise instead of application spe-
cialists who perform the same type of work on different pro-
jects [25]. The approach also reduces the time and effort
needed to develop software [26]. Moreover, CBSD facilitates
the development of components that are independent of
specific applications and improves the reusability of compo-
nents. Software system developers can thus maximise existing
structures and components, thereby improving the efficiency
of software development. CBSD also generates a repository of

components that supports software system development by
providing reusable and tested components [6, 24, 25, 27, 28].

CBSD likewise increases the productivity of programmers.
Constantly rewriting codes is an inefficient process because
programmers can write and document only limited lines of
code per day. With CBSD, programmers can utilise the inter-
active development environment (IDE) to assemble compo-
nents in the desired programme. Therefore, many lines of code
can be written each day and productivity is enhanced. Owing
to the significant number of economic benefits gained, CBSD
is an ideal approach to building software systems [6, 24, 26, 27].
Table 1 presents the application of CBSD in different domains.

3 | MOTIVATION

Despite widespread industry adoption and academic research
publications, CBSD lacks formal foundations for non‐
functional requirement specification, composition, and verifi-
cation. As a result, current CBSD practices do not support the
development of reliable systems [21–23]. To build a reliable and
secure system, dependability must be built into the CBSD
process. A system is dependable when it produces the intended
results with no adverse effects on the intended environment.
Availability, confidentiality, integrity, reliability, safety, and
maintainability are all attributes of dependability [31, 32].

Adding dependability attributes to the software component
development process is difficult enough, but evaluating their
dependability is even more difficult due to the complexity of the
operational environment and the need to specify dependability
attributes early in the software component development pro-
cess. The research community is still working on establishing a
reliable scale to measure software component dependability.
Traditionally, dependability attributes such as reliability, safety,
and integrity are treated as afterthoughts, implemented after the
software component is developed. Thus, evaluating
component‐based software for dependability attributes is crit-
ical in determining system dependability [8, 33–38].

This paper proposes a model for developing a dependable
system that mitigates software component vulnerabilities. This
study refers to a model for developing a dependable system
using a component‐based software development approach, as
an (MDDS‐CBSD). The six dependability attributes are
embedded in the CBSD architecture phases and processes for
the MDDS‐CBSD development. The CBSD gap analysis in
Ref. [32], the awareness survey in Ref. [38], and the vulnera-
bility assessment on selected web applications in Ref. [36] all
inspired the design of MDDS‐CBSD. The MDDS‐CBSD is
also used to develop web application systems. Finally, this
paper evaluates the developed MDDS‐CBSD on dependability.

4 | MDDS‐CBSD METHODOLOGY

The MDDS‐CBSD development methodology has three
phases: Phase 1: Problem identification and gap analysis, Phase
2: MDDS‐CBSD development, and Phase 3: MDDS‐CBSD

2 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

evaluation. Figure 1 shows the flowchart of the development
methodology's activities and deliverables.

Phase one is a preliminary study. A component‐based
software development approach, software dependability attri-
butes, and evaluation methods are discussed in the preliminary
study. There was a gap analysis of the current literature on
CBSD models relating to dependability features and a gap
analysis of the current issues on CBSD models relating to
dependability features.

The goal is to understand the existing CBSD process
models to identify the features offered by each model. Each
model is evaluated for strengths and weaknesses. Also high-
lighted is the gap analysis of existing CBSD models. This
research paved the way for the MDDS‐CBSD process. To
derive the features for the MDDS‐CBSD process, strengths are
retained, and weaknesses are removed.

To overcome the dependability issues, a thorough analysis
of existing research has been conducted for the software
dependability domain. Several attributes, such as dependability,
trustworthiness, and survivability, were identified as inter-
changeable terms for software security. Analysts found that
dependability attributes cure security threats, abnormal
behaviour, and untrustworthy issues in software systems
[39, 40]. In this way, the dependability attributes for
component‐based software development are identified. The six
dependability attributes are availability, reliability, confidenti-
ality, integrity, safety, and maintainability. These dependability
attributes will protect the CBSD product from security threats.
Moreover, embedding dependability attributes will relieve end
users of threats and vulnerabilities concerns.

In the evaluation method domain, Vulnerability Assess-
ment Tools (VATs) are identified and used to assess

dependability. VATs is a systematic evaluation of networks
used to detect dependability breaches and determine appro-
priate dependability measures. The goal of the VATs approach
is to provide efficient, thorough, and automated detection of
known vulnerabilities in a specific operating system configu-
ration. As an outcome of phase 1, gap analysis has been
identified, and pilot studies on an awareness survey and VATs
on 210 WASs have been conducted.

Phase two represents the MDDS‐CBSD development that
mitigates software component vulnerabilities. As shown in
Figure 1, the MDDS‐CBSD design process is motivated by the
results of an awareness survey, VATs, and a gap analysis. The
MDDS‐CBSD design process considers five sub‐activities
namely, comparison, classification, categorisation, CBSD ele-
ments, and allocation. Phase two concludes with MDDS‐
CBSD development based on: (1) MDDS‐CBSD architecture
and (2) MDDS‐CBSD embedding guideline.

Phase three examines the MDDS‐CBSD. Interviews and
surveys with industry experts are used to evaluate the
MDDS‐CBSD architecture. As shown in Figure 1, the ar-
chitecture evaluations consider three activities: survey design,
submission, and analysis. Our previous work [34] describes
the survey methodology, details, and criteria used to select
expert participants. A similar survey of industry experts was
conducted to assess their awareness of dependability features
embedded in the CBSD process. The survey to evaluate the
MDDS‐CBSD architecture uses a similar method. Twenty‐
five industry experts took part in the survey. Participants
are experts from an in‐house software development company.

Based on industrial practicality, an empirical study was
conducted to evaluate (Verify and Validate V&V) the MDDS‐
CBSD using a real‐world test bed system. This empirical study

TABLE 1 CBSD applied to different domains

Domains Description

Cloud computing, autonomous driving [28] The authors present an adaptive software component‐based middleware. This research presents a
component‐level offloading technique for autonomous driving software based on software
component allocation optimisation. Autonomous driving software components can be
optimally deployed to specific computing units using software component‐based allocation
optimisation.

Internet of Things (IoT) [29] This study investigates how component‐based software can be used to define IoT systems. This
study will aim to identify common IoT system traits and analyse how well these properties
relate to component‐based software characteristics.

Industrial Control Systems (ICS) [3] Based on a revolutionary component model, this paper proposes an Open Software Architecture
for Industry. The goal is to provide a component‐based solution for Industrial Control
Systems as well as an open framework for multiple application components and multi‐vendor
collaboration.

Heritage content [5] Using the capabilities of component‐based software, the paper creates a methodology for
developing heritage content made of various components.

E‐commerce [4] The goal of this project is to create a standard framework for e‐commerce application
development that is component‐based and loosely connected, but highly integrated.

Computer Numerical Control (CNC) systems [6] This study uses component‐based software and the dependency inversion principle to create a
revolutionary open CNC application that allows CNC capabilities to be customised.

E‐educational system [30] This article proposes to investigate component‐based software development as a future
alternative for an e‐educational system.

KAHTAN ET AL. - 3

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

applies the MDDS‐CBSD to ICT portal development. VAT
configuration, VAT execution, and VAT analysis are considered
for model evaluation. We did a similar vulnerability assessment

in Ref. [35]. Vulnerability assessments of developed web
application systems are also performed using similar method-
ologies. The assessments are designed to evaluate the

F I GURE 1 MDDS‐CBSD methodology. Abbreviations: MDDS‐CBSD, Model For Developing Dependable System Using Component‐Based Software
Development; SLR, Systematic Literature Review Method; SMP, Semi‐Markov Process; VATs, Vulnerability Assessment Tools; WAS, Web Application System

4 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

developed web application systems' dependability and their
ability to mitigate vulnerabilities. SMP was also used to test the
developed ICT portal's reliability.

5 | MDDS‐CBSD DESIGNING PROCESS

MDDS‐CBSD development consists of three main activities as
shown in Figure 1. The activities are: (1) MDDS‐CBSD
designing process; (2) MDDS‐CBSD architecture phases and
process; and (3) MDDS‐CBSD embedding guideline. The first
step taken in deriving the model was to determine the elements
and processes involved. Five sub‐activities were considered as
follows:

1. Comparison: A comparative study on existing CBSD pro-
cess models was conducted by identifying the elements and
processes of each model and investigating their application
processes.

2. Classification: The processes in existing models were clas-
sified using the compartmentalisation method used for the
CBSD phases. Three fundamental CBSD phases were used
for this procedure, namely, system requirement and
qualification, component development, and system
development.

3. Categorisation: These processes were further categorised
according to their descriptions. Despite having different
names, some of these processes describe the same activities.
Therefore, these differences and similarities must be
resolved before processes can be identified. Processes with
similar sets of activities were noted, and different process
names were substituted with names that reflect the set of
activities.

4. CBSD Elements: CBSD elements have been defined based
on the analysis of the classification and categorisation
stages:
a) Stages that comprise the CBSD processes and reus-

ability features preservation;
b) Compartmentalisation method of the architecture pha-

ses and processes;
c) Iterative and incremental integration process methods.

Therefore, the MDDS‐CBSD architecture has been
finalised.

5 Allocation: Using the finalised MDDS‐CBSD architecture,
the dependability attributes were embedded into the pro-
posed model process in the following stages:
a) Dependability requirement: emphasis on dependability

attributes in the requirement analysis and component
selection.

b) Dependability design, architecture, implementation, and
testing: emphasis on dependability attributes in the
mentioned three stages.

c) Dependability component implementation and testing:
emphasis on dependability attributes in the mentioned
two stages.

d) Dependability system testing: emphasis on dependability
attributes at the system testing stage.

5.1 | MDDS‐CBSD architecture

The first step taken in developing the MDDS‐CBSD archi-
tecture was determining the phases and processes that needed
to be included in the model. Figure 2 presents the MDDS‐
CBSD architecture.

Each process in the existing models was grouped into ar-
chitecture phase compartmentalisation, iterative and incre-
mental integration process, and preserving the reusability as
shown by the legend box in Figure 2.

5.1.1 | Architecture phase compartmentalisation

To successfully apply CBSD, the architecture phases must be
compartmentalised in the model. Compartmentalisation allows
multiple activities to run concurrently without one activity
blocking the other. Thus, architecture phase compartmentali-
sation saves time and resources. The architecture phase is
divided into three parts: the system requirement and qualifi-
cation phase, component development phase; and the system
development phase.

1. System Requirements and Qualifications Phase: A set of
software components is identified, built, catalogued, and
distributed for use in existing and future software systems.
To analyse the system domain, system requirements and
qualifications are used to identify common areas and
methods of describing the system. If system reusability is
considered, this phase should be performed early in the
software specification. This phase allows software engineers
to reuse software components on new and old systems.

2. Component Development Phase: This phase is divided into
three sub‐phases. Following the system requirements and
qualification phase, the component development team will
decide which components can be reused (e.g. those already
in the organisation repository or purchased) and which
must be developed from scratch. Each sub‐phase has its
own life cycle. So, three teams will work on the sub‐phases
in parallel.
2.1 Development for Reuse: The component interface is

defined first in the component development process.
This is a fixed mechanism among components. The
component design and implementation can begin
once the interface is defined and the methods' goals
are defined.

2.2 Development without Modification: A component can
be reused or migrated into a specialised subclass of an
existing component created by a programmer.

2.3 Development Post‐Modification Development:
Component‐based development avoids creating new
modules from scratch. Adapting some existing com-
ponents may require minor or major changes. But

KAHTAN ET AL. - 5

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

reusing an existing component necessitates some ad-
aptations. For example, the component interface or
some methods may need to be changed. Adaptation is
the process of appending a thin layer of code to a
component to make the required changes.

3. System Development Phase: It integrates the component
development team's components into an architecture style
and connects them to appropriate infrastructure for effec-
tive coordination and management.

5.1.2 | Iterative and incremental integration
process

Uncertainty in requirements and implementation approaches
often plagues software component development. Associating
before resolving uncertainties complicates the development
process. Parties will receive unclear specifications at the start
of development. During the project, all parties must collab-
orate. Practices and processes necessitate long‐distance
collaboration.

The use of iterative and incremental development (IID) as
a process model is required in software development. IID is an
iterative system that adds new features incrementally. Because
IID reacts quickly to changes, it is suitable for distributed
development.

5.1.3 | Reusability preservation

The lack of specifications that allow programmers to anticipate
component reuse is one of the issues that discourage it. This
can be overcome by requiring developers to consider

reusability early in the development process. MDDS‐CBSD
maintains reusability by:

1. Selection of Suitable Component Development Processes:
The component development phase follows the system
requirements and qualification phase. The team will execute
the task if the component is available in‐house or acquired
from a third party. If the chosen component needs to be
modified, another team will be assigned (post‐modification
development). Otherwise, the other team (development for
reuse) will do it.

2. Customisation of Application Design Based on Compo‐
nents: In some cases, modifying the application design to fit
the components is required. The goal is to reduce the cost
of developing new components. When tailoring or modi-
fying the components is costly or time‐consuming, the
application design is customised.

3. Reusable Library (Repository): To apply CBSD successfully,
the component repository deposition process must be
shown. Reusable components should be chosen to improve
component‐based software productivity. The repository
manages reusable parts. Using a repository for reusable
components allows for classification, searching, modifica-
tion, testing, implementation, version control, change con-
trol, and current and consistent documentation.

4. Closed Loop: In a closed‐loop model, previous develop-
ment components are explicitly fed back into the model to
populate the repository. CBSD emphasises reusing previous
development lifecycle components.

5. Traceability: To assist developers, each phase's stage will be
demonstrated sequentially. Each step includes detailed ex-
planations and examples to help developers apply this
model. To avoid confusion, minor steps will be omitted.

F I GURE 2 Model for developing a dependable system using component‐based software development architecture.

6 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5.2 | MDDS‐CBSD embedding guideline

The dependability attributes are important to consider over-
coming the lack of poor software development that causes
dependability issues, as stated in Ref. [36]. So, we created a best
practice guideline for embedding dependability attributes into
the CBSD process [37]. This method ensures the employees
understand their responsibilities in implementing dependability
rules. The guideline was created with the help of Malaysian
software developers and security consultants. This guideline
contains best practices for incorporating dependability into the
CBSD process. Dependability attributes are embedded into the
requirements, design, implementation, and testing phases of
the CBSD process. Figure 3 depicts the CBSD process'
dependability attributes.

6 | MDDS‐CBSD

Hence, the MDDS‐CBSD is finalised. Figure 4 depicts the
MDDS‐CBSD. The figure depicts three phases: System
Requirement and Qualification, Component Development,
and System Development.

The System Requirement and Qualification phase is used
to identify common areas and methods of describing the sys-
tem. The Dependability Attributes in the requirement and
component selection are highlighted as important stages in this
phase.

Development for Reuse, Development Post Modification,
and Development without Modification are three sub‐phases
of Component Development. Each of these three sub‐
phases has multiple stages. These three sub‐phases include

design, architecture, implementation, and testing based on
Dependability Attributes.

Plotting out the System Development phase's stages, it
integrates the component development team's components
into an architecture style and connects them to appropriate
infrastructure for effective coordination and management. The
Dependability Attributes Testing System is integrated.

The arrows in Figure 4 connect the three main phases and
the model repository, which presents iterative and incremental
development (IID). Also shown is the component repository
deposition process, which preserves reusability.

7 | EMPIRICAL STUDY

A practical study on the MDDS‐CBSD is conducted. This
empirical study applies the MDDS‐CBSD to an ICT portal.
Using the MDDS‐CBSD for ICT portal development ensures
proper integration of dependability attributes and generalisa-
tion of results [38–41].

The ICT portal development was done in collaboration
with a Malaysian company. The company name was kept secret
due to the competitive nature of the software development
industry. So, we call it the Software Development Company
(SDC). The ICT portal was created by a six‐person software
development team at SDC [42].

Therefore, an evaluation of the MDDS‐CBSD is carried
out in this paper to verify that the MDDS‐CBSD is capable of
mitigating the vulnerability in the developed model.

Thus, the MDDS‐CBSD is evaluated in this work to ensure
that it is capable of mitigating the vulnerability in the devel-
oped ICT portal.

F I GURE 3 Embedding dependability attributes into the component‐based software development process.

KAHTAN ET AL. - 7

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The MDDS‐CBSD was evaluated based on two elements
as the following:

I. MDDS‐CBSD architecture is evaluated by conducting a
survey with 26 experts.

II. The dependability attributes embedded in the MDDS‐
CBSD process is evaluated by verifying the dependability
attributes of the developed ICT portal.

7.1 | Expert evaluation

The results were based on the supplemental documents and
expert explanations for MDDS‐CBSD. Figures 5–14 shows the
MDDS‐CBSD architecture survey results. Figure 5 shows that
44% of experts strongly agree and 50% agree that the MDDS‐
CBSD processes are essential to CBSD. This result validates
the model architecture by 94%.

Figure 6 shows that 42.3% of experts strongly agree that
MDDS‐CBSD solves the sequential structure issue, followed
by 53.8% who agree and 3.8% who disagree. Figure 7 shows
the MDDS‐CBSD is simple to understand and apply, with
73.1% of experts who strongly agree. Moreover, 42.3% of
experts strongly agreed that the MDDS‐CBSD considers the
use of reusable components. Also, 53.8% agreed. Only 3.8% of
experts chose fair. Figure 8 reflects this.

Figure 9 shows how the MDDS‐CBSD improves
component development by breaking it down into three
sub‐phases to help developers save time and resources.
73.1% of experts strongly agree that the MDDS‐CBSD has
improved component development, with 27% agreeing.
Figure 10 shows the advantages of architecture phase
compartmentalisation. 25 experts agreed (strongly agree and
agree) on the benefits of architecture phase compart-tnqh_9;
mentalisation.

Figure 11 demonstrates the process model of iterative and
incremental development (IID). 25 experts strongly agree and
agree that IID is suitable for the development process.
Figure 12 shows that 57.7% of experts strongly agree that the
MDDS‐CBSD provides traceability, followed by 38.5% who
agree and 3.8% fair.

61.5% of experts strongly agree that component‐based
application design helps reduce development costs. Also,
23.1% of experts think this is true. Figure 13 shows the re-
sults. Figure 14 shows that 96.1% of experts strongly agree
(strongly agree and agree) that including the closed‐loop
feature will promote reuse of previous development life-
cycle components.

Based on the survey results, the MDDS‐CBSD architecture
supports rapid development, increased productivity, product
quality, and reusability of CBSD, and thus, promise that the
application of CBSD will be successful.

F I GURE 4 Model for developing a dependable system using component‐based software development.

8 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

7.2 | Dependability attributes verification

Our previous work [42] discussed an empirical study of the
proposed MDDS‐CBSD. This study will apply the proposed

MDDS‐CBSD to develop an ICT portal. The developed ICT
portal was evaluated using Vulnerability Assessment Tools
(VATs) to verify its dependability.

The ICT portal was developed in two versions to assess the
MDDS‐CBSD's dependability. The first version was built using

F I GURE 5 Model for developing a dependable system using
component‐based software development processes is essential for the
component‐based software development model.

F I GURE 6 Model for developing a dependable system using
component‐based software development addressed the sequential structure
problem.

F I GURE 7 Model for developing a dependable system using
component‐based software development is easy and simple to be applied.

F I GURE 8 Model for developing a dependable system using
component‐based software development address the reusable components.

KAHTAN ET AL. - 9

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the traditional CBSD model (no dependability attributes),
hence the name ‘traditional deployment’. The second ICT
portal was built with an MDDS‐CBSD with embedded

dependability, henceforth referred to as ‘MDDS‐CBSD
deployment’. The ICT portal was evaluated on two key
dimensions:

1. The MDDS‐CBSD deployment should be less prone to
failure.

2. MDDS‐CBSD deployment should be more dependable
than traditional deployment.

Experiments were run to assess the ICT portal on these
two dimensions. The MDDS‐CBSD results from both cases
were compared against the traditional deployment. The results
of comparing traditional and MDDS‐CBSD deployment are
briefly explained. The comparison was made to see how the
two deployment methods affected the system's vulnerabilities.
The results of JMeter, OpenVAS, and RATS scanning of the
ICT portal with various deployments are shown in the
following sections.

7.2.1 | Apache JMeter results

JMeter was used to test the ICT portal's availability and reli-
ability. The results came after executing all the test plans.
Figure 15 shows that before 100 threats, Bar1 and Bar2
throughput are close because the test bed was only loaded with
a few threats. From 150 to 200 threats, Bar 1's average value is
roughly 10% higher than Bar 2's. However, increasing the
number of threats to over 200 per second causes a rapid
decrease in Bar2, resulting in system failure.

F I GURE 9 Model for developing a dependable system using
component‐based software development enhances the component
development phase.

F I GURE 1 0 Architecture phase compartmentalisation advantages.

10 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The services are kept active despite the decrease in Bar1.
As a result, the service system with MDDS‐CBSD deployment
outperforms the traditional deployment, and the fluctuations in
bar1 are less than those in Bar2. Bar1 now works better in

service systems. For both MDDS‐CBSD and traditional de-
ployments, availability and reliability are summarised in
Figure 15. The observed availability and reliability change lin-
early with the number of requests per second.

F I GURE 1 1 Iterative and incremental development advantages.

F I GURE 1 2 Model for developing a dependable system using
component‐based software development provides traceability.

F I GURE 1 3 Cost reduction based on customisation of application
design.

KAHTAN ET AL. - 11

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

However, when the number of requests exceeds the
threshold value of 175, the availability and reliability begin to
decline. The decline in availability and reliability in the
MDDS‐CBSD has improved to 3.34%. The results of the
assessments show that MDDS‐CBSD deployment performs
better than traditional deployment when the system's load is
increased gradually. The graphs indicate that throughput for
Bar1 is stable for 100 and 200 users but unstable for 250
users, due to the ICT portal designed to support 200 users
concurrently.

7.2.2 | OpenVAS results

The scan was performed using OpenVAS on both traditional
and MDDS‐CBSD. The same configuration was used for both
scans. The first scan was traditional, and the second was
MDDS‐CBSD. The scans produced two reports. These reports
detail the flaws found in both traditional and MDDS‐CBSD.
Figures 16–18 show each scan's filtered results. Vulnerabilities
were addressed based on their type and dependability attri-
butes. Figure 16 compares confidentiality vulnerabilities. Ac-
cording to Figure 16, OpenVAS detected 24 vulnerabilities for
traditional deployment and 5 for MDDS‐CBSD deployment.
The medium risk factor is 12 for traditional deployment and 8
for MDDS‐CBSD, and for the low risk factor, 18 for tradi-
tional deployment and 12 for MDDS‐CBSD deployment.

Figure 17 compares integrity vulnerabilities. OpenVAS
detected 29 vulnerabilities for traditional deployment and 8 for
MDDS‐CBSD deployment. The medium risk factor is 14 for

F I GURE 1 4 Including closed‐loop will promote the reusability.

F I GURE 1 5 Availability and reliability comparison.

F I GURE 1 6 Confidentiality vulnerabilities comparison.

F I GURE 1 7 Integrity vulnerabilities comparison.

12 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

traditional deployment and 12 for MDDS‐CBSD, and for the
low risk factor, 26 for traditional deployment and 18 for
MDDS‐CBSD deployment.

Figure 18 compares safety flaws. OpenVAS detected 34
vulnerabilities for traditional deployment and 7 for MDDS‐
CBSD deployment. The medium risk factor is 26 for tradi-
tional deployment and 18 for MDDS‐CBSD, and for the low
risk factor, 22 for traditional deployment and 14 for MDDS‐
CBSD deployment.

7.2.3 | RATS results

The ICT portal's maintainability was assessed using RATS.
Figure 19 compares the maintainability of traditional and
MDDS‐CBSD deployments. The results show that 75% of
traditional deployment source code issues were detected, while
only 25% of MDDS‐CBSD deployment source code issues
were detected. The MDDS‐CBSD clearly improves system
maintainability. Figure 19 compares maintainability vulnera-
bilities. RATS detected 36 vulnerabilities for traditional
deployment and 8 for MDDS‐CBSD deployment. The me-
dium risk factor is 14 for traditional deployment and 12 for
MDDS‐CBSD, and for the low risk factor, 26 for traditional
deployment and 18 for MDDS‐CBSD deployment.

7.2.4 | Summary of the verification process

The MDDS‐CBSD results were compared to traditional
deployment. The ICT portal's dependability attributes show
that MDDS‐CBSD deployment prevents more failures than
traditional deployment. Moreover, MDDS‐CBSD deployment
mitigates vulnerabilities better than traditional deployment.
The availability of the MDDS‐CBSD has also been improved
to 3.34%. As the system load increases, MDDS‐CBSD

deployment outperforms traditional deployment. Also, sys-
tem vulnerabilities will be quickly tolerated, and risks will be
managed.

8 | DISCUSSION

This work compares MDDS‐CBSD to other models to show
the differences in phases, stages, and features. The MDDS‐
CBSD has the following key features that most other models
lack:

1. Embedding Dependability Attributes: MDDS‐CBSD
shows how the six dependability attributes are embedded
into the component‐based software development process.
This model helps software developers, designers, and en-
gineers build dependable systems. The model also enables
managers and developers to track dependability attributes,
requirements, design, implementation, and testing
throughout the CBSD process.

2. Guidelines for Composing Dependability Attributes in
CBSD Phases: MDDS‐CBSD outlines a best practice
guideline. The guideline was created with the help of
Malaysian software developers and security consultants.
This guideline contains the best practices for incorporating
dependability into the CBSD process. The guideline in-
cludes processes for eliciting and defining dependability
attribute requirements using risk analysis and assessment.

3. Empirical Study: An empirical study on the MDDS‐
CBSD has been conducted. This empirical study applies
the MDDS‐CBSD to an ICT portal development to ensure
a proper integration of dependability attributes and gener-
alisation of results.

4. Evaluations: MDDS‐CBSD was evaluated to see if it could
mitigate the vulnerability in the developed model. The
MDDS‐CBSD was assessed on two levels: (a) Expert

F I GURE 1 8 Safety vulnerabilities comparison. F I GURE 1 9 Maintainability vulnerabilities comparison.

KAHTAN ET AL. - 13

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

evaluation of MDDS‐CBSD architecture; (b) The depend-
ability of the developed ICT portal was evaluated against
the dependability of the MDDS‐CBSD process.

5. Compartmentalisation: This problem is addressed in
MDDS‐CBSD by compartmentalising the design phases.
Compartmentalisation allows multiple activities to run

concurrently without one activity blocking the other. Thus,
architecture phase compartmentalisation saves time and
resources.

6. Reusability: MDDS‐CBSD overcomes the issues that
discourage component reuse by forcing developers to
consider reusability early in the development process.

TABLE 2 Mapping between existing CBSD models and key features

Key features

Embedding
dependability
attributes

Guidelines for
composing
dependability
attributes in CBSD
phases

Empirical
study

Expert
evaluation

Dependability/
Security
evaluation Compartmentalisation Reusability

Iterative and
incremental
development
(IID)

CBSD
models

[41] √

[42] √

[43] √ √

[44] √ √

[45] √ √

[46] √ √

[47] √ √

[48] √ √

[49] √ √

[50] √ √

[51] √ √

[50] √ √

[52] √ √ √

[53] √ √ √ √ √

[54] √ √ √

[55] √ √ √

[56] √ √ √

[1] √ √ √

[57] √ √ √

[58] √ √ √

[59] √ √ √

[60] √ √ √

[61] √ √ √

[12] √ √ √

[62] √ √ √ √

[63] √ √ √

[64] √ √ √

[65] √ √

[66] √ √ √ √

[67] √ √ √ √

MDDS‐
CBSD

√ √ √ √ √ √ √ √

14 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

7. Iterative and Incremental Development (IID): MDDS‐
CBSD addressed the IID method as a software develop-
ment process. IID is an iterative system that adds new
features incrementally. Because IID reacts quickly to
changes, it is suitable for distributed development.

Table 2 summarises the existing CBSD model‐key feature
mapping. A check mark (√) indicates that a model supports
the key features. There is no check mark for process models
that do not support the key features.

9 | CONCLUSION

This study proposed a model for developing dependable sys-
tems using a component‐based software development
approach (MDDS‐CBSD). The MDDS‐CBSD methodology
and design process were detailed. The MDDS‐CBSD was
evaluated in two stages. First, a survey and expert interviews
evaluated the MDDS‐CBSD frame. Second, the developed
system's dependability was tested using VATs. According to the
MDDS‐CBSD architecture survey, experts agree on the
following: (a) All MDDS‐CBSD processes are required for
CBSD; (b) architecture phase compartmentalisation is benefi-
cial; (c) IID is suitable for distributed development; and (d)
MDDS‐CBSD specifies a place for considering reusable
components. Thus, the MDDS‐CBSD architecture succeeds.
Aside from that, the MDDS‐CBSD can mitigate vulnerabilities
better than the traditional development model. The availability
of the MDDS‐CBSD has improved to 3.34%. As the system
load increases, MDDS‐CBSD deployment outperforms tradi-
tional deployment. Our future work will validate the MDDS‐
dependable CBSD's behaviour using the Semi‐Markov Pro-
cess (SMP), and in addition, apply MDDS‐CBSD to more than
one software development company.

AUTHOR CONTRIBUTIONS
Hasan Kahtan: Conceptualisation; Data curation; Formal
analysis; Funding acquisition; Investigation; Methodology;
Project administration; Resources; Software; Supervision;
Validation; Visualisation; Writing – original draft; Writing –
review & editing. Mansoor Abdulhak: Conceptualisation;
Methodology; Software; Validation; Visualisation; Writing –
original draft. Ahmad Salah Al‐Ahmad: Methodology;
Resources; Visualisation; Writing – review & editing. Yehia
Ibrahim Alzoubi: Methodology; Visualisation; Writing – re-
view & editing.

ACKNOWLEDGEMENT
This research received no specific grant from any funding
agency in the public, commercial, or not‐for‐profit sectors.

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.

DATA AVAILABILITY STATEMENT
Data available in the article.

ORCID
Hasan Kahtan https://orcid.org/0000-0001-6521-7081

REFERENCES
1. Gill, N., Tomar, P.: Modified development process of component‐based

software engineering. Software Eng. Notes 35(2), 1–6 (2010). https://
doi.org/10.1145/1734103.1734120

2. Bentrad, S., Kahtan Khalaf, H., Meslati, D.: Towards a hybrid approach
to build aspect‐oriented programs. IAENG Int. J. Comput. Sci. 47(4)
(2020). https://www.iaeng.org/IJCS/issues_v47/issue_4/IJCS_47_4_
08.pdf

3. Wang, Y., et al.: OSAI: a component‐based open software architecture
for modern industrial control systems. Arabian J. Sci. Eng. 47(3),
3805–3819 (2022). https://doi.org/10.1007/s13369‐021‐06123‐3

4. Dilhara, W.: Web Component Based Ecommerce Application Develop-
ment Framework for Hosted Software Solutions (Pvt) Ltd. In: Master of
Computer Science. School of Computing, University of Colombo, Sri
Lanka (2021)

5. Iliev, O., Yoshinov, R.: Component‐based software architecture applied
for design of heritage content. In: Eleventh International Conference
Digital Presentation and Preservation of Cultural and Scientific Heritage
DiPP2021. Burgas, Bulgaria (2021)

6. Liu, L., Yao, Y., Li, J.: Development of a novel component‐based open
CNC software system. Int. J. Adv. Manuf. Technol. 108(11), 3547–3562
(2020). https://doi.org/10.1007/s00170‐020‐05590‐6

7. Salehudin, N.B., et al.: A proposed course recommender model based on
collaborative filtering for course registration. Int. J. Adv. Comput. Sci.
Appl. 10(11), 162–168 (2019). https://doi.org/10.14569/ijacsa.2019.
0101122

8. AlAhmad, A.S., et al.: Mobile cloud computing models security issues: a
systematic review. J. Netw. Comput. Appl. 190(103152), 1–17 (2021).
https://doi.org/10.1016/j.jnca.2021.103152

9. Al‐bashiri, H., et al.: Memory‐based collaborative filtering: impacting of
common items on the quality of recommendation. Int. J. Adv. Comput.
Sci. Appl. 10(12), 132–137 (2019). https://doi.org/10.14569/ijacsa.2019.
0101218

10. Mohanty, S., Acharya, A.A., Mohapatra, D.P.: A model based prioritiza-
tion technique for component based software retesting using uml state
chart diagram. In: 2011 3rd International Conference on Electronics
Computer Technology, pp. 364–368. IEEE, Kanyakumari, India (2011).
https://doi.org/10.1109/ICECTECH.2011.5941719

11. Moradian, E., Håkansson, A.: Controlling security of software develop-
ment with multi‐agent system. In: Knowledge‐Based and Intelligent In-
formation and Engineering Systems, pp. 98–107. (2010)

12. Sommerville, I.: Software Engineering, Ninth Edition. Pearson‐Addison
Wesley, Boston (2011)

13. Karen, G.: Software Security Assurance: A State‐Of‐The‐Art Report
(SOAR). DTIC Document (2007)

14. Al‐Ahmad, A.S., et al.: Systematic literature review on penetration testing
for mobile cloud computing applications. IEEE Access 7, 173524–
173540 (2019). https://doi.org/10.1109/ACCESS.2019.2956770

15. Al‐Ahmad, A.S., Kahtan, H.: Test case selection for penetration testing in
mobile cloud computing applications: a proposed technique. J. Theor.
Appl. Inf. Technol. 96(13) (2018). http://www.jatit.org/volumes/
Vol96No13/23Vol96No13.pdf

16. Karen, G., et al.: Security in the Software Life Cycle: Making Software
Development Processes–And the Software Produced by Them–More
Secure, Draft 1.1. Department of Homeland Security, p. 46 (2006)

17. Al‐Ahmad, A.S., Kahtan, H., Fuzz test case generation for penetration
testing in mobile cloud computing applications, Vasant P. Zelinka I.
Weber G.W. Intelligent Computing & Optimization. ICO 2018. Advances
in Intelligent Systems and Computing, vol. 866. Springer, Cham (2018)
https://doi.org/10.1007/978‐3‐030‐00979‐3_27

18. Al‐Ahmad, A.S., Kahtan, H.: Cloud computing review: features and issues.
In: 2018 International Conference on Smart Computing and Electronic
Enterprise (ICSCEE), pp. 1–5. IEEE, Kuala Lumpur (2018). https://doi.
org/10.1109/ICSCEE.2018.8538387

KAHTAN ET AL. - 15

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-6521-7081
https://orcid.org/0000-0001-6521-7081
https://doi.org/10.1145/1734103.1734120
https://doi.org/10.1145/1734103.1734120
https://www.iaeng.org/IJCS/issues_v47/issue_4/IJCS_47_4_08.pdf
https://www.iaeng.org/IJCS/issues_v47/issue_4/IJCS_47_4_08.pdf
https://doi.org/10.1007/s13369-021-06123-3
https://doi.org/10.1007/s00170-020-05590-6
https://doi.org/10.14569/ijacsa.2019.0101122
https://doi.org/10.14569/ijacsa.2019.0101122
https://doi.org/10.1016/j.jnca.2021.103152
https://doi.org/10.14569/ijacsa.2019.0101218
https://doi.org/10.14569/ijacsa.2019.0101218
https://doi.org/10.1109/ICECTECH.2011.5941719
https://doi.org/10.1109/ACCESS.2019.2956770
http://www.jatit.org/volumes/Vol96No13/23Vol96No13.pdf
http://www.jatit.org/volumes/Vol96No13/23Vol96No13.pdf
https://doi.org/10.1007/978-3-030-00979-3_27
https://doi.org/10.1109/ICSCEE.2018.8538387
https://doi.org/10.1109/ICSCEE.2018.8538387
https://orcid.org/0000-0001-6521-7081

19. Hasan, K., et al.: Motion analysis‐based application for enhancing
physical education. Adv. Sci. Lett. 24(10), 7668–7674 (2017). https://doi.
org/10.1166/asl.2018.12997

20. Redwine, S., Jr.: Software Assurance: A Curriculum Guide to the Com-
mon Body of Knowledge to Produce, Acquire, and Sustain Secure
Software, vol. V11. Department of Homeland Security, WA (2007)

21. Khan, R.A., et al.: Systematic literature review on security risks and its
practices in secure software development. IEEE Access 10 (2022).
https://doi.org/10.1109/ACCESS.2022.3140181

22. Khan, R.A., et al.: Security assurance model of software development for
global software development vendors. IEEE Access 10(2022). https://
doi.org/10.1109/ACCESS.2022.3178301

23. Khan, R.A., et al.: Systematic mapping study on security approaches in
secure software engineering. IEEE Access 9, 19139–19160 (2021).
https://doi.org/10.1109/access.2021.3052311

24. Khan, S.U., et al.: Critical success factors of component‐based software
outsourcing development from vendors’ perspective: a systematic liter-
ature review. IEEE Access 10 (2021). https://doi.org/10.1109/ACCESS.
2021.3138775

25. Rana, T.: Ex‐man component model for component‐based software
construction. Arabian J. Sci. Eng. 45(4), 2915–2928 (2020). https://doi.
org/10.1007/s13369‐019‐04213‐x

26. Wareham, T., Sweers, M.: Exploring viable algorithmic options for
automatically creating and reconfiguring component‐based software
systems: a computational complexity approach (full version). no.
2205.05001 [cs.SE], p. 38 (2022). https://doi.org/10.48550/ARXIV.
2205.05001

27. Agarwal, J., Dubey, S.K., Tiwari, R.: Usability estimation of component‐
based software system using adaptive neuro fuzzy approach. Int. J. Adv.
Intell. Paradigms 22(1‐2), 99–113 (2022). https://doi.org/10.1504/ijaip.
2022.123018

28. Park, J., et al.: Optimization of software component allocation for
autonomous driving in cloud‐vehicle edge environment. SSRN 4095613,
24 (2022). https://doi.org/10.2139/ssrn.4095613

29. Saari, M., Nurminen, M., Rantanen, P.: Survey of component‐based
software engineering within IoT development. In: 2022 45th Jubilee
International Convention on Information, Communication and Elec-
tronic Technology (MIPRO), pp. 824–828. IEEE (2022)

30. Irina‐Miruna, R.: Advantages and challenges of using component–based
software development in the vision of building a modern educational
system, [Online]. In: The 19th International Conference on Informatics
in Economy (IE 2019) (2019). https://doi.org/10.12948/ie2019.04.10.
https://www.conferenceie.ase.ro/

31. Kahtan, H., et al.: Embedding dependability attributes into component‐
based software development. Comput. Fraud Secur. 11, 8–16 (2014).
https://doi.org/10.1016/s1361‐3723(14)70548‐2

32. Kahtan, H., Abu Bakar, N., Nordin, R.: Reviewing the challenges of
security features in component based software development models. In:
2012 IEEE Symposium on E‐Learning, E‐Management and E‐Services,
pp.1–6 (2012). https://doi.org/10.1109/IS3e.2012.6414955

33. Jha, S.K., Mishra, R.: Predicting and accessing security features into
component‐based software development: a critical survey. In: Software
Engineering, pp. 287–294. Springer (2019)

34. Alzoubi, Y.I., Alahmad, A., Kahtan, H.: Blockchain technology as a Fog
computing security and privacy solution: an overview. Comput. Commun.
182, 129–152 (2021). https://doi.org/10.1016/j.comcom.2021.11.005

35. Kahtan, H., Abu Bakar, N., Nordin, R.: Embedding dependability attri-
butes into component‐based software development using the best
practice method: a guideline. J. Appl. Secur. Res. 9(3), 348–371 (2014).
https://doi.org/10.1080/19361610.2014.913230

36. Kahtan, H., et al.: Evaluation dependability attributes of web application
using vulnerability assessments tools. Infor. Tech. J. 13(14), 2240–2249
(2014). https://doi.org/10.3923/itj.2014.2240.2249

37. Kahtan, H., Bakar, N.A., Nordin, R.: Dependability attributes for
increased security in component‐based software development. J. Com-
put. Sci. 10(8), 1298–1306 (2014). https://doi.org/10.3844/jcssp.2014.
1298.1306

38. Kahtan, H., Bakar, N.A., Nordin, R.: Awareness of embedding security
features into component‐based software development model: a survey. J.
Comput. Sci. 10(8), 1411–1417 (2014). https://doi.org/10.3844/jcssp.
2014.1411.1417

39. Souza, L., Camboim, K., Alencar, F.: A systematic literature review
about integrating dependability attributes, performability and sustain-
ability in the implantation of cooling subsystems in data center. J.
Supercomput. 78(14), 1–37 (2022). https://doi.org/10.1007/s11227‐
022‐04515‐2

40. kamal Kaur, R., Pandey, B., Singh, L.K.: Dependability analysis of safety
critical systems: issues and challenges. Ann. Nucl. Energy 120, 127–154
(2018). https://doi.org/10.1016/j.anucene.2018.05.027

41. Brown,A.W.,Wallnan,K.C.: Engineering of component‐based systems. In:
Proceedings of ICECCS '96: 2nd IEEE International Conference on
Engineering of Complex Computer Systems (Held Jointly with 6th CSE-
SAW and 4th IEEE RTAW), pp. 414. IEEE Computer Society, Montreal
(1996). https://doi.org/10.1109/ICECCS.1996.558485

42. Aoyama, M.: Process and economic model of component‐based software
development: a study from Software CALS Next Generation Software
Engineering program. In: Proceedings Fifth International Symposium on
Assessment of Software Tools and Technologies, pp. 100–103. IEEE,
Pittsburgh (1997). https://doi.org/10.1109/AST.1997.599919

43. Tran, V.: Component‐based integrated systems development: a model for
the emerging procurement‐centric approach to software development.
In: Proceedings. The Twenty‐Second Annual International Computer
Software and Applications Conference (Compsac '98) (Cat. No.98CB
36241), pp. 128–135. IEEE, Vienna (1998). https://doi.org/10.1109/
CMPSAC.1998.716648

44. Lee, S., et al.: COMO: a UML‐based component development meth-
odology. In: Proceedings Sixth Asia Pacific Software Engineering Con-
ference (ASPEC'99) (Cat. No.PR00509). IEEE, Takamatsu, Japan (1999).
https://doi.org/10.1109/APSEC.1999.809584.54

45. Yau, S., Dong, N.: Integration in component‐based software development
using design patterns. In: Proceedings 24th Annual International Com-
puter Software and Applications Conference, pp. 369–374. COMP-
SAC2000 (2000). https://doi.org/10.1109/CMPSAC.2000.884750

46. Cheesman, J., Daniels, J., Szyperski, C.: UML Components: A Simple
Process for Specifying Component‐Based Software (No. 1). Addison‐
Wesley Reading, MA, USA (2001)

47. Allen, P.: Ebiz components. Objective View (6), 12–20 (2003)
48. Crnkovic, I.: Component‐based software engineering—new challenges in

software development. Software Focus 2(4), 127–133 (2003). https://doi.
org/10.1002/swf.45

49. Hutchinson, J., et al.: A service model for component‐based develop-
ment. In: Proceedings. 30th Euromicro Conference, pp. 162–169. IEEE,
Rennes (2004). https://doi.org/10.1109/EURMIC.2004.1333368

50. Capretz, L.: Y: a new component‐based software life cycle model. J.
Comput. Sci. 1(1), 76–82 (2005). https://doi.org/10.3844/jcssp.2005.76.
82. https://ir.lib.uwo.ca/electricalpub/136/

51. Mei, H.: ABC: supporting software architectures in the whole lifecycle.
In: Proceedings of the Second International Conference on Software
Engineering and Formal Methods, 2004 SEFM 2004. IEEE, Beijing
(2004). https://doi.org/10.1109/SEFM.2004.1347538

52. Crnkovic, I., Chaudron, M., Larsson, S.: Component‐based development
process and component lifecycle. J. Comput. Inf. Technol. 13(4), 44
(2006). https://doi.org/10.2498/cit.2005.04.10

53. Aris, H., Salim, S.: The development of a simplified process model for
CBSD. Int. Arab J. Inf. Technol. 4(2), 89–96 (2007)

54. Qureshi, M., Hussain, S.: A reusable software component‐based devel-
opment process model. Adv. Eng. Software 39(2), 88–94 (2008). https://
doi.org/10.1016/j.advengsoft.2007.01.021

55. Kouroshfar, E., Yaghoubi Shahir, H., Ramsin, R.: Process patterns for
component‐based software development. Model Data Eng. 54–68
(2009). https://doi.org/10.1007/978‐3‐642‐02414‐6_4

56. Sharp, J., Ryan, S.: A theoretical framework of component‐based soft-
ware development phases. ACM SIGMIS ‐ Data Base 41(1), 56–75
(2010). https://doi.org/10.1145/1719051.1719055

16 - KAHTAN ET AL.

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1166/asl.2018.12997
https://doi.org/10.1166/asl.2018.12997
https://doi.org/10.1109/ACCESS.2022.3140181
https://doi.org/10.1109/ACCESS.2022.3178301
https://doi.org/10.1109/ACCESS.2022.3178301
https://doi.org/10.1109/access.2021.3052311
https://doi.org/10.1109/ACCESS.2021.3138775
https://doi.org/10.1109/ACCESS.2021.3138775
https://doi.org/10.1007/s13369-019-04213-x
https://doi.org/10.1007/s13369-019-04213-x
https://doi.org/10.48550/ARXIV.2205.05001
https://doi.org/10.48550/ARXIV.2205.05001
https://doi.org/10.1504/ijaip.2022.123018
https://doi.org/10.1504/ijaip.2022.123018
https://doi.org/10.2139/ssrn.4095613
https://doi.org/10.12948/ie2019.04.10
https://www.conferenceie.ase.ro/
https://doi.org/10.1016/s1361-3723(14)70548-2
https://doi.org/10.1109/IS3e.2012.6414955
https://doi.org/10.1016/j.comcom.2021.11.005
https://doi.org/10.1080/19361610.2014.913230
https://doi.org/10.3923/itj.2014.2240.2249
https://doi.org/10.3844/jcssp.2014.1298.1306
https://doi.org/10.3844/jcssp.2014.1298.1306
https://doi.org/10.3844/jcssp.2014.1411.1417
https://doi.org/10.3844/jcssp.2014.1411.1417
https://doi.org/10.1007/s11227-022-04515-2
https://doi.org/10.1007/s11227-022-04515-2
https://doi.org/10.1016/j.anucene.2018.05.027
https://doi.org/10.1109/ICECCS.1996.558485
https://doi.org/10.1109/AST.1997.599919
https://doi.org/10.1109/CMPSAC.1998.716648
https://doi.org/10.1109/CMPSAC.1998.716648
https://doi.org/10.1109/APSEC.1999.809584
https://doi.org/10.1109/CMPSAC.2000.884750
https://doi.org/10.1002/swf.45
https://doi.org/10.1002/swf.45
https://doi.org/10.1109/EURMIC.2004.1333368
https://doi.org/10.3844/jcssp.2005.76.82
https://doi.org/10.3844/jcssp.2005.76.82
https://ir.lib.uwo.ca/electricalpub/136/
https://doi.org/10.1109/SEFM.2004.1347538
https://doi.org/10.2498/cit.2005.04.10
https://doi.org/10.1016/j.advengsoft.2007.01.021
https://doi.org/10.1016/j.advengsoft.2007.01.021
https://doi.org/10.1007/978-3-642-02414-6_4
https://doi.org/10.1145/1719051.1719055

57. Bose, D.: Component based development. Arxiv no. 011.2163 [cs.SE]
(2010). https://doi.org/10.48550/arXiv.1011.2163

58. Chhillar, R.S., Kajla, P.: A new‐knot model for component based soft-
ware development. Int. J. Comput. Sci. 8 (2011)

59. Lau, K.K., Taweel, F.M., Tran, C.M.: The W model for component‐based
software development. In: 2011 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, pp. 47–50. IEEE,
Oulu, Finland (2011). https://doi.org/10.1109/SEAA.2011.17

60. Pandeya, S.S., Tripathi, A.K.: Testing component‐based software:
what it has to do with design and component selection. J. Software
Eng. Appl. 4(1), 37–47 (2011). https://doi.org/10.4236/jsea.2011.
41005

61. Shang, M., Wang, H., Jiang, L.: The development process of component‐
based application software. In: 2011 International Conference of Infor-
mation Technology, Computer Engineering and Management Sciences,
pp. 11–14. IEEE, Nanjing, China (2011). https://doi.org/10.1109/ICM.
2011.227

62. Barnawi, A., et al.: Novel component based development model for sip‐
based mobile application. Arxiv no. 1202.2516 [cs.SE] (2012). https://
doi.org/10.5121/ijsea.2012.3107

63. IrshadKhan, A., et al.: Validation of component based software devel-
opment model using formal B‐method. Int. J. Comput. Appl. 67(9),
24–35 (2013). https://doi.org/10.5120/11423‐6768

64. Biondi, A., Buttazzo, G., Bertogna, M.: A design flow for supporting
component‐based software development in multiprocessor real‐time
systems. R. Time Syst. 54(4), 800–829 (2018). https://doi.org/10.1007/
s11241‐018‐9301‐3

65. Jha, S.K., Mishra, R.: A review on reusability of component based software
development. Reliability: Theory & Applications 14(4), 32–36 (2019)

66. Derakhshanmanesh, M., et al.: Model‐integrating development of software
systems: a flexible component‐based approach. Software Syst. Model
18(4), 2557–2586 (2019). https://doi.org/10.1007/s10270‐018‐0682‐5

67. Umran Alrubaee, A., et al.: A process model for component‐based
model‐driven software development. Information 11(6), 302 (2020).
https://doi.org/10.3390/info11060302

How to cite this article: Kahtan, H., et al.: A model
for developing dependable systems using a component‐
based software development approach (MDDS‐CBSD).
IET Soft. 1–17 (2022). https://doi.org/10.1049/sfw2.
12085

KAHTAN ET AL. - 17

 17518814, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12085 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.48550/arXiv.1011.2163
https://doi.org/10.1109/SEAA.2011.17
https://doi.org/10.4236/jsea.2011.41005
https://doi.org/10.4236/jsea.2011.41005
https://doi.org/10.1109/ICM.2011.227
https://doi.org/10.1109/ICM.2011.227
https://doi.org/10.5121/ijsea.2012.3107
https://doi.org/10.5121/ijsea.2012.3107
https://doi.org/10.5120/11423-6768
https://doi.org/10.1007/s11241-018-9301-3
https://doi.org/10.1007/s11241-018-9301-3
https://doi.org/10.1007/s10270-018-0682-5
https://doi.org/10.3390/info11060302
https://doi.org/10.1049/sfw2.12085
https://doi.org/10.1049/sfw2.12085

	A model for developing dependable systems using a component‐based software development approach (MDDS‐CBSD)
	1 | INTRODUCTION
	2 | CBSD APPLICATIONS: RELATED WORK
	3 | MOTIVATION
	4 | MDDS‐CBSD METHODOLOGY
	5 | MDDS‐CBSD DESIGNING PROCESS
	5.1 | MDDS‐CBSD architecture
	5.1.1 | Architecture phase compartmentalisation
	5.1.2 | Iterative and incremental integration process
	5.1.3 | Reusability preservation

	5.2 | MDDS‐CBSD embedding guideline

	6 | MDDS‐CBSD
	7 | EMPIRICAL STUDY
	7.1 | Expert evaluation
	7.2 | Dependability attributes verification
	7.2.1 | Apache JMeter results
	7.2.2 | OpenVAS results
	7.2.3 | RATS results
	7.2.4 | Summary of the verification process

	8 | DISCUSSION
	9 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

