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ABSTRACT 

The debate on global climate change has received increasing attention by researchers, and 

policymakers in both public and private sectors, as well as other relevant stakeholders. The 

consensus is that excessive emissions of greenhouse gases, particularly carbon dioxide 

emission, remain a crucial threat to achieving sustainable environmental quality and 

development across the world. Many influential studies continued to focus on lowering 

emissions in advanced rich countries, with little attention on developing economies. Although 

studies have focused on the determinants of carbon dioxide emission in the advanced 

economies with mixed findings amidst several policy-recommendations, which may not be 

appropriate for developing economies due to their relative low level of economic subsistence. 

Hence, this study empirically examines the impact of energy consumption, financial 

development, foreign direct investment, gross domestic product growth, and industrial 

performance on carbon dioxide emissions in Nigeria, Ghana, and South Africa by using 

autoregressive distributive lag (ARDL) model, vector autoregressive and Toda-Yamamoto 

causality techniques from 1980Q1 to 2017Q1.  

The findings reveal the existence of cointegration among the variables in the models of the 

three studied countries. Similarly, the outcome from the estimated model for Nigeria illustrates 

a negative and significant relationship between fossil fuel energy consumption, financial 

development, foreign direct investment, industrial performance, and carbon dioxide emission. 

The result from the model of Ghana also reveals a negative link among fossil fuel consumption, 

financial development, foreign direct investment, industrial value, and carbon dioxide 

discharge. However, the outcome from the South African model shows that financial 

development, foreign direct investment, economic growth, and industrial value increase the 

level of carbon dioxide emissions. Moreover, from the impulse response function for Nigeria 

shows a positive shock among fossil fuel energy consumption and carbon dioxide emission 

from the short run to longer periods. Similarly, the finding from the impulse response function 

for Ghana and South Africa also illustrate that shock in energy use accelerates the capacity of 

carbon dioxide emission in these economies. The estimate from the variance decomposition in 

Nigeria, Ghana and South Africa reveals a positive and significant shock of fossil fuel energy 

consumption on carbon dioxide emissions. This means that fossil fuel energy consumption 

increases the level of carbon dioxide emissions in these countries. Similarly, the result of 

impulse response for Nigeria, Ghana and South Africa indicates negative shocks of energy 

consumption, foreign direct investments, credit, and industrial value toward carbon dioxide 
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emissions. However, domestic credit and economic growth positively influence carbon dioxide 

emissions in South Africa. Nonetheless, the result from variance decomposition for Nigeria, 

Ghana and South Africa reveals that fossil fuel use, economic growth, foreign direct 

investments, and industrial performance forecast positively on the trend of carbon dioxide 

emissions in long-run quarter in these economies. Lastly, the outcome from the Toda-

Yamamoto causality test for Nigeria shows the existence of causality between economic 

growth, industrial value, credit, fossil fuel and carbon dioxide emissions. In the case of Ghana 

and South Africa, the result reveals no causality among the variables. However, energy 

resources have no influence on carbon dioxide discharge in South Africa.  

Since the results of fossil fuel energy use, industrial performance, foreign direct investment, 

and financial development have significant negative impact on the level of carbon dioxide 

discharge in these countries. It is important for policy makers to emphasize on more appropriate 

policies that will consider financial reform, sound industrial policies and all avenues that will 

attract clean foreign investment to stimulate sustainable development in these economies. This 

could be through further control on high explosion of carbon dioxide emissions by making 

availability of low emissions technologies, provision of financial incentives that will encourage 

the use of low carbon dioxide emissions technology and removing trade barriers that will attract 

foreign investment, human capital development and research. Consequently, policy on the 

restructuring of financial and industrial sectors should meet up with the designed goals to 

enhance the level of environmental quality. This entails that it is important to consider policies 

on mitigation of carbon dioxide emission; especially regarding policies that will promote 

environmental quality. Based on the findings of the study, energy consumption and financial 

progress, economic growth and industrial value addition have positive and significant 

relationship with carbon dioxide discharge. This entails that energy consumption increases the 

level of carbon dioxide emissions in these countries. Therefore, there is the need for extensive 

policies on energy use regulations and emphasis should be on other low emission alternatives 

of energy such as solar, thermal, wind and hydro energy. This will help in mitigation of carbon 

dioxide discharge and improve the environmental quality in sub-Saharan Africa countries.  

 

From the foregoing, this study recommends the need for relevant stakeholders to implement 

strategies to reduce carbon emission in the continent to support higher trajectory of 

environmental quality through adoption of innovative energy technologies to promote intra- 

and inter-generational equity in the use of natural resources in sustainable manner overtime. 
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The study accentuates the need for financial system regulators to develop regulatory-incentive 

strategy to encourage banking credit intermediation for businesses to adopt environmentally 

friendly energy sources in their productive activities. Moreover, governments of these countries 

should strengthen their environment-related policy frameworks to counteract the import of 

pollution-intensive industries in a bid to achieve a non-declining trajectory in environmental 

quality overtime in the African continent.
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 Background 

There is renewed focus by researchers and policymakers in both public and private sectors on 

the rising detrimental effects of global climate change due, perhaps to its increasing criticality 

to achieving sustainable environmental quality across the world (Klinsky et al. 2016; Burton 

and van Aalst, 1999; Klein 2001; Chambers, 1989). Issues around climate change has turn into 

one of the most significant crises of the present age, as its effects cuts across global countries’ 

boundaries. The trend in emissions continue to fuel the increasing debate and clamor for 

humans to safeguard the environment to ensure intra- and inter-generational equity in the use 

of natural resources. Africa’s total energy consumption is under 3% of global energy 

consumption (British Petroleum, 2020), despite having a 17% share of the global population. 

Investment in sustainable projects is growing globally. Multilateral agencies are promoting 

sustainable developments and investments like sustainable finance and climate financing. The 

United Nations Environmental Program (UNEP) defines climate finance as local, national, or 

transnational financing, which may be drawn from public, private and alternative sources of 

financing.    

Policymakers on the African continent should not ignore the effects of environmental 

degradation. Despite the evidence of deteriorating environmental quality, economic growth in 

sub-Saharan Africa depends on investing in the energy industry to accommodate the rising 

energy demand. Like many developing economies and emerging markets, burning fossil fuels 

for energy is seen as necessary for economic growth – despite the evidence of climate change. 

The economies of Ghana, Nigeria, and South Africa have made progress in strengthening their 

macroeconomic policies since the turn of the century. Ghana, Nigeria, and South Africa are 

among the three largest economies in sub–Saharan Africa. They are endowed with vast mineral 

resources. For example, Ghana is Africa’s largest gold miner, and the world’s second largest 

cocoa producer and it is an emerging petroleum and natural gas economy. South Africa is also 

a mining jurisdiction with sector that comprises of platinum and lignite, coal, gold, iron ore, 

uranium, and manganese. Nigeria on the other hand, due to the influence of its vast oil 

resources, the domestic mining industry is underdeveloped leading to importation of minerals 

that it could produce domestically such as salt, iron ore, and Bitumen.  
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In 2020, the output of these three countries accounted for 50% of the sub-Saharan African 

economy (World Bank, 2022). However, the growth in these economies has relied on 

traditional energy sources. It seems worrying for policymakers of these countries to be less 

concerned about environmental impacts. To the best of the researcher's knowledge, this aspect 

has received little or no empirical attention in the context of selected pooled African countries, 

including Ghana, Nigeria, and South Africa. Moreover, despite advances in carbon dioxide 

emissions analysis, agreement on the existence and stability of the Environmental Kuznets 

Hypothesis and pollution-haven hypothesis remain inconclusive within the African continent. 

The impact of carbon dioxide emissions is gravely affecting both the ecosystem and humanity, 

and it is causing several environmental hazards (Asongo, 2018; IPCC, 2014). Recently, some 

under-developed and developing countries have increased their economic restructuring by 

carrying out rapid industrialization (Niva, et al. 2020). Nevertheless, this rapid industrialization 

amongst global economies have resulted in an upsurge in energy-related carbon dioxide 

emissions and environmental degradation. Moreover, an increase in urbanization and a fast 

population growth have also created high potential for energy-related carbon dioxide emissions 

due to enhanced energy consumption (Gasimili, et al. 2019). A rise in carbon dioxide emissions 

has been witnessed in sub-Saharan Africa countries due to high population, economic growth, 

and related factors (Hamilton and Kelly, 2017).  

Since the industrial revolution of the 1860s, a rise in the earth’s carbon dioxide emissions levels 

has been clearly visible. Before this landmark phase, the concentration of atmospheric carbon 

dioxide was just below 280 parts per million (ppm) which did remain consistent for about 700 

years (Intergovernmental panel on climate change (IPCC), 2018). Ever since the 

industrialisation drive that started in the United Kingdom, there has been exponential growth 

in carbon dioxide concentrations (Ayoade, 2003). A recent National Oceanic and Atmospheric 

Administration (NOAA) Research (2021) study, based on initial analysis, indicated the mean 

amount of atmospheric carbon dioxide stood at 412.5 ppm in 2020, rising by 2.6ppm above the 

2019 levels, and the jump was considered the 5th highest yearly rise in NOAA’s 63-year 

records, following increases recorded in 1987, 1998, 2015 and 2016. Meanwhile, the world’s 

atmospheric carbon dioxide level has risen by 43.5ppm, representing a 12% increase, since 

2000, when it was nearly 370 ppm, and have grown by 47% since the start of the industrial age. 

The emission of carbon dioxide growth rate in the atmosphere is predicted to jump to 450 ppm 

by 2050 (Botkin and Keller, 1997). The commercial development of different countries 

globally has also contributed to the increase in emissions of carbon dioxide (Shah and Zeeshan, 
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2016), and a higher density of population and faster economic growth both moderately increase 

the environmental price of economic growth (Panayotou, 1997). 

Globally, Africa’s Human Development Index (HDI) is lowest, which explains the need to 

quickly increase the speed of economic development in Africa (Niva, et al. 2020). Head (2009) 

argues furthermore that Africa must strive hard at all costs in the coming years to stay in pace 

with other economies of the world. There has been an upsurge in energy-related carbon dioxide 

emissions around the world and Africa, and due to its stage of development, is most likely to 

contribute to global warming and greenhouse gases emissions in the coming years. The major 

source of energy in most emerging and developing countries is fossil fuels usage, often 

consumed inefficiently, leading to enhanced carbon dioxide emissions and pollution in the 

region (Samu, et al. 2019). There was a strong emphasis on the subject area of carbon dioxide 

emission, which was discussed in the first world global climate change and environment in 

1979 and in December 1980. Followed by Kyoto protocol in 1997 that was attended by 

majority of member states. The Kyoto protocol culminated into Paris agreement. Under the 

2015 Paris agreement, there is a global commitment to limit the average global temperature 

rise to 1.5°C above pre-industrial levels. However, the portion of carbon dioxide explosion 

from emerging economies had increased the level of deteriorating environmental quality due 

to atmospheric heat and climate alteration (Nejat, et al. 2015). Regions and countries like 

China, India, sub-Saharan Africa (SSA), North Africa, Asia, and Latin America account for 

almost 63% of global carbon dioxide discharge. The global trend of carbon dioxide discharge 

is becoming a threat to all countries' ecosystems and development (Sehrawat, et al. 2015; 

Abbasi and Riaz, 2016). There is a connection between fossil fuel as an energy source, the level 

of economic activities and the trajectory of industrial production (Asongu, 2018). 

Additionally, there is a direct connection between economic growth and energy usage, which 

has resulted in an indirect impact on the environment and local ecosystem of sub-Saharan 

Africa (Yusuf, 2014). Non-renewable energy resources have rapidly depleted all over the 

world, which has a direct influence on Africa’s future economic development (Niva, et al. 

2020). Africa’s future energy use is expected to intensify due to its growing economy, the pace 

of economic development, and its rapidly increasing population (USEIA, 2018).The resultant 

environmental impacts include the vulnerability of the economy to recurrent floods, droughts, 

and cyclones as well as the spread of diseases, reduction in wildlife, melting of glaciers and the 

reduction of agricultural productivity (Asongu, 2018; IPCC, 2014). As postulated by Sulaiman 

and Abdul-Rahim (2018), a higher density of population and faster economic growth 
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moderately increase the environmental value of economic growth. Consequently, carbon 

dioxide emission levels in the earth's atmosphere have witnessed a continuous rise ever since 

the time of the industrial revolution (IPCC, 2018). Prior to this landmark phase, the 

concentration of carbon dioxide emissions was consistent at nearly 280 ppm for about 700 

years. However, atmospheric carbon dioxide discharge growth rate is now about 0.5% 

annually, and its level is predicted to rise to 450 ppm by 2050 (IPCC, 2018). Carbon dioxide 

emissions contributed to about 76% of the world’s total greenhouse gases (Shahzad, et al. 

2017). The danger of climatic change owing to increasing heat levels has therefore become a 

topic of global concern for the attainment of environmental sustainability. 

 

It is widely acknowledged that the rise in carbon dioxide emissions is a key component that 

contributes to weather variability and the warming of the globe (Heidari, et al. 2015). Global 

carbon dioxide emissions have rapidly increased recently, and are on course to reach a new 

record, extending beyond the challenge the world faces in curtailing the effects of climate 

change (Tiwari, 2011). The world carbon dioxide discharge outflows increased from 19.35mn 

kilotons in 1980 to 35.84m kilotons in 2013, showing that it increased by around 84% during 

this period (Banday and Aneja, 2018). In addition, carbon dioxide emissions from both 

industrialized and emerging countries have grown at 1.3 % annually and are projected to double 

by the year 2030. This situation will doubtless be attained unless control measures are put in 

place (IPCC, 2014). 

According to Global Carbon Project (2018), carbon dioxide emissions from fossil fuels and 

industries increased from 33.1% in 2010 to 36.2% by 2017, and are projected to rise by a further 

2.7% with China and India accounting for greater portions. While addressing this concern, it is 

important to make strategies for striking a balance between economic development and climate 

change. In line with the report from the intergovernmental panel on climate change (2013), 

forwarding off the catastrophic climatic variation, it is necessary that global warming remains 

limited to 2ºC and the atmospheric concentration of greenhouse gases to less than 450 ppm 

carbon dioxide emissions. It is projected that the total world population will hit 9.2 billion 

people by 2050 and to sustain within this ‘carbon budget’, the average per capita annual 

emissions must be limited to about 2.1 to 2.6 tons carbon dioxide by 2050. Recently, it has 

been documented that most developing countries have increased their carbon dioxide discharge 

to pursue higher economic performance. This has become an issue of concern to the 

international community, especially concerning mitigation of carbon dioxide discharge. 

Similarly, developing countries from the Middle East and North Africa, Latin America, Asia, 



5 
 

sub-Saharan Africa, India, and China cumulatively contributed to about 63% of the global 

carbon dioxide emissions as indicated in figure 1.1. 

 

 
Figure 1. 1: Contribution of Carbon Dioxide Emissions 

Source: Intergovernmental panel on climate change (2018) 
 
Among all the continents in the world, Africa is the lowest ranked in terms of human 

development index, which highlights the significance of accelerating economic development 

in the continent (Niva, et al. 2020). Indeed, Head, (2009) suggests that it is imperative for the 

continent to strive hard in the coming years to keep pace with other economies of the world. 

The major source of energy in developing countries within the continent is fossil fuels, which 

lowers the efficiency of energy consumption and increases carbon dioxide emissions (Samu, 

et al. 2019). In response to this situation, SSA countries have set up targets for sustainable 

development, including the reduction of carbon dioxide emissions to the level of 80% by 2050 

(from 1990 period). There is also another target to increase human development index with 

ecological footprints by 1.44 global hectares (gha) per capita development. 

Industrialised and developing countries, especially the sub-Saharan African countries have 

recently given utmost priority to ecological sustainability and fiscal variables, which clearly 

indicates that SSA countries are at an important stage of economic expansion. These economies 

are witnessing swift rise in population with encouraging demographics of young and growing 

workforce in the urban areas. Although this region has relatively lower per capita echelons of 

greenhouse gasses releases, the ever-increasing risks of adverse worldwide climatic changes 

63%

37%

Developing countries Developed countries
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indicate that global economies need to avoid economic growth path based on high-emission 

models. This atmospheric limitation is in conflict with the growth trend which is witnessing 

the rapid growth of greenhouse gasses  emissions in the SSA region, owing to increased fossil 

fuel extraction and use, population growth, and, deforestation as well as a steep rise in cattle 

production (EIA, 2014; Acaravci and Ozturk, 2010; Sehrawat, Giri, and Mohapatra, 2015). 

Therefore, for sub-Saharan African countries to overcome several developmental challenges 

such as illiteracy, healthcare, conflicts, lack of energy access and widespread poverty, they 

must design their economic development in such ways that it does not cause large-scale rise in 

greenhouse gasses emissions. Niva, et al. (2020) point out that, some under-developed and 

developing countries within SSA have accelerated their economic restructuring by embarking 

on rapid industrialisation initiatives.  

Figures 1.2 reflects that energy demand due to the urgent need for these countries to accelerate 

their level of economic development and growth has resulted in higher energy consumption. It 

has been argued that emissions from fossil fuel energy have increased over a period with solid 

and liquid fuels with each one currently accounting for 35% and gas fuel 16.9 % of the regional 

total in SSA countries.  For instance, figure 1.2 shows that in Ghana, energy use increased from 

1.45 million kg of oil equivalent in 2000 to 1.72 million kg of oil equivalent in 2020. Similarly, 

in South Africa, the trend in energy consumption grew by 0.1 million kg of oil equivalent from 

2000 to 2020. In addition, the trend in consumption of energy resources in Nigeria indicates 

that fossil fuel energy use increased from 1.2 million kg of oil equivalent in 2000 to 1.26 million 

kg of oil equivalent in 2020. Hence, in all the three countries, it is evident that for almost a 

decade, energy consumption possessed an increasing trend. 
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Figure 1. 2: Energy Consumption in Nigeria, Ghana, and South Africa. 

Source: (WDI, 2020). 

Similarly, SSA countries have recorded rapid growth in industrial performance for almost a 

decade. The annual growth in value of the output in 2012 for the region was 4.6%, which is 

projected to increase in the coming years, (World Bank, 2020). The value of industrial 

performance in SSA apparently remains in a growing trend as the oil and non-oil producing 

countries have shown improvements in recent times. Nigeria is among the strongest economy 

in sub-Saharan Africa, with her output increasing at an average of 5.7% annually between 2006 

and 2020. In the case of South Africa, the country’s output increased to almost triple peak at 

$400 billion in 2011, while Ghana had an annual growth increase, which averaged 8.6% from 

2000 to 2020. Between 2000 and 2020, these countries' gross domestic product (GDP) growth 

has moved in an upward direction, which also indicates an improvement in economic 

performance. For example, in all the countries, output increased significantly between 2000 

and 2020. Specifically, the total monetary value of output in Nigeria was worth $568.49 billion, 

in South Africa was $351.30 billion, and $126.77 billion in Ghana. Figure 1.3 shows that the 

trend of output in Ghana, South Africa, and Nigeria from 2000 to 2020 moved on a positive 

track. This implies that since the value of industrial performance has been growing, it will 

directly affect the level of energy demand and cause high carbon dioxide emissions’ discharge. 
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Consequently, based on these situations, energy consumption and industrial performance might 

be linked with the increasing level of carbon dioxide discharge in these countries. 
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Figure 1. 3: Output Growth in Nigeria, Ghana, and South Africa1980 – 2020 

Source: World Development Indicators 2022 

 

This study highlights the conditions of the three largest economies of SSA countries and 

studied the relationship between energy consumption and energy-supporting economic 

activities, viz-a-viz carbon dioxide emissions, using econometric analysis, with a view to 

entrenching environmental sustainability perspective. Thus, the main aim of this study is to 

investigate the impact of energy consumption, financial development, foreign direct 

investment, growth rate of gross domestic product, and industrial performance on carbon 

dioxide emissions in the three largest SSA economies. 

1.2   Motivation and Objectives of the Study 

The matter of global warming does not have same significance in the developing economies as 

it has in the developed economies, and so is the case of countries of SSA region. The SSA 

region has higher dependence on the environmental and natural resources and this region 

suffers significantly from the climate change and natural disasters due to financial constraints 
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in adapting to these scenarios. In addition, Ghana, Nigeria, and South Africa being the largest 

economies in SSA are going through rapid urbanisation, population growth and economic 

growth that can further intensify the pollution levels. Therefore, environmental challenges have 

become global issues in the present time. The consequences of increased carbon dioxide 

emissions such as global heat and climate change that affect all communities in the world have 

prompted policymakers to embark on policies aimed at mitigating the carbon dioxide discharge 

(Danlami, Applanaidu, and Islam, 2018). 

The increasing level of greenhouse gases and carbon dioxide emissions have become a threat 

to the environment, causing an overall rise in temperature and accelerating global warming. 

The main cause of the rise in temperature and the noticeable change in the weather across the 

globe can be attributed to the upsurge in levels of carbon dioxide emissions in the atmosphere 

(Heidari, et al. 2015). Global climate change is increasingly gaining momentum among 

researchers, policymakers (public and private), and other interested parties. Excessive 

greenhouse gas emissions, particularly carbon dioxide emissions, are widely acknowledged as 

a major obstacle to having sustainable environmental quality and growth. However, much 

notable research continued to focus on studies motivated to reducing emissions in advanced 

rich countries, while relatively few have been carried-out in SSA economies. More so, these 

studies on the drivers of carbon dioxide emissions in advanced economies have yielded 

conflicting results with policy recommendations that may not be applicable for developing 

economies due to the relatively wide divergence in stages of economic development.  

The conflicting findings have remarkable implications on the design and implementation of 

emissions-reducing initiatives in SSA. As a result, this study focuses on finding the 

determinants of carbon dioxide emissions, using data of the three largest economies in sub-

Saharan Africa. Although the African region has relatively lower per capita levels of emitted 

greenhouse gasses, the ever-increasing risks of adverse worldwide climatic changes indicate 

that global economies need to avoid economic growth paths based on high-emission models. 

While the SSA countries are trying to overcome several developmental challenges, it is 

essential to design their economic development in such manners that will not cause a large-

scale rise in greenhouse gasses emissions. In fact, despite relative advances in economic growth 

and carbon dioxide emissions literature, empirical findings on the applicability of the 

environmental kuznets hypothesis within the African continent remains inconclusive and 

unresolved. In other words, it remains unclear to what extent the environmental kuznets 

hypothesis holds true in SSA. Thus, this study further ascertains the extent to which the 
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Environmental Kuznets Hypothesis holds in the three largest economies of African countries. 

This is useful for regulators to develop and implement effective policies aimed at safeguarding 

the quality of the environment. Moreover, very few studies have attempted to examine these 

linkages using a combination of both specific country analysis and pooled data analysis, while 

explaining the causality among financial development, output growth, energy consumption, 

industrial performance, and foreign direct investment. Adopting these diverse modelling 

techniques would further shed light on the nature of the fossil fuels emissions and its 

macroeconomic determinants, with a smaller number of studies, analysing the transmission 

path of carbon dioxide emissions, using impulse response and variance decomposition 

techniques, within a VAR model context, to circumvent any possible specification bias. 

Although some studies have been conducted on the issue of energy consumption and carbon 

dioxide emissions, only a limited number have focused on the evaluation of industrial 

performance in Ghana, South Africa, and Nigeria. 

The contradicting findings of prior studies of the interrelationships between energy usage and 

environmental pollution have highlighted the need for further investigating this nexus, and this 

is precisely what the present study aims to carry out. It strives to provide evidence-based 

information to policymakers for an informed appropriate environmental policy that are 

effective in mitigating carbon dioxide emissions and maintaining the environmental quality of 

the SSA countries. It is believed that, investigating the nature of these relationships would 

further elevate the trajectory of policy making for informed strategy to effectively and 

efficiently stimulate the consumption of improved environmental quality that considers the 

intra- and inter-generational equity in the use of natural resources, while also delivering non-

declining consumption for the current generation in the production process among sampled 

SSA countries. 

1.2.1 Objectives of the Study 

The overall aim of this study is to investigate the impact, causal order and transmission path of 

energy consumption, financial development, foreign direct investment, gross domestic product 

growth, and industrial performance on carbon dioxide emissions in the three largest SSA 

economies. 
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The specific objectives of this study are: 

1 to empirically examine, the impact of fossil fuel energy consumption, foreign direct 

investment, financial development, gross domestic product growth and industrial 

performance on carbon dioxide emissions in three largest economies of sub-Saharan Africa. 

2 to analyse how the dynamics and transmission channels of fossil fuel energy consumption 

affect carbon dioxide discharges in the three largest economies of SSA countries. 

3 to carry out the forecast of future dynamic behaviour of fossil fuel energy consumption, 

foreign direct investment, financial development, gross domestic product growth, and 

industrial performance as they influence carbon dioxide emissions in the three largest 

economies of SSA countries. 

1.3 Research Questions 

Based on the above motivation and objectives of the study and considering the unsettled 

debate on the energy-demand factors and carbon dioxide emissions nexus in SSA, the 

following are the specific questions this study seeks to answer: 

1. Do fossil fuel energy consumption, foreign direct investment, financial development, 

gross domestic product growth, and industrial performance promote carbon dioxide 

emissions in the three largest economies of sub-Saharan Africa? 

2. What is the dynamic nature of the transmission channel between fossil fuel energy 

consumption and carbon dioxide emissions in the three largest economies of SSA 

countries? 

3. What is the causal relationship among fossil fuel energy consumption, foreign direct 

investment, financial development, gross domestic product growth and industrial 

performance and carbon dioxide emissions, and to what extent do these 

macroeconomic-energy demand factors explain the future forecast variations of carbon 

dioxide emissions in the three largest economies of sub-Saharan African countries? 

1.4 Contributions of the study 

The study brings together different strand of macro – economic factors of energy demand and 

environmental degradation metrics, which includes energy consumption, foreign direct 

investment, financial development, industrial performance, and gross domestic product growth 

on carbon dioxide discharge. The study also contributes to the empirical literature on energy 

consumption and emission nexus, providing further empirical relationship between energy 

demand because of economic activities and carbon dioxide emissions using data obtained for 
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the three selected largest economies in sub – Saharan African countries, since extant studies 

across global regions have failed to agree and ascertain a clear transmission path of impact and 

casual relationship. Furthermore, the study offers insight into macro-economic variables that 

ascertains the impulse response dynamics and forecast error variance decomposition of carbon 

dioxide emissions and granger causality within a vector autoregressive (VAR) framework, 

Toda Yamamoto in VAR framework, and autoregressive distributive lag bounds (ARDL) 

model technique using quarterly data. 

1.5 Structure of the study 
 

The study is organised in six main chapters. The first chapter, which dwells on the general 

introduction, provides the background of the study, problem statement, research objectives, 

and significance of the study. Chapter two provides the synopsis of evolutions, and current 

trends of carbon dioxide emissions. The third chapter illuminates empirical evidence on the 

impact of energy consumption, financial development, foreign direct investment, gross 

domestic product growth, and industrial performance on carbon dioxide emissions in three 

largest sub-Saharan African economies. The fourth chapter presents an evaluation of energy 

use and carbon dioxide emissions nexus using a variance decomposition and impulse response 

analysis. The fifth chapter examines the extent to which energy consumption, financial 

development, foreign direct investment, industrial performance, and gross domestic product 

growth in three largest economies of sub-Saharan African countries explain systematic 

dynamism in carbon dioxide emissions. Finally, chapter six summarises and concludes the 

study by articulating the major findings, outlining policy recommendations based on the 

findings, limitations of the study, and agenda for future research.  
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Figure 1. 4: Countries in the Sub-Saharan African Region. 

Source: Brewminate (2020) 

 
 
 
 
 
 
 
 
 

            
             
             Niger 

     

      Chad 
    
     

 C. Africa    
 
   Ethiopia    

   
   
Somalia 

    
     Nigeria  Cote 

D’Voire 
         
 
      Rwanda 

 Kenya 

 
 
Tanzania 

Zambia 
      Zz 
   
Zambia 

         
        Malawi 
        

 
  
Zimbabwe 

 
  Namibia 

         Botswana 
       
 South Africa 

 
 
 
Madag
ascar 

Gabon 

    
B.Faso 

Senegal 

Guinea 

                   
 
                 Mali 

     
 
 
    Angola 

             
                 DR. Congo 
    
                     
 
 
                       Burundi 

 
  
 
Congo 

      
 
    Uganda 

      
   
         Sudan 

 
 
 
 
Cameroon 

Ghana 



14 
 

CHAPTER TWO 

TRENDS AND EVOLUTIONS OF CARBON DIOXIDE 

2.1 Introduction 

The second chapter of the study discusses the synopsis of evolutions, and current trends of 

carbon dioxide emission. Section 2.2 dwells on carbon dioxide emission looking at the specific 

evolution and current trends.  Section 2.3 focuses on the global annual emission, while 2.4 

discusses the share of annual carbon dioxide emissions. Section 2.5 considers an examination 

of the global and regional trend of carbon dioxide emission. Next, section 2.6 highlights the 

impact of emissions on atmospheric concentration, and section 2.7 outlines an overview of 

greenhouse gas emission sources, focusing on the global warming potential of greenhouse 

gases.  In addition, section 2.8 examines the future emission scenarios, and section 2.9 

illuminates the linkage of carbon dioxide emissions to Industrial performance and fossil fuel 

energy consumption through a model of multi-variate analysis. Finally, section 2.10 presents 

conclusion of the chapter. 

2.2 Evolutions of Carbon Dioxide Emissions 

Carbon dioxide is a greenhouse gas (GHG) as it creates the ‘greenhouse effect’ by absorbing 

and emitting thermal radiation. Carbon dioxide along with the other greenhouse gases such as 

methane and nitrous oxide, is crucial in maintaining a habitable global temperature as without 

the greenhouse gases, the earth would be too cold. According to Qiancheng Ma (1998), the 

average surface temperature of the Earth without the GHGs would be approximately -18 

degrees Celsius. There has been rapid rise in the level of carbon dioxide emissions since the 

industrial revolution due to the increased consumption of fossil fuels for generating energy, 

this has caused disruption in the global carbon cycle and is further causing the global warming. 

There are potential ecological, health and physical effects of climate change and global 

warming such as rise in sea- level, disruption in water systems, altered crop growth and extreme 

weather conditions like storms, floods, heat waves, draughts etc.  

The fifth Intergovernmental Panel on Climate Change (IPCC) report provides the most detailed 

analysis about the potential effects of climate change and presents an extensive coverage on all 

effects (Barros, et al. 2014). Considering this report, the members of United Nations member 

countries have decided a target to limit the average global warming to 2 degrees Celsius above 

the pre-industrial temperatures. This section attempts to present a perspective about the 

evolution of carbon dioxide emissions, distribution of these emissions, the associated key 
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factors driving both these trends and the factors holding key to mitigate the climate change. To 

better understand the global warming situation, we need to know how the temperature on earth 

started rising since the industrial revolution. Figure 2.1 presents the global temperature 

anomaly with x-axis presenting the period from 1850-2017 and the y-axis presents the average 

global temperature going below or above the baseline temperature of 1860-2017. Therefore, 

we are using the average temperature during the period 1860-2017 as a baseline for the 

measurement of annual changes in temperature. 

In figure 2.1 below, the red line represents the average annual temperature throughout the 

period and the light grey line represents the upper and lower temperature range. Here we can 

clearly see that there has been sharp rise in the global temperatures during last few decades, 

which is about 0.8 degrees Celsius higher than the baseline temperature of 1860-2017. If we 

extend back to the period of 1850, the temperatures during those times were 0.4 degrees colder 

than the baseline temperature of 1860-2017. Therefore, when we calculate the overall rise in 

temperature since the pre- industrial era, it is a rise of 1.2 degrees Celsius approximately. Since 

we have already crossed the one-degree mark, we are more than halfway close to the global 

threshold to limit the average global warming to 2 degrees Celsius above the pre-industrial 

temperatures. 

 
Figure 2.1: Temperature Anomaly from 1850-2017. 

Source: Hadley Centre 

Figure 2.1 above presents these trends both by the tropics (30 degrees above and below the 

equator), as well as by hemisphere (Northern hemisphere and Southern hemisphere). We notice 
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that the average temperature rise is higher in the Northern hemisphere (about 1.4 degrees 

Celsius since 1850) as compared to the southern hemisphere (about 0.8 degrees Celsius). 

According to Delworth, et al. (2016), this distribution has a strong association with the ocean 

circulation patterns (North Atlantic Oscillation) which causes higher temperature in the 

northern hemisphere. 

 The Long-Run History of Cumulative Carbon Dioxide Emissions 

By extending back our timeline to 1750 and calculating the carbon dioxide emission of each 

country until date, we can arrive at the cumulative emissions of each country. Figure 2.2 

presents the cumulative emission of each country plotted from the period 1750 to 2016. 

According to this chart, the United Kingdom (UK) was the earliest industrial-scale carbon 

dioxide emitting country of the world. The emissions in North America and the other European 

countries that produced carbon dioxide during most of this period shortly followed it. Other 

Asian, African, and Latin American countries started causing worldwide carbon dioxide 

releases after quite some time during the 20th and 21st centuries.  

Today, Europe and the United States (US) have the heaviest cumulative emissions. Although 

the rapid rise of emissions in China during the last few decades has made it the second biggest 

cumulative emitter in the world, its contribution is still less than half of the US’ cumulative 

emission. In figure 2.2, the amount of collective carbon dioxide emanations is shown as a 

percentage portion of the total worldwide emissions. Therefore, we can see the occurrences of 

major shifts and transitions in global emissions. Europe had dominated global cumulative 

emissions during the 19th century firstly it was the United Kingdom and later there were other 

european countries (which are now a part of European Union (EU)). During the latter half of 

19th century, the cumulative emissions of US started rising, its contribution peaked at 40% 

during 1950, and since then, it has been on a decline. Although it now stands at 26%, it is still 

the highest in the universe. By 2015, India was accountable for 3% of overall global 

accumulative emanations, while China accounted for 12%.  
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Figure 2.2: Share of Global Cumulative Carbon Dioxide Emissions 

Source: Global Carbon Project (2017) 

By sparing the accumulative time measurement and just focusing on yearly discharges, we can 

compare the recent trends of annual emissions of the countries. Figure 2.3 presents the country-

wise annual carbon dioxide emissions data. In line with the above cumulative emissions chart, 

North American and European countries have grown much earlier compared to other countries. 

Over the last few decades, emission levels have been rapidly rising in developing economies. 

We could notice that some middle- and low-earning countries have become topmost worldwide 

emitters.  

Now, China is the leading emitter, and just behind it, we can find the USA, EU-28, India, 

Russia, Indonesia, Brazil, Japan, Canada, and Mexico. It is also to be noted that these countries, 

which are already top emitters, might persist to augment productions as they are undergoing 

rapid progress. However, contrary to the growth of carbon dioxide discharges in developing 

countries, we can see stabilisation in the emission trends of high-income countries and in many 

cases, a reduction in emanations level was witnessed during the 19th century. Despite, the 

downward curve in some countries, the global trend is being dominated by the transition 

economies and therefore, global annual emissions have been continuously rising over this 

period. 
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Figure 2. 3: Annual Carbon Dioxide Emissions, 2016 

 Source: Global Carbon Project (2016). 
 
2.3   Per Capita Emissions of Carbon Dioxide Emissions 
 

One of the major shortcomings of evaluating the overall discharges of a country is that it does 

not take into consideration the population size of that country. Although the Chinese Republic 

is currently the topmost emitter in the universe, we must note that it has the world’s largest 

population, and this fact must be given due weightage. Therefore, for a fair comparison of the 

country-wise emission contribution, the emissions must be compared about per capita carbon 

dioxide emissions. It is observed that for most countries, the per capita emission continues to 

increase with development. However, large global inequalities were found in the per capita 

emissions distribution in the year 2014.  

It is worthy to note that there are many other greenhouse gasses besides the bad goon carbon 

dioxide contribute to climatic variation. These other greenhouse gasses such as methane and 

nitrous oxide are also responsible but have not been considered here. The food production 

industry, particularly, the intensive rearing of livestock for dairy and meat also has major 

contribution in producing non-carbon dioxide greenhouse gases. As the per capita meat 

consumption is strongly related with the level of output, there is a much higher per capita 

emission level of methane and nitrous oxide in high-income countries. Consequently, if these 
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gases were also accounted with the carbon dioxide emissions, there would be even greater 

global inequalities. 

In addition, a significant north-south divide has been found in per-capita emissions. While the 

annual per-capita discharges of most of the republics in South Asia, South America and sub-

Saharan Africa are lower than 5 tons, the annual per capita emissions in the north are above 5 

tons, with North America exceeding the annual per capita emissions by over 15 tons. The 

monthly per capita emission of wealthy states is generally greater in comparison to the poorer 

states. Qatar is the largest emitter with annual per capita emissions of 50 tons, which is 1243 

multiple of Chad, the bottommost emitter. 

2.3.1   Carbon Dioxide Emissions by Fuel  
 
The carbon dioxide emissions related to the industrial production and energy can arise from 

various types of fuel. Over the time, the contribution of each fuel type has significantly 

changed, and the consumption of a certain fuel type largely varies from region to region. Figure 

2.4 presents an absolute and relative contribution of these sources of fuel to the carbon dioxide 

emissions. Looking at the global picture, we can see that solid fuel was the dominant fuel type 

in the initial industrialisation phase. Europe and North America had first started the industrial-

scale use of coal-fired power during the 1700s, according to Zilio and Recalde (2011). The 

issue of carbon dioxide emissions due to oil and gas production only started arising from the 

late-1800s, and the emissions from cement production as well as flaring started rising only in 

the late-1900s. Presently, there is dominant contribution of solid and liquid fuels in the 

emission levels. However, there is a notable contribution from gas production as well. The 

contribution of flaring and cement production to global emissions remains comparatively 

small.  
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Figure 2.4: Carbon Dioxide Emissions by Source across the World 

Source: Carbon Dioxide Information Analysis Centre 
 
A critical question therefore is which factor is the biggest contributor of carbon dioxide 

emissions – electricity, residential, transport or manufacturing?  Figure 2.5 presents the 

percentage share of carbon dioxide emissions that arise due to fuel combustion done in these 

sectors. In 2018, about 28% of global emissions were due to building operations. About 23% 

contribution was by the transportation sector, 22.7% contribution was by the concrete, steel, 

and aluminum industries, 20.3% was due to the industry sector and 6% was contributed by the 

remaining sectors. 

 
Figure 2.5: Carbon Dioxide Emissions by Sector, World 

Source:  Global ABC Report IEA (2018) 
 

2.4    Geographical Distribution of Carbon Dioxide Emissions 

 

Figure 2.6 below shows each country’s share in the global carbon dioxide emissions from the 

period 1970 to 2021. It was calculated by dividing each country's emissions with the total of 

all countries' emissions each year. However, it does not include the emissions caused by 

international shipping and aviation and the 'statistical differences'. 
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Figure 2.6: Annual Share of Global Carbon Dioxide Emissions, 2021 
Source: Global Carbon Project 

2.5 Global and Regional Trends 

Figure 2.7 shows the long-term outlook on worldwide carbon dioxide productions. Since 1900, 

the overall discharges soared up from two (2) billion tonnes of carbon dioxide to over 36 

gigatonnes in 2015. While data for the period 2014-2017 indicates the stabilisation of the global 

annual emissions, data from the global carbon project (2019) reports an increase of 2.7% in 

global annual emissions level in 2019. 

 
Figure 2.7: Annual Carbon Dioxide Emissions by World Region. 
Source: Global Carbon Project (2020) 
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2.5.1   Cumulative Carbon Dioxide Emissions by Region 
 
Figure 2.8 presents region-wise cumulative carbon dioxide emissions. The cumulative 

emissions are presented since 1750, show emissions based on production, and do not include 

emissions related to trade.  

 

Figure 2.8: Cumulative Carbon Dioxide Emissions by World Region 

        Source: Global Carbon Project (2018) 
 
It is to be noted, that for the past few decades, carbon dioxide emissions in countries of sub- 

Saharan Africa such as Nigeria, South Africa and Ghana have clearly shown an increasing 

trend. For example, in Ghana, the explosion of carbon dioxide discharge has been happening 

since 1990 as specified in figure 2.9. Similarly, figure 2.10 shows that the level of carbon 

dioxide emission in South Africa increased from 5.5 per capita (metric tons) in 2000 to 5.68 

per capita (metric tons) 2017. Accordingly, carbon dioxide discharge in Nigeria has grown by 

0.2 million per capita (metric tons) from 2000 to 2017 as shown in figure 2.11. Thus, a general 

assessment reflects a worrisome growth of the carbon dioxide trend in these countries, 

intrinsically deteriorating the level of environmental quality and jeopardising human life and 

development in sub – Saharan African countries. 
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Figure 2.9: Trend of Carbon Dioxide Discharge in Ghana from 1980Q1 to 2017Q1 

Source: (EIA, 2017) 

 

Figure 2.10: Trend of Carbon Dioxide Discharge in Nigeria from 1980Q1 to 2017Q1 

Source: (EIA, 2017) 
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Figure 2.11: Trend of Carbon Dioxide Discharge in South Africa from 1980Q1 to 2017Q1 

Source: (EIA, 2017) 

2.6   Impact of Emissions on Atmospheric Concentration 
 

The rapid rise in worldwide carbon dioxide productions greatly influences the atmospheric 

concentration of carbon dioxide on Earth. Considering atmospheric concentrations, figure 2.12 

shows that till the 18th century, the intensities were quite unwavering at 270-285 ppm (parts 

per million). The global carbon dioxide concentrations started rising rapidly since the inception 

of the industrial revolution. However, carbon dioxide emission is not the only issue; the 

emissions of methane and nitrous oxide are also escalating due to industrial, energy, and 

agricultural sources. 

There is the need to examine whether the recent stabilisation of worldwide carbon dioxide 

levels had some effect on global atmospheric concentrations. It is sufficient to state that while 

some progress is achieved in reducing global emissions, there has been a continuous rise in the 

global atmospheric concentration. Emissions have surpassed the highest level ever of 400-ppm 

threshold, and, to reduce or stabilise the atmospheric carbon dioxide concentrations, there must 

be significant reduction in the carbon dioxide emissions. Another, key issue for debate rests on 

why the respective efforts at stabilising carbon dioxide emissions does not have immediate 

impact on atmospheric concentrations. In line with this, Ciais, et al. (2013) stated that it is 
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because the accumulation of carbon dioxide in the atmosphere is based on ‘residence time’. 

This time indicates the interval needed for removing the produced carbon dioxide from the air 

by the natural procedures of the Earth’s carbon cycle. However, this duration varies to a great 

level: while some carbon dioxide can be removed in as less duration as 5 years by fast cycling 

processes, the other processes like deep ocean cycling, absorption through soil, vegetation and 

land might even take hundreds of years. Therefore, even if we completely banish carbon 

dioxide emissions starting from today, it is still going to take quite a multitude of years to 

remove most of the mortal discharges from the air (Ciais, et al. 2013).  

 
Figure 2.12: Atmospheric Carbon Dioxide Emissions Concentration (ppm) 

Source: Global Carbon Project (2018) 

 

2.7 Greenhouse Gas Emission: Global Warming Potential of Greenhouse Gases 
 
As discussed earlier, carbon dioxide is not the only greenhouse gas that raises concerns 

regarding climatic change and global warming; rather there are a few greenhouse gases 

including nitrous oxide and methane that are known as the ‘F- gases’ group. The contribution 

of all the greenhouse gases to global warming is not the same. One ton of carbon dioxide 

emission would not affect global warming as much as 1 ton of methane. The Global Warming 

Potential (GWP) scale can measure these differences.  This scale can be used for many time-

period ranges, but the 100-year timescale is the most popular and is also used by the IPCC 

(IPCC, 2014). Figure 2.13 presents the GWP100 value of the major greenhouse gases. GWP100 

measures the warming effect of a one-unit mass or one molecule of a greenhouse gas relative 

to carbon dioxide on the 100-year timescale (IPCC, 2014). For instance, the warming impact 
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of a ton of methane gas is 28 times of the impact of carbon dioxide over the period of 100 

years. The values of GWP100 are used to provide uniform emissions metric for all greenhouse 

gases, which are known as the carbon dioxide emissions counterparts (CO2e). It is calculated 

by the multiplication of the releases of a particular greenhouse gas with the corresponding 

GWP100 dynamic. The total of carbon dioxide emissions counterparts’ form of entire gases 

reflects the total greenhouse gas emission (IPCC, 2014). 

 
Figure 2.13: Global Warming Potential of Greenhouse Gases over a 100-Year Timescale 

Source: Intergovernmental panel on climate change (2014) 
 
2.7.1    Greenhouse Gas Emissions by Gas 
 
Figure 2.14 reveals the contributions of various gases to the overall greenhouse emission 

measured because of their respective carbon dioxide equivalent values. It is evident from the 

chart that carbon dioxide emissions are answerable for about 75% of the entire greenhouse 

discharges, although, nitrous oxide and methane are also significant contributors summing up 

for 7% and 17% of discharges each. The 'F-gases' include SF6, HFC and PFC gases. These 

gases have very high potential of global warming, but since very small quantities of these gases 

are emitted, their contribution to global warming remains small. 
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Figure 2.14: Greenhouse Gas Emissions by Gas, World 

Source: World Development Indicators  (2017) 

2.8    Future Emission Scenarios 
 

Another major concern is the future scenario of carbon dioxide emissions and the greenhouse 

gas emissions. Figure 2.15 below presents the potential future scenario of the global greenhouse 

gas emissions derived from the data sourced from climate action tracker. There can be five 

potential scenarios:  

a. No climate policies: If there is no implementation of the climate policies, there would 

be an estimated rise to 4.1-4.8°C (relating to the pre-industrial temperature) in the 

global warming by the year 2100.  

b. Current climate policies: The estimated emissions level based on the implementation 

of current climate policies indicates an estimated rise of 3.1-3.7°C. 

c. National pledges: Even if all the countries adhere to their pledges/ targets decided as 

per the Paris climate agreement, still the average warming by 2100 is estimated to be 

approximately 2.6-3.2°C which is far higher than the targeted levels of Paris climate 

agreement for keeping the global warming under 2°C. 

d. 2°C consistent: There are several emissions pathways, which, can help in limiting the 

average global, warming to 2°C by 2100, however for this, the current pledges of the 

Paris climate agreement are required to be significantly increased. 

e. 1.5°C consistent: There are several emissions pathways, which can help in limiting the 

average global warming to 2°C by 2100, however for this, very urgent action is required 

and there must be rapid and urgent reduction in global greenhouse gas emissions to 

achieve this target. 
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Figure 2.15: Global Greenhouse Gas Emission Scenarios. 

2.8.1   Carbon Dioxide Intensity of Economies 
 

It is interesting to note that while the growing carbon dioxide emissions have been historically 

linked with the economic growth, the countries having similar levels of per capita output have 

varied per capita carbon dioxide emission levels. This variation has been measured by the 

variation of the carbon dioxide intensity of the countries where the carbon dioxide intensity is 

the measure of the quantity of carbon dioxide emission per output unit (kg carbon dioxide per 

int-$). Two major factors influence the carbon dioxide intensity of a country, which are 

mentioned as below: 

Energy Efficiency: It refers to the energy required per output unit. It is generally related to 

efficiency of technology and productivity, but it can also be associated with the kind of 

economic activity supporting the output. For instance, if there is transition in the economy of 

a country from manufacturing to service industry, then in such case there is less energy 

requirement for the production process and thus there is less consumption of energy per output 

unit. 

Carbon Efficiency: It refers to the quantity of carbon dioxide emission per unit of energy 

(grams of carbon dioxide emitted per kilowatt-hour). It is mainly linked to the energy mix of 

the country. The economy dependent on coal- fired energy would have higher carbon dioxide 

emissions per unit of energy as compared to the economy using higher share of the renewable 

energy. With the increment in the use of renewable sources for energy generation in an 
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economy, there is marked improvement in the efficiency and there is decline in the quantity of 

carbon dioxide emission per unit of energy (Du, et al.  2017). 

Figure 2.16 shows that global carbon dioxide intensity is continuously declining since 1990. 

This might be due to technological efficiency and improved energy, which increases the 

renewables capacity (Du, et al. 2017). In the last few decades, the carbon intensity of most of 

the economies has reduced and the highest intensities are witnessed in South Africa, Eastern 

Europe, and Asia. This is the result of the compounded impact of heavily industrialized 

economies with energy systems, which are coal-dominated. The figure shows a gradual and 

steady decline in carbon emissions in the last few years, however there can be short term 

dramatic fluctuations in the carbon emission intensity due to major political upheaval or change 

in economic policies. A good example of such dramatic instance was witnessed in China during 

the period of 1950-1960 with the 'Great Leap Forward' campaign. 

 
Figure 2.16: Carbon Emission Intensity of Economies 

Source: The World Bank (2015) 
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2.8.2   Cost of Global Carbon Dioxide Emissions Mitigation 
 

By analysing the interrelationship of global temperatures and knowing the emissions trend, a 

concern arises about ways of mitigating carbon emissions and the cost of global carbon dioxide 

emissions mitigation. Effectiveness of the measures of carbon dioxide emissions mitigation is 

majorly dependent on the potential cost benefit of climate change on the global and regional 

level. In recent times, the measurement of global carbon dioxide emissions concentration is 

done direct from the atmosphere through the instrumentation sensor technology.  Mauna Loa 

Observatory (MLO) of Hawaii has presented the most extensive data of direct carbon dioxide 

emissions measurement. Since 1950, Mauna Loa Observatory has been recording the 

atmospheric composition and it presents the most precise data regarding carbon dioxide 

emissions concentration in the 20th and 21st century. For reconstructing the carbon dioxide 

concentration of long term, it is critical to refer to several chemical and geological analogues 

that record the atmospheric composition changes through the course of time.  

To reconstruct long-term carbon dioxide emissions concentrations, we must rely on a variety 

of geological and chemical analogues that record changes in atmospheric composition across 

time. The ice-coring process provides the longest historical records of carbon dioxide emissions 

extending back to 800,000 years.  The Vostok Ice Core of Antarctica is the most renowned ice 

core, and it is used for the historical reconstructions. It covers 4 interglacial- glacial periods 

and it extends back 420,000 years. A preserved record of atmospheric composition is imbibed 

in the ice cores with each layer of the ice core representing a past era. The ice cores can be 3 

kms deep and it preserves tiny air bubbles what provide a glimpse of a certain period’s 

atmospheric composition. The researchers try to relate periods with the ice core depths by 

isotopic dating which is a chemical dating technique. Therefore, by analysing the atmospheric 

concentration across several depth ranges, there can be reconstruction of the changes in 

atmospheric concentration through time. 

2.9 Estimation techniques 

For estimation techniques in this chapter, please refer to pages 73 and 79 in chapter three for 

descriptive statistics, Unit root test and pages 100, 105 and 106 in chapter four, for VAR 

specifications, VDF, and IRF explanations. 
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Model of Multi-Variate Analysis on Energy Consumption, Industrial Performance and 
Carbon Dioxide Emissions 
 

To examine the dynamic link and forecast variance among energy use, industrial performance 

and carbon dioxide discharge in Nigeria, Ghana and South Africa, the study used a modified 

model by Ohlan, 2015 which is presented in the following equations: 

CO2 = f (ENG, IND),                                                                                              (2.1) 
 
where carbon dioxide (CO2) is the emission discharge, energy consumption (ENG) represent 

fossil fuel energy consumption and industrial value means industrial performance (IND). The 

inclusion of fossil fuel energy consumption as the measurement of energy use in these countries 

is due the fact of availability of data as the data on biomass energy is not scientifically reliable. 

The data on biomass energy use is not available in these countries. 

 

Equation 2.1 is further transformed into an econometric specification in equation 2.2, shown 

as follows: 

 
𝐶𝑂2𝑡 = ∝ +𝛽1𝐸𝑁𝐺𝑡 + 𝛽2𝐼𝑁𝐷𝑡 + 휀𝑡                            (2.2) 
 
where carbon dioxide emissions is (CO2), fossil fuel energy consumption is (ENG), industrial 

performance represents (IND), Subscript t stands for the period (t = 1980Q1 to 2017Q1), 𝛼 and 

𝛽 signify the parameters and 휀 denote the stochastic error, the rest as defined in the previous 

equation. The apriori expectation (𝛽1,    𝛽2  > 0), therefore energy consumption, and industrial 

performance are positively related to carbon dioxide discharge. 

2.9.1   Nigeria: Impulse Response Function (IRF) 

Figure 2.17 presents the impulse response function of the model for Nigeria ascertain the 

response of a variable because of one standard deviation innovation shock of other variables. 

Initially, the IRF was considered through the generalize impulse response analysis of multiple 

graphs and analytical asymptotic for the standard error. In addition, the default of ten quarter-

period split is maintained to predict the impact of the shock on the concerned variable at each 

of the periods. An innovation shock of one standard deviation of the endogenous variables (left 

to right diagonal boxes) to themselves causes negative adjustment in the short run quarter 

period that shows decrease at constant rate from period of quarter five up to the long run quarter 

period in Nigeria. The response of carbon dioxide emissions to fossil fuel energy consumption 
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shows that fossil fuel consumption had immediate positive shocks on carbon dioxide emissions 

in the first quarter five and from quarter six it continued to decrease at decreasing rate to the 

10 quarter of the simulation periods.  However, the response shows a decline at decreasing rate 

for each of the variables to itself. It implies that one shock in carbon dioxide emissions results 

to a change in energy use from the first quarter, which continually fell to the last quarter, in 

line with statistical prescriptions over the time horizon. The results of the fossil fuel energy 

consumption, industrial performance and carbon dioxide emissions support the outcome of 

earlier studies that energy resources influence carbon dioxide explosion positively (Zafar, et 

al. 2019). Hence, it is necessary for policymakers to continue enhancing the practical measures 

for mitigating the carbon dioxide discharge for environmental and economic sustainability. 
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Figure 2.17: Generalized Impulse Response Function (Nigeria) 
Source: Author, computed from data 
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2.9.2   Nigeria: Forecast Error Variance Decomposition (FEVD) 
 
To investigate the relative importance of fossil fuel energy consumption shocks and industrial 

performance on carbon dioxide emissions, the forecast error variance decomposition is 

computed. The variance decomposition apportions the total fluctuations in a particular 

indicator to the constituent’s shocks or innovations in the VAR system. The result is presented 

in table 2.1. The outcome reveals across the rows indicate the percentage forecast error variance 

by variables (fossil foil energy consumption and industrial performance). Each of the figures 

in the row table shows the percent of the forecast error variance in carbon dioxide emissions. 

Also, same with fossil fuel energy consumption and industrial performance. A ten (10) year 

forecast periods is chosen, and the periods are split into short run and long run from year one 

(1) to year four (4) is the short run while year five (5) to year ten (10) is the long run periods. 

The variance decomposition of carbon dioxide emissions shows that in the short run year 1 to 

year 4 100% of forecast error variance decomposition in carbon dioxide emission is explained 

by the variable itself. Meaning that other variables in the model i.e., fossil fuel energy 

consumption and industrial performance do not have real strong influence on carbon dioxide 

emissions, they have strong exogenous impact, exogenous in the sense that they do not have 

influence on carbon dioxide at all in the short run, they exhibit weak influence in predicting 

carbon dioxide emissions. The result of carbon dioxide emissions in the long run 95% of 

forecast error variance decomposition of the variable is explained by carbon dioxide itself. So, 

carbon dioxide emission is showing strong influence right from the short run periods into the 

future as well. Similarly, the results show that fossil fuel energy consumption influence rising 

gradually over the years at 3.5%, but overall, it is still very weak. Furthermore, the results 

shows that the influence pattern of industrial performance is very insignificant.  

From fossil fuel energy consumption variance decomposition, the outcome shows that the 

variable predict itself from year 1 into the future year 10 of the simulation periods. The 

influence from other variables in the model are not significant. Suggesting that fossil fuel 

energy consumption is strong influencer of itself into the future. Finally, on industrial 

performance the outcome shows that right from the short run periods into the future industrial 

performance in Nigeria does not strongly predict itself, even though the result shows that 

carbon dioxide emissions and fossil fuel energy consumption are predictors of industrial 

performance accounting 5.2% and 4.3% forecast error variance decomposition in the long run 

of the simulation periods. Overall, therefore, as shown from the outcome industrial 

performance dwindles by 90% in the long run. 
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The finding indicates significant link among energy consumption, industrial performance, and 

carbon dioxide discharge in Nigeria. This result is consistent with the finding of the study by 

Suleman and Baka, 2015.  

 

Table 2. 1: Variance Decomposition of Carbon Dioxide Emission (Nigeria) 

     
       Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  0.017449  100.0000  0.000000  0.000000 

 2  0.036172  99.93223  0.025027  0.042742 
 3  0.054331  99.86836  0.081445  0.050199 
 4  0.070705  99.75824  0.192209  0.049550 
 5  0.085038  99.55003  0.390778  0.059193 
 6  0.097473  99.19176  0.711280  0.096958 
 7  0.108313  98.62890  1.180177  0.190919 
 8  0.117899  97.81650  1.808765  0.374736 
 9  0.126549  96.73477  2.588808  0.676418 
 10  0.134530  95.39850  3.492966  1.108532 

     
      Varian

ce 
Decom
position 
of FOS:     
 Period S.E. CO2 FOS IP 

     
      1  0.012756  0.066390  99.93361  0.000000 

 2  0.026334  0.023303  99.92942  0.047275 
 3  0.039468  0.010413  99.89347  0.096117 
 4  0.051298  0.009223  99.83577  0.155005 
 5  0.061662  0.021337  99.73443  0.244236 
 6  0.070673  0.054988  99.56004  0.384973 
 7  0.078536  0.119139  99.28372  0.597137 
 8  0.085470  0.219230  98.88510  0.895669 
 9  0.091669  0.355003  98.35819  1.286812 
 10  0.097300  0.520581  97.71318  1.766241 

     
      

Varianc
e 

Decom
position 

of IP:     
 Period S.E. CO2 FOS IP 

     
      1  0.490857  2.147041  0.853758  96.99920 

 2  0.992671  1.740101  0.527391  97.73251 
 3  1.477027  1.183967  0.326254  98.48978 
 4  1.911949  0.738548  0.196529  99.06492 
 5  2.287904  0.565971  0.185605  99.24842 
 6  2.607366  0.761876  0.379296  98.85883 
 7  2.878843  1.366285  0.863603  97.77011 
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 8  3.112957  2.365330  1.694614  95.94006 
 9  3.319876  3.695730  2.879622  93.42465 
 10  3.507855  5.258382  4.374068  90.36755 

     
     Source: Author, computed from data 

 

2.9.3   Ghana: Impulse Response Function 

Similarly, the graphical representation of the impulse response function for Ghana in 2.18. The 

impulse response of carbon dioxide emissions to fossil fuel energy consumption shows a 

positive response on average throughout the simulation periods. Initially, the IRF was 

considered through the generalize impulse response analysis of multiple graphs and analytical 

asymptotic for the standard error. In addition, the default of ten quarter-period split is 

maintained to predict the impact of the shock on the concerned variable at each of the periods. 

An innovation shock of one standard deviation of the endogenous variables (left to right 

diagonal boxes) to themselves causes negative adjustment in the short run quarter period that 

shows decrease at constant rate from period of quarter five up to the long run quarter period in 

Nigeria. Evidently, carbon dioxide emissions had a steep and negative response to shocks in 

fossil fuel energy consumption throughout the last quarter periods. Therefore, shocks in fossil 

fuel energy consumption increase the discharge of carbon dioxide emissions from quarter one 

to the long run horizon. This means that shocks in carbon dioxide emissions increase the level 

of energy consumption from quarter two to long run horizon. Similarly, shocks in energy use 

increase the capacity of carbon dioxide emission from quarter one to long run. The result is 

similar with the report of previous studies of  (Jabeur and  Sghaier, 2018; Salahuddin and Gow, 

2015). However, carbon dioxide emissions and energy consumption response their self 

positively from the first quarter to long run horizon. Overall, energy consumption shock exerted 

positive impact on carbon dioxide emission throughout the simulation periods. 
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Figure 2.18: Generalized Impulse Responses (Ghana) 

Source: Author, computed from data 

 

2.9.4   Ghana: Forecast Error Variance Decomposition (FEVD) 
 

The forecast error variance decomposition carbon dioxide emission was further used to 

examine the relative importance of fossil fuel energy consumption and industrial performance 

shocks in Ghana, as shown in table 2.2. As previously stated, variance decomposition assigns 

the entire fluctuations in each indicator in the VAR system’s constituent shocks or innovations. 

The forecast error variance decomposition of carbon dioxide emissions in Ghana reveals across 

the rows in the table indicate the forecast error variance decomposition by fossil fuel energy 

consumption and industrial performance variables. The figures in the row table shows the 

percentage of forecast error variance decomposition in carbon dioxide emissions.  

Ten (10) years forecast error variance decomposition is split into short run and long run periods, 

from year 1 to year 4 is the short run while year 5 to year 10 is the long run periods. As with 

other macroeconomic time series data, in the short run periods carbon dioxide emissions 

explains around 99.3% of its own variation, while fossil fuel energy consumption and industrial 
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performance explains 1.9% and 2.0% respectively. Most empirical research has found that the 

biggest percentage error variance breakdown of macroeconomic variables often comes from 

past shocks, but that this is predicted to decrease overtime. As the prediction period lengthens, 

the falling characteristics shows that policy shocks are better transmitted to other variables in 

the system. Over a 1o period horizon, fossil fuel energy consumption and industrial 

performance shocks accounted for 1.9% and 2.0% of the variation in carbon dioxide emissions. 

This emphasises the relative importance of fossil fuel energy consumption and industrial 

performance shocks in understanding carbon dioxide emissions changes in Ghana. This implies 

that in the long run, the forecast analysis reveals that there will be higher influence of carbon 

dioxide emissions increase significantly due to effect of   energy consumption and industrial 

value addition in Ghana. This result is consistent with studies by Khobai and Roux (2017). 

Table 2. 2: Forecast Error Variance Decomposition of Carbon Dioxide Emission (Ghana) 

     
      Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  0.054516  100.0000  0.000000  0.000000 

 2  0.119111  99.97101  0.016472  0.012516 
 3  0.196174  99.75766  0.133238  0.109100 
 4  0.283023  99.35020  0.354293  0.295509 
 5  0.377407  98.82104  0.632165  0.546796 
 6  0.477096  98.23763  0.926024  0.836342 
 7  0.579769  97.64438  1.213665  1.141953 
 8  0.683017  97.06636  1.487080  1.446562 
 9  0.784392  96.51608  1.746382  1.737535 
 10  0.881477  95.99872  1.995604  2.005677 

     
      Varian

ce 
Decom
position 
of FOS:     
 Period S.E. CO2 FOS IP 

     
      1  0.001004  8.035280  91.96472  0.000000 

 2  0.002111  8.031865  91.93525  0.032882 
 3  0.003218  8.600976  91.33022  0.068809 
 4  0.004265  9.605619  90.29202  0.102357 
 5  0.005244  11.04420  88.81482  0.140979 
 6  0.006166  12.94857  86.85824  0.193185 
 7  0.007048  15.35066  84.38171  0.267633 
 8  0.007910  18.26151  81.36566  0.372835 
 9  0.008771  21.65660  77.82721  0.516193 
 10  0.009648  25.46872  73.82860  0.702676 
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Varianc
e 

Decom
position 

of IP: 
 Period S.E. CO2 FOS IP 

     
      1  0.004006  7.821996  0.178592  91.99941 

 2  0.008433  7.763920  0.083653  92.15243 
 3  0.013117  7.910130  0.103570  91.98630 
 4  0.017854  8.364882  0.508415  91.12670 
 5  0.022554  9.218819  1.243229  89.53795 
 6  0.027179  10.55226  2.167426  87.28031 
 7  0.031724  12.43771  3.158237  84.40405 
 8  0.036214  14.93098  4.130865  80.93816 
 9  0.040692  18.05567  5.031815  76.91251 
 10  0.045217  21.78792  5.829155  72.38292 

     
     Source: Author, computed from data 

 

2.9.5: Impulse Response Function for South Africa 
 

The impulse response function for South Africa is presented in figure 2.19, which reveals the 

results. Initially, the IRF was considered through the generalize impulse response analysis of 

multiple graphs and analytical asymptotic for the standard error. In addition, the default of ten 

quarter-period split is maintained to predict the impact of the shock on the concerned variable 

at each of the periods. An innovation shock of one standard deviation of the endogenous 

variables (left to right diagonal boxes) to themselves causes negative adjustment in the short 

run quarter period that shows decrease at constant rate from period of quarter five up to the 

long run quarter period in Nigeria. The figure gives the description of carbon dioxide emissions 

reaction to shocks in fossil fuel energy consumption and industrial performance in the 

multivariate model, being estimated. The outcome shows the response of carbon dioxide 

emissions to positive shocks in fossil fuel energy consumption is immediate from first quarter 

periods to quarter five when it positively responds throughout to long run simulation periods. 

Similarly, the response of carbon dioxide emissions to industrial performance shows an 

immediate positive shock on carbon dioxide emissions in the first quarter to 10 quarter horizon 

periods at an increasing rate. This means that shocks in carbon dioxide emission increase due 

to shocks in fossil fuel energy consumption and industrial value addition from quarter one to 

last quarter of the simulation period. The  result is similar with the findings   of Salahuddin and  

Gow, 2015 in their previous studies. 
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Figure 2.19: Generalized Impulse Responses (South Africa) 
Source: Author, computed from data 

 
2.9.6    South Africa: Forecast Error Variance Decomposition (FEVD) 

Table 2.3 shows the forecast error variance decomposition of carbon dioxide emissions.  From 

the table, the variance decomposition of carbon dioxide emissions for South Africa shows 

across the rows indicate the percentage error variance by the variables. Each of the figures in 

the table shows the percent forecast error variance in carbon dioxide emissions. Similarly same 

with fossil fuel energy consumption and industrial performance. A ten year forecast periods is 

chosen, and the periods are splitted into short run and long simulation horizon. So, in the short 

run year 1 to year 4, as expected of most macroeconomic time series data, 100% of forecast 

error variance decomposition in carbon dioxide emission is explained by the variable itself. 

Meaning that fossil fuel energy consumption and industrial performance do not have real strong 

influence on carbon dioxide emissions. Specifically, they have strong exogenous impact in the 

sense that they do not influence carbon dioxide emission in the short run. They exhibit weak 

influence in predicting carbon dioxide emissions. In the long run the outcome shows that 85.6% 

of forecast error variance decomposition of the variable is explained by carbon dioxide 
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emissions itself. So, carbon dioxide emission is showing strong influence right from the short 

run periods to the future. However, the results show that fossil fuel energy consumption 

influence rising gradually over the years but overall, it is still very weak. Additionally, 

industrial performance shows that the influence is very insignificant. 

 Furthermore, from fossil fuel energy consumption variance decomposition the outcome shows 

that the variable strongly predict itself from year 1 into the future year 10 of the simulation 

periods. The influence from the other variables in the model are not significant at all. 

Suggesting that fossil fuel energy consumption is a strong influencer into the future. Finally, 

on industrial performance the outcome shows that right from the short run period into the future 

industrial performance in South Africa do not strongly predict itself, even though the result 

shows that carbon dioxide emissions is a predictor of industrial performance accounting for 

11% forecast error variance decomposition in the long run of the simulation periods. Likewise, 

as shown from the outcome the industrial performance dwindles by 88% in the long run 

simulation periods. The result is similar with the findings of the studies by Ahad, et al. (2018). 

Hence, policymakers should focus in designing effective and efficient measure in mitigating 

the level of carbon dioxide discharge. This should be emphasised through encouraging citizens 

on the use of other alternative energy sources, which can emit low emission such as wind, solar 

and thermal energy for better and clean environment. 

 

Table 2. 3: Forecast Error Variance Decomposition of Carbon Dioxide Emission (South 
Africa) 

     
      Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  0.103863  100.0000  0.000000  0.000000 

 2  0.213179  99.89959  0.077376  0.023031 
 3  0.317342  99.25642  0.656739  0.086840 
 4  0.410187  97.88030  1.932634  0.187067 
 5  0.490735  95.94226  3.750476  0.307263 
 6  0.559633  93.73046  5.838210  0.431329 
 7  0.618012  91.48676  7.962421  0.550814 
 8  0.667163  89.36099  9.974661  0.664353 
 9  0.708407  87.42377  11.80182  0.774412 
 10  0.743017  85.69378  13.42160  0.884617 

     
      Varian

ce     
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Decom
position 
of FOS: 
 Period S.E. CO2 FOS IP 

     
      1  0.009090  6.108490  93.89151  0.000000 

 2  0.018694  4.920279  95.07923  0.000493 
 3  0.027675  4.059549  95.89744  0.043008 
 4  0.035557  3.344700  96.47058  0.184717 
 5  0.042406  2.735845  96.84430  0.419858 
 6  0.048429  2.232020  97.06057  0.707406 
 7  0.053830  1.835312  97.15946  1.005229 
 8  0.058771  1.540044  97.17505  1.284905 
 9  0.063372  1.333091  97.13431  1.532599 
 10  0.067715  1.197646  97.05758  1.744772 

     
      Varian

ce 
Decom
position 

of IP:     
 Period S.E. CO2 FOS IP 

     
      1  0.126021  0.347208  1.706592  97.94620 

 2  0.258516  0.201516  1.755326  98.04316 
 3  0.384979  0.091792  1.425470  98.48274 
 4  0.498797  0.165726  1.057379  98.77689 
 5  0.600197  0.625061  0.770343  98.60460 
 6  0.691721  1.642364  0.580303  97.77733 
 7  0.776353  3.301626  0.473559  96.22481 
 8  0.856701  5.577734  0.434707  93.98756 
 9  0.934694  8.354051  0.452406  91.19354 
 10  1.011549  11.46290  0.518255  88.01885 

     
     Source: Author, computed from data 

 

2.9.7 Post Estimation Checks 
 
For establishing the validity of the estimated models, various diagnostic tests are performed 

such as serial correlation, normality of the residuals and Heteroskedasticity tests. Table 2.4 

shows that the estimated model for Nigeria, Ghana and South Africa has no problems of serial 

correlation, Heteroskedasticity and the residual are normally distributed. 

 

Table 2. 4: Post estimation tests 

Test Statistics Prob. 
Nigeria   
VEC Residual serial correlation  6.4034 0.142 
VEC Residual Heteroskedasticity  42.074 0.364 
VEC Residual Normality (Jarque-Bera) 0.3030 0.710 
Ghana   
VEC Residual serial correlation  5.8802 0.208 
VEC Residual Heteroskedasticity  37.965 0.150 
VEC Residual Normality (Jarque-Bera) 1.1403 0.565 



42 
 

South Africa   
VEC Residual serial correlation  5.2841 0.442 
VEC Residual Heteroskedasticity  31.730 0.387 
VEC Residual Normality (Jarque-Bera) 3.1855 0.703 

 

 

2.10    Conclusion 
 

Although the UK was the earliest industrial scale emitting country, China is the current highest 

carbon dioxide emitting country across the globe, with the United States and India being the 

second and third carbon dioxide emitting countries, respectively. There are varying levels of 

carbon dioxide emissions based on the development trend of countries. In addition, the earning 

capability of countries plays a key role in ascertaining their carbon dioxide emission levels. In 

this regard, Qatar’s earning prowess makes it the highest carbon dioxide emitting country with 

annual per capita emissions of 50 tonnes, while Chad is the lowest emitter. Electricity and heat 

production are major factors responsible for about 50% of global emissions, while the 

manufacturing and transport industries contributed 20% emissions, amongst other factors. The 

atmospheric carbon dioxide concentrations must be stabilised or reduced to achieve any form 

of reduction in carbon dioxide emissions across the globe. Finally, the chapter is linked with 

the trends of carbon dioxide emissions, energy use, industrial performance, and carbon dioxide 

emissions in the three largest economies in sub Saharan African countries through a Bi-variate 

analysis, which confirms the relative effect of energy use and industrial performance on carbon 

dioxide emissions. 
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CHAPTER THREE 

 
EMPIRICAL EVIDENCE OF THE IMPACT OF MACRO-ECONOMIC 

VARIABLES ON CARBON DIOXIDE EMISSIONS IN THREE 
LARGEST ECONOMIES OF SSA 

 

3.1   Introduction 
 

Industrialization has resulted in an increase in energy-related carbon dioxide emissions around 

the world, and Africa, being in that stage of development, is no exception (Samu, et al. 2019). 

While carbon dioxide emission in Africa during 2017 was only 4% of the total global fossil 

fuel emission, but if the growth rate of 2010-2017 persists, then the emission will increase by 

almost 30%. Similar trends have been witnessed in sub-Saharan African countries due to high 

population, economic growth, and related factors (Hamilton and Kelly, 2017). 

Preserving the environment and economic development are two main challenges that most of 

the economies are struggling to contend with. Environmental concern has been on the rise in 

both developed and developing economies due to the deteriorating quality of the environment, 

climate change, and global warming based on emissions by greenhouse gases (Salahuddin, et 

al. 2017; Kasman and Duman, 2015). The most important decisions that we must take regarding 

resources for our future generation is not only financial resource, but also environmental and 

ecology-related resources (Clayton, et al. 2016). 

Industrial development and economic development are key drivers of economic growth of a 

country, but they lead to environmental degradation (Zou, 2018). Environmental degradation 

can be defined as the deterioration of the environment due to the destruction of the ecosystem; 

the depletion of resources like water, air, and soil; pollution; the extinction of wildlife; and 

habitat destruction (Conservation Energy Future [CEF], 2016). It can also be defined as the 

disturbance or change to the environment that is undesirable and harmful to it (Johnson et 

al. 1997). The environmental impact can be better understood with the help of the equation 

I = PAT. This equation depicts that environmental degradation or impact (I) is the combined 

result of persistent increase in economic growth or per capita affluence (A), increasing an 

already very large human population (P), and the application of polluting and resources 

draining technology (T) (Huesemann and Huesemann, 2011; Chertow, 2001). 
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There are different factors on which economic development and growth of an economy are 

dependent on. However, economic development and growth may bring a negative impact on 

the environment and natural resources (Phimphanthavong, 2013). The negative ramifications 

of rapid industrialisation, urbanisation, population growth, and fossil fuel use must be 

considered by countries while taking major economic decisions. Many such issues negatively 

influence our environment, causing, for instance, the deterioration of air quality, extinction of 

species, soil erosion, emissions of greenhouse gases, and global warming. However, the major 

concern that is being faced by all economies is the rise in greenhouse gases leading to global 

warming and the depletion of the ozone layer. The most abundantly released greenhouse gas is 

carbon dioxide, which is recognised as the major pollutant (Edoja, et al. 2016) because it 

contributes to 3/4th of emissions by greenhouse gases (Abbasi and Riaz, 2016). The main 

sources of emissions from carbon dioxide in the atmosphere are industrial processes, the 

burning of fossil fuels, cement production, and alcohol factories. Thus, the proportion of 

environmental damage is said to be directly proportional to the number of economic activities 

(Aye, 2017). 

Zaman and Moemen (2017) posit that economic development leading to environmental 

degradation is a cogent issue that requires global attention. Those countries where economic 

growth is happening rapidly and where industrialisation is growing have high levels of carbon 

emissions that is harming people’s health (Ssali, et al. 2019). Nazeer et al. (2016) emphasized 

in their study that in developing countries, where the rules and policies are usually not that 

strict, urbanization, mechanisation, industrialisation, pesticides, fertilizers, and poor waste 

management have a severe impact on the environment. Huisingh, et al. (2015) confirmed in 

their study that the major reason for the change in climate and global warming all over the 

globe is the accumulative carbon emissions bestowed by the ignition of fossil fuels and 

deforestation. Asumadu-Sarkodie and Owusu (2016) confirmed in their study the contribution 

of energy use, population, economic growth, and foreign direct investment to environmental 

pollution. 

Accordingly, the environmental degradation caused by human activities has put the whole 

world in a dilemma and has increased the global concern for climate change (Goldstone, 2018; 

Wang, et al. 2017; Meyer, 2017; Bonan 2015). In the last few years, the impact of carbon 

emissions, energy use, foreign direct investment, and economic growth have been a major topic 

of international debate (Achour and Belloumi 2016). As mentioned earlier, Africa is a 

developing region whose economies have been growing slowly. To accelerate this process, it 
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needs to boost its energy sector by adopting institutional and technical measures to achieve a 

greater foreign direct investment inflow (Ssali, et al. 2019). According to a report by the World 

Bank (2014), foreign direct investment is the best capital source for developing economies. In 

the sub-Saharan African regions, foreign direct investment reached US$35 billion in 2012 from 

US$6.3 billion in 2000 (Ssali, et al. 2019). The development happening in sub-Saharan Africa 

has led to increased demand for energy, that in turn increased the inflow of foreign direct 

investment, and the economic development raised the alarm of environment pollution and 

carbon emissions (Bekhet, et al. 2017). 

3.2    Literature Review 

In the following sections, previous work regarding the impact of energy consumption, foreign 

direct investment, financial development, gross domestic product growth, and industrial 

performance on carbon dioxide emissions will be discussed. 

 
3.2.1   Literature on Energy Consumption and Carbon Dioxide Emissions 
 

Energy consumption and economic activities are perceived in the literature to be the major 

source of greenhouse gas emissions (Zhu, et al. 2016). Economic activities and energy 

consumption have grown tremendously due to rapid growth in population, increase in 

agricultural activities, increase in economic growth, and increase in energy demand (Shahbaz, 

et al. 2017; Asumadu-Sarkodie and Owusu 2017; McAusland 2010; Kofi Adom, et al. 2012). 

It has been shown by previous research that carbon emissions are the deadliest and highest 

polluting gases in developing countries (Khan et al. 2011). Carbon emissions constitute the 

main cause of various cardiovascular and respiratory diseases, and as per the report of the 

World Health Organisation (WHO), 7,000,000 lives annually are afflicted by air pollution 

(WHO 2018). 

Alshehry and Belloumi (2015) in their study inspected the causal relationship between energy 

utilisation, energy cost, and economic exercise in Saudi Arabia. They find a unidirectional 

long-run causality amongst energy consumption and carbon dioxide emissions. It was also 

concluded in the study that there existed bidirectional causality amid carbon dioxide emissions 

and economic development. A uni-directional short run causality from carbon dioxide outflows 

to energy consumption and a unidirectional long-run unidirectional causality from the cost of 

energy to economic growth and carbon dioxide emissions were also reported in the study. 
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Ben Jebli and Belloumi (2017) applied Granger causality tests and used autoregressive 

distributed lag (ARDL) methodology to examine energy consumption patterns in Tunisia. The 

outcome shows that a short- run bidirectional causality among transport via sea and carbon-

dioxide transmissions, and a short run unidirectional causality running from real output, 

combustible renewables and disposal of waste, railroad transport to carbon dioxide emissions 

existed. It was also revealed that there was a short - run unidirectional causality run from the 

gross domestic product, combustible fuels, and waste management, transport via rail to carbon 

dioxide emissions. Estimates in the long- run in the study also proved that real gross domestic 

product had a contribution to the drop in carbon-dioxide emissions, whereas railroad and sea 

transport, as well as fossil fuel burning had a positive contribution to carbon dioxide emissions.  

Mirza and Kanwal (2017) also discovered a bi-directional causality in both the long and the 

short runs between economic growth, energy use and carbon emissions. Odugbesan and Rjoub 

(2020) examined the synergy among economic growth, carbon dioxide (CO2) emissions, 

urbanisation, and energy consumption in MINT (Mexico, Indonesia, Nigeria, and Turkey) 

countries, using annual data from 1993 to 2017. The study employed the ARDL bounds test 

approach and found that the energy–growth hypothesis that assumed unidirectional causality 

from energy consumption was true for Nigeria and Indonesia, whereas Mexico and Turkey 

followed the feedback hypothesis, which indicates a bidirectional relationship. Meanwhile, all 

the MINT countries show a long-run relationship from economic growth, energy consumption, 

and CO2 emissions to urbanisation. The study suggested that the policymakers in MINT 

countries should develop an energy conservation policy that will enhance the potential growth 

of their economy, promote green industries as well as ensure sustainable urbanization in MINT 

countries through the reduction in the urbanisation level but without compromising economic 

growth by the formulation of policies that will ensure the decrease in CO2 emissions. 

To evaluate the impact of energy resources in Nigeria, Yahaya, et al. (2020) employ an 

autoregressive distributive lag technique. They discovered a relationship between energy 

consumption and carbon dioxide emissions. In addition, Boutabba (2014) uses the 

autoregressive distributive lag technique to determine the impact of financial openness on 

carbon dioxide emissions in India. The findings show that increasing financial progress 

increases carbon dioxide emissions. According to Sehrawat, Giri, and Mohapatra (2015), 

India's financial resources increase the capacity for carbon dioxide emissions. The rise of 

Pakistan's financial sector, according to Javid and Sharif (2016), accelerates the rate of carbon 

dioxide emissions. With previous research findings (Charfeddine Kahia, 2019; Ganda, 2019; 
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Yahaya, et al. (2020). Furthermore, Soheila and Bahram (2017) provided an empirical analysis 

of the relationship between CO2 emissions and economic growth, renewable energy 

consumption, and energy consumption over the period 1975–2014 in Germany. Using 

autoregressive distributed lag (ARDL) approach. The cointegration tests show that there is a 

long-run relationship between CO2 emissions and the other variables in the analysis, though 

the relationship between real GDP and CO2 emissions did not support the environmental 

kuznets curve. To estimate the shocks of renewable energy consumptions, the study applied 

the dynamic test of the impulse response function (IRF) under the VAR method. The increasing 

portion of renewable energy consumption in electricity generation would have no impacts on 

the environment. 

In another dimension, Shahbaz, Mutascu, and Azim (2014) use an autoregressive distributive 

lag technique to investigate the impact of output performance on carbon dioxide emissions in 

Romania. Because of the increased output performance, carbon dioxide emissions have 

increased. According to Cetin and Ecevit (2017), Turkey's gross domestic product increases 

carbon dioxide release capacity. Similarly, Sulaiman and Abdul-Rahim (2017) find the same 

result in Malaysia and conclude that energy use increases carbon dioxide emissions. 

Heidari, et al. (2015) employ the panel smooth transition technique to examine the connection 

between energy consumption, economic growth, and carbon-dioxide emissions in five ASEAN 

countries. It was concluded in the study that energy consumption leads to a rise in carbon 

dioxide in the atmosphere. Mirza and Kanwal (2017) investigated the presence of causality 

between economic growth, energy consumption, and environmental pollution in Pakistan. 

They utilised the autoregressive distributed lag (ARDL) method to investigate the strength of 

the long-term relation and presence of Grangers’ casualty by using vector error correction 

model (VECM). They find that a bidirectional casualty exists among energy consumption, 

economic growth, and carbon emissions. It was suggested by them that more renewable sources 

should be used to combat growing pollution.  

In addition, Isik, et al. (2018) in their study in China found an equilibrium long-run association 

between urbanisation, energy consumption, gross domestic product, and carbon emanations. It 

was also found in the study that energy consumption and the gross domestic product had a 

substantial influence on carbon releases. In a related study, Ahmad, et al. (2018) probed the 

influence of economic growth, population, and energy consumption on carbon emission for the 

period from 1971 to 2013 by using the autoregressive distributive lag model. They confirmed 

the connection of economic development and carbon emissions, while the presence of long-
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run association was also confirmed. Their study finds that economic development and energy 

use have a direct relationship with the growth in carbon emissions. It was also stressed in the 

study that the policymakers should focus on sustainable renewable energy sources for 

sustainable livelihood and economic development. Balcilar, et al. (2018), on the other hand, 

studied the association between economic growth, carbon dioxide emissions, and energy 

consumption in G-7 countries. They utilised the historical decomposition method and gave 

evidence of the need for the USA, Japan, Italy, and Canada to ban non-renewable energy 

sources to reduce carbon dioxide emissions.  

Topcu and Payne (2018) utilised a panel structure-taking note of cross-sectional dependence 

and heterogeneity to examine carbon emissions and energy consumption in Organisation for 

economic co-operation and development (OECD) countries. They found a U-shaped pattern 

for the impact of trade on energy, which suggested that the influence of energy consumption 

on carbon emissions is greater than economic growth. Similarly, Behera and Dash (2017) 

investigated the association between carbon emissions and energy consumption of 17 South 

and Southeast Asian countries over the period of 1980 to 2012. Pedroni co-integration was 

utilised, and it was concluded that both fossil fuel energy and primary energy consumption 

contribute to a substantial upsurge in carbon emissions in the SSEA region (Behera and Dash, 

2017). 

Begum, et al. (2015), employed autoregressive distributive lag bounds test method to examine 

the influence of energy consumption, economic growth, and population growth on carbon-

dioxide emissions in Malaysia over the period from 1970 to 1980. They find that both economic 

growth and energy consumption have a long-run influence on carbon emissions. Their 

suggestion was to use green energy for sustainable growth and reduction in carbon emissions. 

Kasman and Duman (2015) did a study for a panel of European Union (EU) countries to 

examine the interrelationship between urbanisation, energy consumption, trade openness, 

economic growth, and carbon emissions over the period of 1992 to 2010. They used panel co-

integration methodologies, panel unit root tests, and panel causality tests. Cai, et al. (2018) 

examined the interrelationship among economic growth, energy consumption and carbon 

emissions in G7 countries. They used structural breaks and autoregressive distributive lag 

bounds to test causality and co-integration and find that real output per capita is produced for 

economies like the United State of America, Canada, and Germany using renewable energy. It 

was recommended in the study that it was essential to intensify the use of clean energy to 
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decrease carbon dioxide emissions. It was also observed that green energy could fill the void 

of environmental management and economic growth in G7 countries and other countries as 

well. 

3.2.2 The Literature on Foreign Direct Investments and Carbon Dioxide Emissions 
 

Foreign direct investment is one important factor that has been studied rigorously (Salahuddin, 

et al. 2018; Zhang and Zhou, 2016; Shahbaz, et al. 2015; Copeland and Taylor, 1994 to examine 

its impact on carbon dioxide emissions. Two main theories, which have been used extensively 

by researchers to study the influence of foreign direct investment on environmental quality: the 

Pollution Haven Hypothesis and the Pollution Halo Hypothesis. 

 The Pollution Haven Hypothesis: Most studies on foreign direct investment and emissions 

have been based on verifying the relevance of the Pollution Haven Hypothesis (PHH). As per 

Copeland and Taylor (1994), most overseas’ firms engaged in so-called ‘dirty sectors’ are 

expected to reposition pollution-related activities from developed to developing countries. This 

is with an intention to cut down the domestic environmental control costs, which is associated 

with destabilising the environmental benefits associated with the ‘recipient’ country (Copeland 

and Taylor, 1994). This hypothesis posits that foreign direct investment will be more interested 

in the countries where environmental regulations are relatively less rigid. The multinational 

companies (MNCs) tend to move the high pollution level industries from industrialised 

economies with strict ecological guidelines to the newly industrialised economies with lower 

ecological protocols (Acharya, 2009). 

 
Acharya (2009), posit that, the pollution haven hypothesis specifies that the foreign direct 

investment inflow will increase gas emissions/pollution levels in developing countries by 

increasing the activities of industries with high pollution level (Acharya, 2009) Wilson, et al. 

(2002) applied cross-country studies and cross-sectional data for testing the pollution haven 

hypothesis. They assessed the influence of ecological protocols over pollution-intensive 

industries in terms of export competition. While constructing the environmental regulations 

indictor, they considered factors including the estimated amount of money spent in the country 

for controlling water and air pollution and the level of efforts for reducing pollution (Wilson, 

et al. 2002). Their findings indicate that stricter environmental standards led to lesser export of 

dirty industries. Furthermore, implementing higher standards are largely impacted by reducing 

the net exports of developing countries in comparison to the developed countries, thus implying 
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that developing countries have a higher level of pollution-intensive output (Wilson et al. 2002).  

Levinson and Taylor (2008) observe a negative correlation between the growth of economic 

activities and the standard of stringency. They explained that strict environmental regulations 

would result in higher input costs and thus cause the shifting of industries to countries with 

lower regulatory standards. 

 
Multinational companies are flocking in economies that have lower environmental taxes and a 

lower degree of environmental regulation (Seker, et al. 2015). This means that, with a view to 

save on greater environmental expenses levied in industrialised countries, MNCs are moving 

the industries with high pollution levels to the developing economies. Due to this, developing 

economies are becoming pollution havens with a significant rise in their pollution level (Zhang 

and Zhou, 2016). This may harm the environment of the host countries if they do not take these 

issues seriously. To assess the effect of foreign direct investment on carbon dioxide discharge 

in Turkey, autoregressive distributive lag model and error correction model (ECM) was 

adopted in the project conducted by Seker, et al. (2015). The authors establishes that the effect 

of emission on foreign direct investment is positive in any case if assessed either for shorter or 

longer-term (Seker, et al. 2015). The presence of PHH in Ghana and China was assessed using 

a similar method, with the results indicating a significant connection between foreign direct 

investment and carbon dioxide emissions in both countries (Solarin, et al.  2017). 

 
Salahuddin, et al. (2018) in Kuwait further analysed the approach of Tang and Tan (2015) by 

engaging the autoregressive distributive lag bounds examination method and adding vital 

aspects such as monetary evolution, fiscal progress, electricity consumption, and carbon 

emanation. The outcomes of the paper confirmed the association of foreign direct investment 

and emission both on short term and long term (Salahuddin, et al. 2018). Some scholars have 

preferred the pollution haven hypothesis; Shahbaz, et al. (2015), for instance, employed the 

fully modified ordinary least square (FMOLS) technique in various countries with varied 

income-levels to evaluate the nonlinear association between foreign direct investment and 

carbon dioxide emissions. The results established the inflow of foreign direct investment results 

in a proportionate rise in the levels of carbon dioxide discharges (Shahbaz, et al. 2015). 

Applying this concept at a broader level, tests were conducted by Tang and Tan (2015) in 

Vietnam to assess the correlation between foreign direct investment, carbon productions, 

energy ingestion, and returns. To achieve this, cointegration test and Granger causality were 



51 
 

adopted, and the outcome depicted bidirectional causal connection between foreign direct 

investment and emissions (Tang and Tan, 2015). 

 
The Pollution Halo Hypothesis: Few studies have affirmed that foreign direct investment 

inflows help in improving the efficiency of energy and delimiting pollution emission, as foreign 

direct investment has a positive effect on management procedures, technology acquisition, and 

employment growth. This is better termed the pollution halo hypothesis, according to which, 

the foreign direct investment will cause positive environmental spill-over in the host economy 

as the multinational corporations enjoy greater developed tools compared to their local 

counterparts, and therefore they will spread cleaner technology which is less tasking on the 

environment (Jalil and Feridun, 2011). The high-level investments made by foreign direct 

investment in research and development will provide for environment-friendly technologies 

and the multinational corporations with superior environmental management systems would 

have a positive impact on the host countries.  This ultimately raises environmental 

consciousness and increases environmental standards (Hoffmann, et al. 2005). Owing to these 

reasons, the pollution halo hypothesis posits that the foreign direct investment movement will 

reduce emissions and improve the environmental quality in host economies (Shahbaz, et al. 

2015). 

 

The pollution haven hypothesis adequately explains the real intentions of the multinational 

corporations, which are moving the industries with high pollution levels to developing 

countries turning them into pollution havens and significantly increasing their pollution levels. 

It asserts that a certain flexible directive in the newly industrialised countries would give them 

a relative lead in the creation of pollution-centered merchandise over the industrialised 

countries. Various evidence has been provided to support this hypothesis. Zhou, Zhang, and Li 

(2013) to evaluate the outcome of the effect on the environment of industrial structural 

transformation; with the results affirming that a huge amount of foreign direct investment 

inflow would reduce emission, thereby substantiating the impact of pollution halo in China, 

used dynamic panel data. The association between foreign direct investment and energy usage 

was investigated by Mert and Bölük (2016) using ADR approach in almost 31 Kyoto protocol 

countries, and the results substantiated that foreign direct investment impedes carbon dioxide 

emissions (Mert and Bölük, 2016). 
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Lucas Paradox Lucas Paradox suggests that both theories could not be true, as foreign direct 

investment moves from developing countries to developed countries (Lucas, 1990). He (2006) 

debates the idea that the environmental regulation costs playing a vital role in determining the 

location of foreign direct investment, as proposed by the halo hypothesis and pollution haven 

hypothesis, are questionable. The example of China was considered by He (2006) to explain 

that due to initially cheap labour in China, there was a huge inflow of foreign direct investment 

in the country but now the situation is different as the inflow of foreign direct investment is 

now due to the ever-growing Chinese economy. The Chinese economic upturn has spurred the 

foreign companies to desire a strategic position in the Chinese market. This study suggested 

that the inflow of foreign direct investment in China is not due to the comparative advantage 

of environmental regulations.  

 

Alfaro, et al. (2008) in their research confirmed the Lucas paradox. They demonstrated that for 

the period from 1970 to 2000, there was less inflow of capital per capita in developing countries 

than in developed countries. It was debated that this could be asymmetric information and 

human capital has an important role in deliberating the flow of capital (Alfaro, et al. 2008). 

This suggests that the haven hypothesis is invalid as per the Lucas paradox. This is more so as 

the inflow of capital is not dependent on environmental regulations stringency but is dependent 

on other factors. 

 
In conclusion, it is sufficient to say that foreign direct investment has a detrimental influence 

on carbon dioxide emissions in countries at higher quintiles; with this negative effect increasing 

substantially with emissions. Evidently, based on research conducted by Huang, et al. (2019), 

it could be stated that the inverted U-shaped environmental kuznet curve is only applicable in 

areas with very low pollution levels. Nonetheless, “the positive indirect effects of foreign direct 

investment and foreign trade on carbon dioxide emissions are greater than the negative direct 

effects; thus, the total effects are positive” (Huang, et al. 2019). 

 
3.2.3    Literature on Financial Development, Industrial Performance and Carbon 

Dioxide Emissions 
 

Proper execution of services and goods over a period improves the financial development of 

the country. Similarly, the industrial performance of a country directly influences its financial 

development. Hence, industrial growth and financial development occur side by side. Without 

good industrial performance, there could be no financial development in a country. However, 
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because financial development and industrial growth come at the price of environmental 

pollution due to carbon emission in some countries, it is important to understand the 

interrelationship between financial development, industrial performance, and carbon dioxide 

emissions. As per Han, et al. (2018), it is vital to get a complete understanding of the 

interrelationship between economic development and carbon emissions to regulate economic 

activities and protect the environment to cut down greenhouse emissions. 

 Rahman and  Kashem (2017) examine the long and short run dynamics and causal 

relationships between carbon emissions, energy consumption and industrial growth in 

Bangladesh over the period 1972–2011. The ARDL bounds test methodology and Granger 

causality test in an augmented VAR framework were applied and the results confirmed long-

run cointegration between carbon emissions, energy consumption and industrial production in 

Bangladesh; industrial production and energy consumption have significant positive impact on 

carbon emissions both in the short and long-runs. The results also indicated unidirectional 

causation from both industrial production and energy consumption to carbon emissions, 

implying that industrial development or economic development in Bangladesh is taking place 

at the cost of environmental quality. 

 Lin, Omoju and Okonkwo (2015) investigated the impact of industrial value-added on carbon 

dioxide emissions in Nigeria using the Kaya Identity framework and Augmented Dickey Fuller 

(ADF), Johansen׳s cointegration technique and vector error correction model. The data spans 

1980 to 2011. The result of the analysis shows that industrial value-added has an inverse and 

significant relationship with carbon dioxide emissions, which suggests that there is no evidence 

that industrialisation increases carbon emissions in Nigeria. Gross domestic product per capita 

and population has positive and significant impacts on carbon dioxide emission. Energy 

intensity and carbon intensity has positive but very weak significant impact (at 10% level) on 

carbon dioxide emission. The paper recommends that policy makers in Nigeria should pursue 

pragmatic industrialisation policies coupled with modest decarbonisation and energy-

efficiency measures to ensure long-term industrial, economic, and sustainable development. 

Few studies have analysed the influence of financial development on carbon-dioxide discharge. 

Shahbaz, et al. (2013) used South African data to assess the influence of fiscal progress on 

pollution in South Africa and discovered enhancements in air quality owing to financial 

development. It was also argued that financial development augments air purity by rising 

earnings and capitalisation, manipulating fresh equipment, as well as applying protocols about 

https://www.researchgate.net/profile/Mohammad-Rahman-108?_sg%5B0%5D=SpMIh18XsYejXS7zfBMcOT4d1C4a0FkDwJ0aDG4egfVBSYQPtqg0gRdv_m_hQSZpXRUOsOQ.Bhi4Ctd22cXyJAb-0tV99Z7ehBJGLbdiVRgP62_YUQjn8IIXOurYogpYvo94zEQAmxKmZIAUuRALJeextWZTEQ&_sg%5B1%5D=AMb3PxCzHxOxr9vaN9umxuZr-MHhgX5pB7iuxAl3EkD1LvPjh9SyD74XQLTTo3n3gbRnv8s.zEDUJ-SHUHtzkf9tiN3yAz3tfelq2aJQN2TcSxl-GKQA3cOdckbHQ1_tnhn8Ra1zb-tx33zK5KdNZ1z3b8Ervg
https://www.researchgate.net/profile/Mohammad-Kashem?_sg%5B0%5D=SpMIh18XsYejXS7zfBMcOT4d1C4a0FkDwJ0aDG4egfVBSYQPtqg0gRdv_m_hQSZpXRUOsOQ.Bhi4Ctd22cXyJAb-0tV99Z7ehBJGLbdiVRgP62_YUQjn8IIXOurYogpYvo94zEQAmxKmZIAUuRALJeextWZTEQ&_sg%5B1%5D=AMb3PxCzHxOxr9vaN9umxuZr-MHhgX5pB7iuxAl3EkD1LvPjh9SyD74XQLTTo3n3gbRnv8s.zEDUJ-SHUHtzkf9tiN3yAz3tfelq2aJQN2TcSxl-GKQA3cOdckbHQ1_tnhn8Ra1zb-tx33zK5KdNZ1z3b8Ervg
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the ecosystem. Likewise, a study by Salahuddin, et al. (2015) applied (FMOLS) method to 

observe the effect of financial development on carbon dioxide discharges in GCC countries 

within the period from 1980 to 2012. The findings revealed that financial development reduces 

the amount of carbon dioxide discharges. Similarly, Al-mulali, et al. (2015) in their study of 

129 countries maintained that financial development lessens carbon dioxide emissions. Dogan 

and Seker (2016) in a related study revealed a negative relation between financial development 

and carbon dioxide emissions in both industrialized and developing countries. Abid, (2016) 

employed the cross-country data of 25 SSA countries to examine the influence of fiscal 

progress on carbon dioxide emissions, utilising the Generalised Method of Moment (GMM) 

method from 1996 to 2010. The results suggest a negative association between financial 

development and carbon dioxide emissions. Relatedly, Isik, et al. (2018) employed the 

heterogeneous panel analysis technique to scrutinise the connection amongst urbanisation, 

economic growth, and environmental pollution in China. They utilised heterogeneous panel 

estimation and fully modified ordinary least square. The authors found out that a long-run 

equilibrium correlation exists between output, urbanisation, energy consumption, and carbon 

emissions. They also confirmed that output and financial development had substantial 

influence in all provincial panels. Furthermore, Cetin concluded that financial development 

increases carbon dioxide emissions in Turkey.  

Ganda (2019) inspected the effect of economic development on ecological dilapidation in 

OECD countries between the interval of 2001 and 2012, utilising static and generalised method 

of moment’s approaches. The result reveals a significant positive relationship amongst 

economic progress and ecological dilapidation. Javid and Sharif (2016) examined the effect of 

fiscal progress, output development, and energy use on carbon dioxide emissions in Pakistan. 

The findings show that financial development, output growth, and energy promotes carbon 

dioxide discharges. Meng, et al. (2018) revealed similar results in their study, confirming that 

financial development is constructively associated with carbon dioxide releases in Turkey and 

Saudi Arabia. In a related study, Charfeddine and Kahia (2019) suggested that growth in money 

supply resulted in remarkable surges in the level of carbon dioxide discharges in Middle East 

and  North Africa (MENA) region. Gokmenoglu and Sadeghieh (2019) assessed the 

consequence of fiscal growth, energy, and output growth on ecological dilapidation in Turkey 

from 1960 to 2011. The results of the study pointed to a significant constructive link between 

fiscal growth and ecological dilapidation. This verdict supports the outcome obtained by 
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Zakaria and Bibi (2019), according to which financial development increases the level of 

environmental pollution in South Africa.  

3.2.4      Empirical Literature: Energy Performance and Carbon Dioxide Emission 
 

A few studies have analysed the links between energy performance, economic growth, 

financial development, and carbon dioxide discharge using VAR and VECM techniques across 

many countries. For instance, Wei, et al. (2021) carried out an empirical study of carbon 

emission impact factors. They utilise the VAR model. The results showed that the economic 

growth effect, energy intensity effect and embodied carbon in foreign trade were the key factors 

affecting carbon emissions, among which the economic growth effect contributed the most. In 

a similar study, Ewing, et al. (2017) investigated energy consumption, carbon emission and 

economic growth nexus in the United States for the period 1972-2006, using the Johansen 

Bivariate cointegration method, VAR, and the dynamic causal analysis. The result showed that 

carbon dioxide emissions granger causes economic growth in the short and long run. Results 

also indicated that unidirectional causality exists from energy consumption to economic growth 

both in the short and long run, while in the short run bidirectional relationship exists between 

energy consumption and economic growth. The study concluded that carbon emissions 

influenced economic growth. 

 

 In the same vein, Soytas and Sari (2017) examined the relationship between energy 

consumption, economic growth, and carbon emissions in Turkey. The investigation employed 

the granger causality perspective in a multivariate VAR framework. They discovered that 

carbon emissions seem to granger cause energy consumption, but the reverse is not true. The 

study concluded that there is a lack of a long-run causal link between income and emissions, 

which implied that to reduce carbon emissions; Turkey does not have to forgo economic 

growth. Furthermore, Chontanawat, et al. (2016) studied the dynamic modelling of a causal 

relationship between energy consumption, C02 emission and economic growth in India with 

the data covering 1971 to 2006. The methodology used was the VAR granger causality. The 

study confirmed the existence of bidirectional granger causality between energy consumption 

and carbon dioxide emissions in the long run, but neither carbon dioxide emissions nor energy 

consumption and income in any direction in the long run. The study concluded that India could 

pursue energy conservation and emission reduction with efficiency improvement policies 

without impeding economic growth. Similar study by Saibu and Jaiyesola (2013), examined 

the implication for energy policy and climate protection on the nexus between energy 
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consumption, carbon emission and economic growth in Nigeria. The study employed a VAR 

granger causality and dynamic regression model and found that there was a causal relationship 

between oil production, carbon emission from gas flaring and economic growth in Nigeria, 

with a conclusion that carbon emission constituted an impediment to sustainable economic 

growth in Nigeria. 

 
Sun, et al. (2011) empirically studied the relationship between economic growth and carbon 

emission in China.  The study employed time series data from 1999-2009, applying a VAR 

model with the use of impulse response functions and variance decomposition. It was 

concluded that in resource-dependent cities, per capita GDP changes granger cause changes in 

carbon emissions; however, carbon emissions do not exhibit the inverted U-shaped relationship 

in the dynamic sense.  Per capita GDP contribute significantly to the behaviour of variance 

decomposition of carbon emissions. Bowden and Payne (2009) worked on the causality 

between energy consumption and economic growth in Greece, using VAR model, and Toda 

and Yamamoto (1995) granger causality test. The investigation revealed that in aggregate there 

was a unidirectional causal relationship running from total energy consumption to real GDP, 

the study, therefore, concluded that energy consumption affects economic growth. 

 

 Yu, et al. (2008) in a causal relationship between energy consumption and economic growth 

analysis in Liberia engaged a parametric and non-parametric granger causality approach and 

found evidence of distinct bidirectional granger causality between energy consumption and 

economic growth. The study, therefore, concluded that energy consumption influences 

economic growth. Similarly, Apergis and Payne (2014) examine the influence of renewable 

energy, output and fossil fuel prices on carbon dioxide emissions in the United States of 

America, using VECM approach with data from 1980 to 2010. Their results show that energy 

use, fossil fuel prices, and output positively influences carbon dioxide discharge. Similarly, 

using VECM and impulse response analysis, Albiman, et al.  (2015) investigate the relationship 

among energy resources, economic performance, and carbon dioxide discharge in Tanzania 

between 1975 and 2013, and their outcomes reveal that energy resources and economic 

performance positively influence the capacity of carbon dioxide. The variance decomposition 

analysis shows a very high percentage of variation due to shocks of energy use and economic 

performance. 
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Boyle (2015) used vector error correction technique to forecast the effect of industrial 

production on carbon dioxide pollution in Bangladesh. The outcome illustrates the hypothesis 

of a positive link between industrial production and carbon dioxide discharge in the 54 years 

under review. Alshehry and Belloumi (2015) investigate the influence of energy use, energy 

price and economic progress on carbon dioxide emissions in Saudi Arabia, using vector error 

correction model and variance decomposition analysis, and confirm a positive link among 

energy use, energy price, and the output of carbon dioxide emissions. 

Similarly, Wang, et al. (2016) studied the influence of energy performance and output on 

carbon dioxide discharge in China from 1990 to 2012 by the vector error correction model 

technique and also confirmed the positive effect on carbon dioxide output of energy 

performance and economic progress. Chen, et al. (2016), examination of the link between 

energy performance, output, and carbon dioxide emissions in 188 countries between 1993 to 

2010, using vector error correction model technique also indicates that energy performance has 

a positive link to carbon dioxide explosion. Findings by Khobai and Roux (2017) reaffirmed 

the same in their analysis using vector error correction model of the effect of energy 

performance, output, trade, and urbanization on carbon dioxide explosion in South Africa 

between 1971 and 2013. 

Aminu's (2018) examination of the influence of energy price shock on economic performance 

in United Kingdom using vector error correction model and impulse response analysis reveals 

that a temporary decline in economic performance occurs due to energy price shocks. Aminu, 

et al. (2018) analysis of the effect of energy price shock on output performance by vector error 

correction model indicates that energy prices shocks reduce the level of output performance. 

Wang, et al. (2018) also employ vector error correction approach to examine the link between 

energy use, output, and urbanisation with carbon dioxide in 170 countries from 1980 to 2011. 

The outcome from vector error correction model analysis indicates a positive link between 

energy, gross domestic product growth, and urbanisation and carbon dioxide emissions. 

 Ahad (2018) employed vector error correction model, variance decomposition and impulse 

response techniques to investigate the influence of aggregate and disaggregate energy use, 

industrial growth, and carbon dioxide emissions in China from 1984 to 2015. Their outcome 

illustrates that aggregate, disaggregate energy use and industrial growth accelerates the level 

of carbon dioxide discharge. Waheed, et al. (2018) examine the effect of energy use and 

agricultural production on carbon dioxide emissions in Pakistan using vector error correction 
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model approach from 1990 to 2014. The outcome shows that an increase in energy use 

accelerates the level of carbon dioxide discharge. The findings in Tunisia also shows that 

energy use and gross domestic product increase the level of carbon dioxide discharge as 

revealed in Benali and Feki's (2018) analysis of the effect of energy use and economic 

performance on carbon dioxide carbon dioxide emissions in the country from 1982 to 2016. 

Jian, et al. (2019) investigates the influence of energy resources, gross domestic product, and 

the performance of the financial sector on the Chinese carbon dioxide explosion between 1982 

and 2017. The result again reveals a positive influence. The outcome of Nugraha and Osman's 

(2019) investigation of the same in Indonesia between 1975 and 2014 using vector error 

correction model technique reveals that energy consumption has a positive influence on carbon 

dioxide discharge. Peng and Wu (2019) examine the association of energy use, economic 

progress, and the carbon dioxide explosion in China from 2004 to 2016 using vector error 

correction model and fully modified ordinary least square methods to show that energy use 

increases the capacity of carbon dioxide explosion. 

 Zhang (2020) also used vector error correction model technique to examine the link between 

energy use, economic performance, and carbon dioxide discharge from 2000 to 2017 in 

Chinese provinces. The outcome of the estimate reveals that energy use accelerates the level 

of carbon dioxide discharge. Similarly, Destek and Aslan (2020) used vector error correction 

model and variance decomposition analysis to investigate the effect of the aggregates and 

disaggregates of renewable energy use, economic performance, and carbon dioxide output in 

G-7 countries from 1991 to 2014. The outcome indicates a positive influence of the 

disaggregate form of renewable energy on carbon dioxide discharge. Chandio (2020) analyses 

the performance of energy consumption, foreign direct investment, and gross domestic product 

in relation to carbon dioxide emissions in Pakistan from 1997 to 2017 by applying vector error 

correction method, showing a positive association between energy performance and carbon 

dioxide explosion.  

In another development, Salazar-Núñez, et al. (2020) examine the influence of energy 

performance and economic progress on carbon dioxide output in 79 countries, using fully 

modified ordinary least square  method. The outcome shows that energy performance 

accelerates the capacity of carbon dioxide discharge. Ibrahiem and Hanafy (2020) also used 

fully modified ordinary least square technique to study the effect of energy use, output, and 

population growth on carbon dioxide emissions from 1971 to 2014 in Egypt. The estimates 
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reveal that increased energy use increases the levels of carbon dioxide emissions. However, a 

study on this outcome is similar to the findings of earlier studies  Baimani, et al. 2021; Clifton, 

et al. (2020). 

 

3.2.5    Literature Review on the Nexus between Energy Consumption and Carbon 
Dioxide Emissions 

 

In recent times, the increase in carbon dioxide emissions has been linked with the increase in 

energy consumption by limited research that has been carried out on the topic. Sassana and 

Putri (2018) analysed the impact of fossil fuel consumption, the consumption of renewable 

energy, and population growth on carbon-dioxide emissions in Indonesia. They used the OLS 

approach along with multiple linear regression analysis on time series data for the period of 

1990 to 2004. They concluded that population growth and fossil fuel energy consumption have 

a positive impact on the carbon-dioxide releases in the region. 

 

 Thao and Chon (2016) found a positive impact of energy consumption on the environment. 

They went further in stressing that carbon dioxide emissions are not only due to fossil fuel 

consumption but also due to the extraction process of fossil fuels. It was also found in the same 

study that a negative association exists between energy consumption and carbon-dioxide 

emissions. Li, et al. (2010) in their study of 28 provinces in China used panel data to find that 

economic growth and energy consumption in the long run influence carbon-dioxide emanation, 

however, long-term economic growth and carbon-dioxide emission have an impact on energy 

consumption. Moreover, Ito (2017) find   negative influence of fossil energy consumption on 

economic growth of developing countries, and it was further concluded that economic growth 

was positively impacted by energy consumption. The burning of fossil fuels is harmful to the 

environment; they cause excessive amounts of pollution. Renewable energy sources on the 

other hand do not damage the environment and thus can be termed as environment friendly 

(Ito, 2017). 

 

Shafei and Ruhul (2013) in their study of OECD countries tested the concept of Kuznets curve 

hypothesis about the relationship between carbon-dioxide emissions and urbanisation and 

found that fossil fuel energy has a positive association with carbon-dioxide emissions, 

suggesting that an increase in fossil fuel consumption leads to increase in carbon-dioxide 

emissions. It was also concluded in the study that a negative association exists between 



60 
 

renewable energy consumption and carbon-dioxide emissions, which indicates that there will 

be a reduction in carbon-dioxide emissions with increased consumption of renewable energy. 

 
Fathinah and Djoni (2016) concluded that for ASEAN countries a significant and negative 

association exists between the quantity of renewable energy consumption and carbon dioxide 

emissions. Bilgili, et al. (2016) reported similar results in their study where it was found that 

the consumption of renewable energy has a significant and negative influence on the carbon 

dioxide released into the environment. The results of the study suggested that renewable energy 

consumption could be instrumental in reducing the level of carbon dioxide emissions. It was 

concluded in the study that by increasing renewable energy consumption, the reliance on fossil 

fuel energy could be minimized and thus, carbon-dioxide releases can be reduced. Paramati, et 

al. (2017) discovered in their study of G20 countries that renewable energy consumption cuts 

carbon-dioxide releases, which increases the economic output of the countries.  

 

In a related study, Zoundi (2017), note that the consumption of renewable energy has a 

significant and negative impact on carbon-dioxide emissions, and it was established that 

renewable energy is more environment friendly than fossil fuels. It is expected that in the long-

run fossil energy will be replaced by renewable energy due to environmental concerns (Zoundi, 

2017). Liu, et al. (2017) in their study of four ASEAN countries (namely Thailand, Philippines, 

Indonesia, and Malaysia) found similar results that consumption of renewable energy has a 

negative influence on carbon-dioxide emissions. The estimation results pointed out that carbon 

dioxide emissions could be reduced by increasing the consumption of renewable energy. The 

study suggested the efficient utilisation of renewable energy towards attaining a healthier and 

cleaner environment.  

 

Bulut (2017), in his study found a positive effect of fossil fuel energy sources on carbon-

dioxide emission in Turkey for the period 1970 to 2013. Shafiei and Ruhul (2013), relatedly 

pronounced the similar results in their study of OECD countries, for the period 1980 to 2011, 

where consumption of fossil energy resulted in an increase in carbon-dioxide emissions. 

Similarly, Dogan and Fahri (2016) in their study of european countries also found a direct 

relationship between fossil fuel energy consumption and an increase in carbon-dioxide 

emissions. They concluded that there exists a causal indirect relationship between carbon-

dioxide emissions and non-renewable energy consumption. In a study of Pakistan by Danish, 

et al. (2017), it was found that fossil fuel energy consumption has a positive effect on carbon-
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dioxide releases. It was further concluded that the main cause of carbon-dioxide emissions in 

Pakistan was the consumption of fossil energy and people's health and environment face danger 

due to the release of carbon dioxide during the combustion of fossil fuels. Zheng-Xin and De-

Jun (2017) provided evidence for a direct relationship between fossil energy and carbon dioxide 

emissions. In another study (Chibueze, et al. 2013) in Nigeria for the period of 1971 to 2009, 

it was concluded that in the long term and short term, the consumption of fossil fuels has a 

significant and positive impact on the carbon dioxide released in the environment. 

 
Based on the reviewed literature, it is possible to suggest that some studies have analysed the 

influence of energy demand macroeconomic activities and carbon dioxide discharge, using 

techniques of estimation such as, autoregressive distributive lag, generalize method of moment, 

and panel autoregressive distributive lag. However, the number of analyses of these 

relationships using vector autoregressive/vector error correction models, variance 

decomposition, and impulse response techniques specifically for South Africa, Ghana, and 

Nigeria is very limited. No previous studies investigated, furthermore, the interaction effect of 

energy use and the development of the financial sector, using the well-established econometric 

tools like vector autoregression (VAR), Toda Yamamoto in VAR framework, Impulse 

response function, variance decomposition, granger causality and autoregressive distributive 

lag (ARDL) techniques for the three largest economies of sub-Saharan African countries, 

which is precisely the focus of this  study which is the examination of the influence of energy 

consumption industrial performance and some other macro-economic variables on carbon 

dioxide emissions in  three largest economies of  sub Saharan African countries. 

The framework depicting the inter-connectedness between the dependent variable (carbon 

dioxide) and independent variables (foreign direct investment, industrial performance, gross 

domestic product growth, energy consumption and financial development) is shown in figure 

3.1. 
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Figure 3. 1: Research Framework 

Source:   Author’s Conceptualisation  

 

3.3    Research Methodology 

3.3.1    Empirical Modelling of the Impact of Energy Use and other Macroeconomic 
Variables on Carbon Dioxide Emissions in Three Largest Economies in   Sub 
Saharan Africa. 

This study adopted a modified version of the pollutant emissions model that was developed by 

Ang in 2007 to investigate the effects of fossil fuel usage, foreign direct investment, financial 

development, industrial performance and economic output growth on environmental quality, 

proxy by carbon dioxide (CO2) emission, using quarterly data from 1980Q1 to 2017Q1.  

The functional form of the relationship is represented in equation 3.1 

CO2 = f (ENG, FDI, FD, IND, GDPg) ………………………………………………........(3.1) 

Foreign Direct Investment 

Industrial Performance 

Energy Consumption 

Financial Development 

Carbon 

Dioxide 

Emissions  

Gross Domestic Product Growth 
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where carbon dioxide emission/discharge is (CO2), fossil fuel energy consumption (ENG), 

foreign direct investment (FDI), financial development (FD), industrial performance is (IND), 

and output growth measured by growth rate of gross domestic product is (GDPg). 

The econometric specification of equation 3.1 is expressed in equation 3.2, as follows: 

CO2𝑡 = ∝ +𝛽1𝐸𝑁𝐺𝑡 +  𝛽2𝐹𝐷𝐼𝑡 + 𝛽3𝐹𝐷𝑡 + 𝛽4𝐼𝑁𝐷𝑡 + 𝛽5𝐺𝐷𝑃𝑔 + 휀𝑡 … … … … …             (3.2) 

 
where: Subscript t stand for the period (t = 1980Q1 to 2017Q1), 𝛼 and 𝛽 signify the parameters 

coefficients and 휀 denotes the stochastic error term, the rest as defined in the previous equation. 

The apriori expectation (𝛽1𝛽2𝛽3𝛽4𝛽5> 0), therefore ENG, FDI, FD, IND and GDPg are 

positively related to carbon dioxide discharge.  

 

3.3.2: Economic Rationale for Explanatory Variables inclusion in Estimated Model 
 

Carbon Dioxide (CO2) Emissions 

Carbon dioxide emissions, largely by – product of energy production and use, account for the 

largest share of greenhouse gases, which are associated with global warming. Anthropogenic 

carbon dioxide emissions result primarily from fossil fuel combustion and cement 

manufacturing. In combustion different amounts of carbon dioxide for the same level of energy 

use: Oil releases about 50% more carbon dioxide than natural gas, and coal releases about twice 

as much. Burning of carbon-based fuels since the industrial revolution has rapidly increased 

concentrations of atmospheric carbon dioxide. 

Industrial Performance (IP) 

Industry, value added (% of GDP) - Value added is the value of gross output of producers less 

the value of intermediate goods and services consumed in production before accounting for 

consumption of fixed capital in production.  An economy’s growth is measured by the change 

in the volume of its output or in the real incomes of its residents. The volume of GDP is the 

sum of value added, measured at constant prices, by households, governments, and industries 

operating in the economy. GDP accounts for all domestic production, regardless of whether 

the income accrues to domestic or foreign institutions. 

Fossil fuel Usage (ENG) 

Fossil fuel consumption (% of Total) - fossil fuels are non – renewable resources because they 

take millions of years to form, and reserves are being depleted much faster than new ones are 
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being made.  In developing economies growth in energy use is closely related to growth in the 

modern sectors – industry, motarised transport, and urban areas but energy use also reflects 

climatic, geographic, and economic factors (such as the relative price of energy). Energy use 

has been growing rapidly in low – and – middle -income economies, but high – income 

economies still use almost five times as much energy on a per capita basis. 

Financial Development (FD) 

Domestic credit provided by the financial sector includes all credits to various sectors on a 

gross basis, except for credit to the central government, which is net. The financial sector 

includes monetary authorities and deposit money banks, as well as other financial corporations 

such as finance and leasing companies, money lenders, insurance corporations, pension funds, 

and foreign exchange companies. Credit is an important link in money transmission, it finances 

production, consumption, and capital formation, which in turn affect economic activity. 

Domestic credit provided by the financial sector as a share of GDP measures banking sector 

depth and financial sector development in terms of size. 

Tapping private sector initiative and investment for socially useful purposes are critical for 

poverty reduction. In parallel with public sector efforts, private investment, especially in 

competitive markets, has tremendous potential to contribute to growth. Private markets are the 

engine of productivity growth, creating productive jobs and higher incomes. More so, with 

government playing a complementary role of regulation, funding, and service provision, 

private initiative and investment can help provide the basic services and conditions that 

empower poor people by improving health, education, and infrastructure. Both banking and 

financial systems enhance growth, the main factor in poverty reduction. At low levels of 

economic development commercial banks tend to dominate the financial system, while at 

higher levels domestic stock markets tend to become more active and efficient. It is evident 

that the size and mobility of international capital flows make it increasingly important to 

monitor the strength of financial systems. Robust financial systems can increase economic 

activity and welfare, but instability can disrupt financial activity and impose widespread costs 

on the economy. 

Gross Domestic Product Growth (GDPg) 

The volume of GDP (constant USD) is the sum of value added, measured at constant prices, 

by households, governments, and industries operating in the economy. GDP accounts for all 
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domestic production, regardless of whether the income accrues to domestic or foreign 

institutions. 

3.3.3    Sources of Data, Variables Measurement and Definitions 
 
Table 3.1: Description of the Study Variables 

Variables 
Description Definition Sources 

CO2 DV Environmental quality measured by Carbon dioxide 

(CO2) emissions per capita (metric tons) 

WDI 

FDI IV Foreign Direct Investment, net inflows (% of GDP) WDI 

IND IV Industry (including construction), value added (% of 

GDP) 

WDI 

FD IV Financial development is proxy by domestic credit by 

financial sector (% of GDP) 

WDI 

ENG 

 

GDPg 

IV 

 

IV 

Fossil energy consumption measured by Petroleum 

and other liquid consumption (% of total energy)  

Economic growth measured by Gross domestic 

product growth rate 

EIA 

 

WDI 

Note: *DV refers to dependent variable and *IV refers to independent variable 

 

This study employs quarterly time series data for Ghana, Nigeria, and South Africa from 

1980Q1 to 2017Q1, with data carbon dioxide emissions, energy consumption, industrial 

performance, economic output growth, foreign direct investment, and financial development 

from the World Bank’s World Development Indicators (WDI) and Energy Information 

Administration (EIA). One of the reasons to choose WDI and EIA is that they are one of the 

premier compositions of data that do not only provide details of a country but also support 

cross-country analysis. The indicators help in measuring the development experienced by each 

country individually as well as in comparison to its counterparts. The information obtained 

from these databases is appropriate, and accurate along with being of higher quality.  

Carbon dioxide emissions are measured in per capita (Metric tons) while foreign direct 

investment percentage of output measures foreign direct investment. Energy consumption is 

measured by fossil fuel consumption that consists of petroleum, natural gas, and coal and oil 

production. The industrial performance will be measured in terms of value-added, gross 

domestic product growth rate is a measure market size, and financial development is a proxy 

domestic credit as a percentage of gross domestic product. 
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A.   Carbon Dioxide Emissions in per capita (metric tons) 
Carbon dioxide emissions mainly comprise of emissions that arise due to burning or 

combustion of fossil fuels. These are also known as greenhouse gases (GHG) which   pollute 

and remain harmful to the quality of the environment. These gasses are harmful mainly because 

they tend to captivate as well as release infrared radiations, which are hazardous to the entire 

universe. They keep the heat trapped and do not allow it to be released in space. The outcome 

is the rising temperatures of the earth making it a difficult place to live. The calculations for 

carbon dioxide emission are done by calculating the total number of people living and the 

overall quantum of carbon dioxide emitted per person (Saboori Sulaiman 2013), which results 

an average to identify per capita emissions. For simplicity, and ensuring a holistic analysis is 

executed in the present study, carbon dioxide emissions are measured based on per capita 

(metric tons) and is the dependent variable employed in the study. 

B.   Foreign Direct Investment 

Foreign direct investment is investments made by individuals and companies into a foreign 

country to generate mutual companies (Bhasin, 2012). Foreign direct investments are executed 

with the primary intention to pursue business in a foreign land. A country welcomes foreign 

direct investment as it supports industrial development which in turn promotes overall national 

development. Through foreign direct investment, a country can get additional sources of funds 

and thus add to resources required for capital building. Foreign direct investment also helps 

countries to develop powerful and positive international relationships. Foreign direct 

investment is not only about the channelisation of funds into foreign lands. It also consists of 

a transfer of knowledge, competencies, skills, and technologies (Sahoo, Nataraj, and Dash 

2013). With the help of foreign direct investments, it is possible for individuals or firms to use 

their idle capital and thus support economic progress by encouraging the movement of funds 

and other resources from the haves to the have-nots. The inclusion of foreign direct investment 

as a determinant of emissions aims to ascertain the extent to which the pollution hypothesis 

(PHH) or pollution halo hypothesis hold true in sub-Saharan Africa, as foreign energy firms 

may locate their factories/companies to poorly regulated developing economies to avoid paying 

environmental control costs obtainable in developed countries. This practice may invariably 

enhance emissions/pollutants that would directly degrade the environment, as documented in 

Shahbaz, et al. (2015); Tang and Tan (2015); Sun, et al.  (2017); Solarin, et al. (2017); and 

Salahuddin, et al. (2018). 
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C.   Industry (Including Construction), Value Added (Percentage of Gross Domestic 

Product) 

 
This variable captures the level of industrial performance in producing output. In simple terms, 

it refers to the overall value addition done by an industry in the process of economic growth 

and development of a country (Bureau of Economic Analysis, 2006). Thus, industrial value-

added is the overall contribution of the industry to the gross domestic product (output) of a 

country or region (Bureau of Economic Analysis, 2008). This industry can be private or owned 

by the government. In addition, companies within a particular industry can be either private or 

public in nature. Value addition by industry is done through employee compensation, taxes 

paid on manufacturing, deduction of subsidies on imports, and gross operational excess. Value 

addition by industry is the discrepancy amidst the total output by industry and the costs of all 

the transitional inputs used by the industry.  

The gross output comprises the sales and other sources of operational income, changes in 

inventory, and commodity taxes. Transitional inputs on the other hand consist of energy, work-

in-progress, semi-finished or unfinished goods and services, and raw materials procured from 

diverse sources (Bureau of Economic Analysis, 2008). This variable enters the carbon dioxide 

emissions model because firms use energy, whether fossil fuels or renewable power supply, in 

the process of generating desired output. To this end, the nature of energy use adopted by 

players in the industrial sector would significantly affect the level of environmental quality 

through carbon emissions. 

D. Financial Development (Credit to the Private Sector as a Percentage of Gross 

Domestic Product) 

 
Financial development can be defined as the progress in the production of information about 

likely investment opportunities and capital allotment (Hermes and Lensink, 2013). It also 

implies simplification of the overall process of imports and exports. In circumstances when 

exposure to risks is minimised, it can be stated that financial development has taken place. 

Other aspects of financial development comprise increased trading, increased savings, 

effective utilisation of savings, and enhancements in diversification.  

Credit to the private sector (percentage of gross domestic product) is considered in extant 

studies as the most appropriate measures of financial development, unlike interest rate spread 

and ratio of broad money to gross domestic product (M2/ gross domestic product), because it 
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captures the core intermediating role of the financial sector, as channel between the surplus 

economic units (savers) and the deficit economic units (investors). Thus, private sector credit 

as a percentage of gross domestic product is considered a good indicator for ascertaining 

financial sector depth in any economy, as seen in De Gregorio and Guidotti, (1995); Beck, 

Levine, and Loayza, (2000); Tressel and Detragiache, (2008). From extant studies, like Ozturk 

and Acaravci, (2013), it is believed that an increase in credit to firms for investment in less 

innovative energy-using technology will enhance the level of emission and reduce level of 

environmental quality, and the converse holds.   

E. Fossil fuel Consumption (Energy consumption) (Percentage of total energy) 

Energy consumption/ energy use implies the basic use of energy prior to its transmission into 

other forms of fuels mainly those termed as end-use ones (Santamouris, 2018). This usage is 

the same as the in-house creation of energy and that procured through imports and changes in 

stock. However, in this energy use, the deduction is made of fuels that are exported or provided 

to ships and aircraft in global transportation. Kg of oil equivalent (kgoe) is the standardised 

unit of measurement of energy. This is an equivalent value as kgoe is the energy that is 

extracted from 1 kilogram of crude oil. Extant literature on similar study shows energy usage 

have positive and statistically significant effects on CO2 emissions, and these studies include 

Zhang and Cheng (2009); Apergis and Payne, (2010); Kohler, M. (2013); Farhani, et al.  

(2014), Kasman, and Duman, (2015); Sun, et al. (2020). 

F.   Gross Domestic Product Growth Rate (Percentage)    

Gross domestic product refers to the total monetary/market value of all finished commodities 

and services produced within a country’s borders at a point in time. It captures the overall 

domestic economic activities and production, and thus, effectively measures the economic 

scorecard of a given country. In economic literature, the gross domestic product is often 

employed as a measure of market size and often a lure for market-seeking investments to a 

particular economy and is computed annually as well as quarterly.  

In the meantime, and due to the paucity of data on actual employment level, as well as issues 

around the reliability and methodology of computing employment metrics in the sampled 

countries, this study employed gross domestic product growth rate as proxy for level of 

economic activities, as indicated in extant literature, like Kapsos (2005); Khan (2007); Seyfried 

(2011); ILO (2013). This is sequel to the axiom that, high employment translates to greater 

amount of goods produced, especially for labour intensive global countries, since creating jobs 



69 
 

helps the economy by increasing gross domestic product (Okun 1970), although the link might 

change over time due to rate of technical progress (Dokpe 2001). The sampled countries being 

particularly labour intensive in their production process, labour input would, therefore, closely 

mirror goods produced, measured by gross domestic product growth rate, and in line, ILO 

(2015) posited that, economic growth remains a prerequisite for increasing productive 

employment, as it sets the absolute maximum within which employment and labour 

productivity growth can take place. 

Simon Kuznets’ works, which culminated into the Environmental Kuznets Curve Hypothesis, 

holds that, carbon dioxide emissions will continue to increase with economic growth rate, 

reaches a turning point, before which carbon dioxide emissions level will begin to decline, on 

the back of increased demand for improved environmental quality. This is effectively displayed 

in the Kuznets’ inverted U-shaped relationship between carbon dioxide emissions and 

economic development, and the intuition is that carbon dioxide growth does not preclude 

having, in the long run, cleaner environmental quality, as documented in Ang (2007); Zhang 

and Cheng (2009); Adedoyin and Zakari, 2020; Sun, et al. (2020). Higher level of output would 

support greater economic activities and production, which would expectedly enhance level of 

carbon dioxide emissions, but pollution, could decline with increasing gross domestic product 

growth, if there is greater demand for improved environmental quality. Thus, gross domestic 

product growth can either enhance or reduce level of carbon emissions, in line with the inverted 

U-shaped curve of the EKC hypothesis. 

The identification and choice of all these variables are based on the research objectives as well 

as the review of the literature. The variables are present within the macro environment and 

beyond the control of the researcher. The changes within these variables are bound to influence 

the overall region and the industry therein. All the chosen variables are primarily situational 

variables as they are present within the environment. These variables are thus extraneous 

variables that bear an impact on the functioning of an industry thereby influencing economic 

development of a country (Peck and Devore, 2011). 

 
3.3.4   Estimation Techniques and Stability Test 
 

This section presents some estimation techniques employed for analysis in this study. 

Discussions covers the ARDL-bound cointegration test approach augmented dickey – fuller 

(ADF) unit root test, and CUSUM stability test. 
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3.3.5   Autoregressive Distributive Lag-Bound Cointegration Test Approach 
 

The autoregressive distributive lag -bound testing approach will be used to investigate long-

run cointegration among the variables in this study. The autoregressive distributive lag 

technique is superior to other techniques because it has certain econometric advantages, such 

as: (1) the method can be used regardless of whether the variables are integrated of order zero 

I(0), order one I(1), or a combination of both, as opposed to other techniques such as Johansen, 

which require the variables to be integrated of the same order; (2) this method accommodates 

a small sample size, as argued by Narayan (2005). Because of these characteristics, the 

autoregressive distributive lag test has lately become a popular method. 

 
The autoregressive distributive lag model to be used in this study is given by equation (3.3): 

D lnCO2 t =J0 + J1kD lnCO2t-k
+

k=1

p

å J 2kD ln FDIt-k +
k=1

q

å J3kD ln ENGt-k +
k=1

q

å J 4kD ln FDt-k +
k=1

q

å

J5kD ln INDt-k +
k=1

q

å J 6kD lnGDPgt-k
k=1

q

å +d11 lnCO2t-1
+d12 ln FDIt-1 +d13 ln ENGt-1 +d14 ln FDt-1

+d15 ln INDt-1 +e1t (3.3)

 

where: 1t are the residual, which is assumed to be normally distributed, Δ represents the first 

difference operator and  is the dynamics of error correction as  represents long-run 

relationships. Using F-test, cointegration relationship is examined among the variables where 

the null hypothesis that 0: 1615141312110 ====== H is tested against

0: 1615141312110  H . In deciding the cointegration among the variables, 

0H  is rejected if the F-statistic is greater than the upper bound. On the contrary, if F-statistic is 

less than the lower bound, 0H  cannot be rejected, while the result becomes inconclusive if the 

F-statistic is between the upper and the lower bounds. In this circumstance, we then consider 

adding or dropping some variables in the study.  

3.4    Stationarity Test 
 

Most macroeconomic time series data have trends and are in some cases non-stationary. A 

standard practice in econometric analysis using time series is ensuring stationarity in their 

mean/average value. The data to be used in empirical analysis must be stationarity to detrend 
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before the analysis. Thus, to estimate the relationship of carbon dioxide emissions with its 

determinants, including energy consumption, industrial performance, output growth, foreign 

direct investments, and financial development, the first task is testing for unit root presence. 

This aim is to ensure that analysis is only conducted using stationary time series data to avoid 

estimating spurious results, which remain not suitable for policy formulation and forecasting 

in panel data, even in country-specific analysis.  In this regard, there are procedures for 

detrending, and these include differencing and conducting time-trend regressions, which are 

commonly used to make the data stationary. 

To avoid spurious regressions, it becomes necessary to carry out a pre-testing for unit root 

before conducting co-integration analysis. The investigation of the presence of long-term 

relation between energy consumption, foreign direct investment, financial development, 

industrial performance, gross domestic product growth and carbon dioxide emissions in sub-

Saharan African countries, starts with the test for the existence of unit root test for time series 

of the variables. There are various standard tests in the literature, one of which is: Augmented 

Dickey – Fuller (ADF).  It is critical to define the order of integration of the variables before 

modeling time series data. There are various unit root tests available for testing the time series 

properties of the variables. This research proposes the use of the ADF unit root test. 

3.4.1   Augmented Dickey – Fuller (ADF) Unit Root Test 
 

ADF as introduced (1979) is computed as explained in the next lines. It is based on the t- 

statistic calculated from the OLS equation in equations 3.4 to 3.6. The test does not have an 

asymptotic standard normal distribution, according to Lutkepohl (2004). Simulation yields 

critical values, which differ when a constant or linear factor is included. According to 

Lutkepohl (2004), the test does not reflect an asymptotic standard normal distribution, the 

critical values are calculated by simulation, and they are different when a linear term or constant 

is included. As a result, if y = 0, the first difference data series is adjudicated to have a unit root 

or stationery, and if the coefficient of a difference adds to one, y = 0 and the series has a unit 

root. The test assumes that the mistakes are independent and that their variance is constant. In 

the tests, the errors are assumed to be independent and have a constant variance. If the null 

hypothesis is rejected in this scenario, it indicates that the time series under consideration is 

non-stationary. 

This study uses the ADF (1979) tests to check the stationary property of the variables. For this 

purpose, all the data series of carbon dioxide emissions, foreign direct investment, industrial 
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performance, financial development, and energy consumption will be examined using the ADF 

unit root test. 

The ADF consists of estimating the following: 

Δ Yt= β1 + β2t+ δYt-1 + ∑v
t-I αt Δ Yt-1 + εt        (3.4) 

Δ Yt= β1 + δYt-1 + ∑v
t-I αt Δ Yt-1 + εt         (3.5) 

Δ Yt= δYt-1 + ∑v
t-I αt Δ Yt-1 + εt        (3.6) 

where 	b1 represents the intercept, 
	
e

t
is the error term, and D  is the first difference operator. 

 
3.4.2    Determination of Lags 
 

Lagged values of the dependent variable and independent variables are included when applying 

regressions on time series data. The number of stars in lagged denotes the number of lags that 

should be utilised in the experiment. Aside from that, determining the lag length of vector 

autoregressive (VAR) models is an important part of the model design process (Ozcicek 

McMilin 1999). Furthermore, according to Ozcicek and McMilin (1999), lag length 

determination is critical because if the vector autoregressive used lag length in the estimation 

differs from a true lag length, the result with impulse functions and variance decompositions 

from the vector autoregressive is inconsistent. The Sequential Modified LR test statistic (LR), 

Final Prediction Error (FPE), Akaike Information Criterion (AIC), Schwarz Information 

Criterion (SIC), and Hannan-Quinn (HQ) information criterion were utilized in this study to 

estimate the lag length for analysis. The Akaike Information Criterion (AIC) and Schwarz's 

Bayesian Information Criterion (SBIC) are the most utilized criteria (SBIC). Below are 

explanations of AIC and SIC (Gujirati, 2003): 

 

AIC = 𝑒2𝑘/𝑛 ∑
�̂�2𝑖

𝑛  = 𝑒
2𝑘

𝑛
 𝑅𝑆𝑆/𝑛         (3.7) 

 

SIC = 𝑛2𝑘/𝑛 ∑
�̂�2𝑖

𝑛  = 𝑛
𝑘 

𝑛
𝑅𝑆𝑆/𝑛        (3.8) 

The number of regressors in this model is k, and the number of observations in this model is n. 

In AIC, 2k/n is a punishment factor, but in SIC, [k/n ln n] is a penalty factor. These two criteria, 

however, cannot be employed at the same time. The (AIC) rule states that the lower the AIC 

value, the better the model, which Gujarati also states (2003). After determining the number of 

lagged variables, a cointegration test can be used to determine their cointegration. 
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3.5     Descriptive Statistics 
 

Table 3.2 presents descriptive statistics of each variable series employed for Nigeria, Ghana, 

and South Africa, within the period 1980Q1 to 2017Q1. The average industrial performance, 

value-added as a percentage of GDP during the period under review was 31.99%, 30.00% and 

21.32% for South Africa, Nigeria, and Ghana, respectively. Average energy consumption 

effectively mirrored the industrial performance patterns of the studied countries, with South 

Africa using 0.96% of total fossil fuel energy consumption, followed by Nigeria, which 

consumed 0.55% of the total fossil fuels, while Ghana consumed the least 0.07% among the 

three (3) countries studied. In addition, average carbon dioxide (CO2) emissions were the 

highest in South Africa 8.92 per capita metric tons, followed by Nigeria 7.24 per capita metric 

tons and Ghana 0.61 per capita metric tons, and thus, effectively indicating a direct proportional 

relationship of carbon dioxide emissions with energy use and industrial performance in these 

countries.   

The average economic growth rate stood at 11.2% in South Africa, marking the highest among 

the three countries, followed by Nigeria with a gross domestic product growth rate of 9.21%, 

and Ghana, had the lowest economic growth rate of 9.15%, which maybe reflective of extant 

economic advancement levels and existing capacity for growth among the three countries. 

Meanwhile, Ghana attracted the highest average foreign direct investment of US$2.91 billion 

among the three countries during the period under review, with Nigeria and South Africa 

recording an average of US$1.52 billion and US$2.22 billion as foreign direct investment 

during the reviewed period.  

Table 3.2: Descriptive Statistics 

NIGERIA 

 

Carbon-
dioxide 

Emissions 
per capita 

(Metric 
tons) 

Financial 
Development (% 

of GDP) 

Foreign direct 
investment, net 

inflows (% 
GDP US$ 
Billion) 

Fossil fuel 
energy 
consumption 
(% of total 
energy) 

Gross 
Domestic 
Product 

Growth (%) 

Industrial 
performance, 

value added (% 
of GDP) 

 Mean  0.61  9.21  1.52  0.55  3.51  30.00 

 Median  0.61  8.14  1.26  0.53  4.10  29.85 

 Maximum  0.92  19.62  5.79  0.90  15.87  39.24 

 Minimum  0.32  4.95 -1.15  0.34 -11.55  18.17 

 Std. Dev.  0.17  3.48  1.33  0.13  5.81  5.29 
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GHANA 

 Mean  7.24  9.15  2.91  0.07  4.48  21.32 

 Median  0.31  10.22  1.70  0.05  4.69  23.72 

 Maximum  268  15.88  9.51  0.17  13.44  34.85 

 Minimum  -4.47  1.54  0.04  0.02 -7.14  6.24 

 Std. Dev.  43.56  5.30  2.34  0.04  3.69  6.77 

SOUTH AFRICA 

 Mean  8.92  112.39  2.22  0.96  2.33  31.92 

 Median  8.82  115.93  0.51  0.92  2.65  29.62 

 Maximum  9.97  160.12  5.98  1.35  6.53  45.27 

 Minimum  7.36  53.96 -0.766  0.64 -2.61  26.02 

 Std. Dev.  0.68  33.60  1.26  0.22  2.28  5.51 

Source: World Development Indicators &International Energy Agency 
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Figure 3. 2: Descriptive Statistic Chart for Nigeria 
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Figure 3. 3: Descriptive Statistic Chart for Ghana 
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Figure 3. 4: Descriptive Statistic Chart for South Africa 
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3.5.1 Trend Analysis of Data Employed 
 

This section presents the trend analysis of data used in the study to identify changes overtime, 

as well as allow for useful comparison on the performance of each data among countries studied 

by way of ascertaining any systemic connections in pattern of relationships. 

From figures 3.5, 3.6 and 3.7, Nigeria, South Africa, and Ghana, witnessed a rising carbon 

dioxide emission level (a measure of environmental quality) in the period under review from 

1980 to 2017, though the former recorded higher level of emission. The carbon dioxide 

emission in Nigeria were also clearly rising between 1980Q1 to 2017Q1, though exhibited 

marked cyclical/ seasonal trend. The trend of fossil fuel energy Consumption (% of total), a 

proxy for energy usage, exhibited a rising tendency over time in the three (3) countries studied, 

namely Ghana, Nigeria, and South Africa. This may closely explain the direct impact of fossil 

fuel consumption, as a highly significant contributor of carbon dioxide emissions/pollution in 

these countries. This could further explain the structure of economies of these countries, which 

tilts mainly towards the extractive industries, often with weak linkage effect to the rest of the 

economy. 

From figure 3.5, 3.6 and 3.7 only Ghana recorded growth, on average, in its industrial 

performance, measured by industrial performance (% of gross domestic product), for the period 

from 1980 to 2017, with both Nigeria and South Africa, witnessing noticeable decline 

throughout the same period. This could support government of Ghana strategy to leverage on 

developing the industrial sector to enhance inclusive growth and development. The growth 

trajectory in gross domestic product (%) for South Africa showed evidently volatile path in the 

studied period (1980 to 2017), and growth was broadly sideways, averaging 2.33% for the 

period. Ghana’s gross domestic product growth was relatively more stable overtime among the 

studied countries, averaging 4.43% over the period, while Nigeria gross domestic product 

growth also portrayed evidence of seasonality, though experienced average growth of 3.28% 

over the period from 1980 to 2017. 

The performance of foreign direct investment (net inflows) in the studied countries was 

noticeably low in the 1980s, up until the late 1990s. Foreign direct investment inflows picked 

up gradually in Nigeria from year 2000, growing steeply between 2004 to 2011, and declined 

markedly between 2011 and 2017. The trajectory of foreign direct investment inflow in Ghana 

only witnessed sharp growth in 2005 and   has remained relatively high for the rest of the 

periods. Domestic credit provided by the financial sector (% of gross domestic product) rose 
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both in Ghana and South Africa throughout the 1980 to 2017 periods, though South Africa data 

shows higher credit intermediated by the financial sector. Credit advanced by financial sector 

in Nigeria averaged 7.33% from 1980 to 2006, before rising steeply to about 19% and declining 

to 12.85% in 2017. 
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Figure 3. 5: Ghana trend analysis 

 

Nigeria 

Carbon dioxide emissions (per-capita)                       Domestic credit (% of GDP) 

-50

0

50

100

150

200

250

300

1980 2017

CO2

0

2

4

6

8

10

12

14

16

1980 2017

FD

 

      Foreign direct investment (% of GDP)                             Fossil fuel energy use (% of total) 

0

2

4

6

8

10

1980 2017

FDI

.02

.04

.06

.08

.10

.12

.14

.16

.18

1980 2017

FOS

 

         Gross domestic product (per-capita)                        Industrial value (% of GDP) 

-8

-4

0

4

8

12

16

1980 2017

GDPg

4

8

12

16

20

24

28

32

36

1980 2017

IP

 

Figure 3. 6: Nigeria trend analysis 
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South Africa 
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Figure 3. 7: South Africa trend analysis 

 
3.5.2 Unit Root Test 
 
The (ADF) unit root test results for the variables employed in this study for the three (3) 

countries, namely Nigeria, Ghana, and South Africa, are shown in Table 3.3. For Nigeria, 

Ghana, and South Africa, all the variables are stationary after first difference, that is, the 
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variables are integrated of order 1. In this regard, the null hypothesis of the presence of unit 

root for first differences of the series is rejected, that is, they are integrated of order 1. 

Table 3. 3: Unit Root Test (Augmented Dickey-Fuller) 

 Without Intercept 
and Trend 

 Intercept and Trend  

 Level First 
Difference 

 Level First 
Difference 

Remark 

NIGERIA       
Carbon-dioxide Emissions  
 

-0.71 -3.15**  -2.17 -3.27** 

  
  I(1) 

Credit provided by Financial Sector -0.61 -4.50***  -4.09** -4.38***   I(1) 
Foreign Direct Investment -1.65 -4.45***  -3.52** -4.46***   I(1) 
Petroleum & other Liquid Consumption  0.67 -2.80**  -2.56 -2.97   I(1) 
Gross Domestic Product Growth -2.36** -4.24***  -3.40* -4.61***   I(0) 
Industry Value Added -1.11 -3.20**  -2.61 -3.46**   I(1) 

GHANA       
Carbon-dioxide Emissions  
 

-1.30 -3.02***  -3.02 -3.43** 

  
  I(1) 

Credit provided by Financial Sector 0.72 -3.01***  -1.56 -3.52**   I(1) 
Foreign Direct Investment -1.11 -4.11***  -3.41* -4.10***   I(1) 
Petroleum & other Liquid Consumption 2.82 -2.31**  -1.09 -4.01***   I(1) 
Gross Domestic Product Growth -0.47 -5.62***  -4.71*** -6.04***   I(0) 
Industry Value Added 0.27 -3.79***  -3.29* -3.89**   I(1) 

SOUTH AFRICA       
Carbon-dioxide Emissions  
 

-0.63 -3.52**  -2.26 -3.51* 

  
  I(1) 

Credit provided by Financial Sector  0.98 -3.60***  -3.97* -2.28**   I(1) 
Foreign Direct Investment  -1.18 -3.32***  -2.28 -3.35***   I(1) 
Petroleum & other Liquid Consumption  0.78 -1.63*  -2.84 -1.84   I(1) 
Gross Domestic Product Growth -1.23 -3.97***  -2.47 -3.98**   I(1) 
Industry Value Added -2.54* -1.92*  -0.78 -4.52***   I(1) 
       

Notes: ***, ** and * signify significance at 1%, 5% and 10% level respectively.  

3.5.3 Autoregressive Distributive Lag (ARDL) Bounds Test for Cointegration 
 

Following the nature of unit root test results of the variables; this study employed the 

autoregressive distributive lag modeling framework to examine the cointegration relationships 

among the variables. The autoregressive distributive lag technique is particularly suited to 

investigate cointegration among variables, especially if they are either I(0), I(1) or mixture or 

both. The autoregressive distributive lag bounds test for cointegration is shown in Table 3.4. 

The null hypothesis of no cointegration is rejected for Nigeria, Ghana, and South Africa since 

the F-statistic is higher than I0 bound and I1 bound at 5%, thus depicting the presence of 

cointegration among the variables employed in these countries.  
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Table 3. 4:    ARDL Bounds Test 

Test Statistic Nigeria Ghana South Africa 
F-statistic 4.00 8.96 4.83 

 
Critical Value Bounds 

Significance I 0 Bound I 1 Bound 
10% 2.26 3.35 
5% 2.62 3.79 
1% 3.41 4.68 

 

3.6 Results and Discussion 
 

This section contains empirical analysis and discussion of results obtained from the 

autoregressive distributive lag (ARDL) modelling approach adopted in this study to estimate 

both the short-run dynamics and long-run relationship between a battery of macroeconomic 

energy- demand factors and carbon dioxide emission. There was evidence of a long run 

relationship in the three (3) largest economies of (SSA) countries, namely Ghana, Nigeria, and 

South Africa, among fossil fuel energy consumption/usage (FOS), foreign direct investment 

(FDI), financial development (FD), industrial performance (IND) and gross domestic product 

growth (GDPg) on environmental quality, measure by level of pollution (carbon dioxide (CO2) 

emissions).  The model to ascertain the determinants of carbon dioxide emissions uses quarterly 

time series data from 1980Q1 to 2017Q1. 

Tables 3.5 and 3.6 present the short-run and long run ARDL estimated model and analysis for 

Nigeria. In the short run estimate, the coefficient of the error correction term (ECT), which 

reveals the speed of convergence to long-run equilibrium in the case of shock to any of the 

variables in the system, carried the appropriate negative sign and was statistically significant 

at the 5% level. This suggests that any short run disequilibrium adjust by about 60% annually 

to their long run equilibrium values each year. This indicates a relatively quick pace of 

adjustments toward its long-run equilibrium in case of any short run misalignment in the 

Nigerian economy. 

Fossil fuel usage/consumption, proxy by petroleum and other liquid fuels, exerted a negative 

and significant impact on carbon dioxide emissions at the 10% significance level. The finding 

shows that, a percentage increase in fossil fuel usage will result in 0.01 per capita metric tons 
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reduction in carbon emissions in the country. The result aptly draws attention to the need for 

sustainable energy consumption, with attendant effects on improved environmental quality.  

The coefficient representing foreign direct investment was also found to be negative and 

significant at the 5% level of significance. The finding shows that, a percentage rise in foreign 

direct investment inflows leads to 0.02 per capita metric tons decline in carbon emissions in 

the short run. Thus, indicating increases in influx of foreign direct investment leads to fall in 

carbon dioxide emissions in Nigeria during the period under review, giving credence to the 

Pollution Halo Hypothesis, affirming that foreign direct investment inflows reduce emissions 

and improve the environmental quality in host economies. This finding supports conclusion 

found in studies like Shahbaz, et al. 2015, Jalil and Feridun, 2011, Hoffmann, et al. 2005.  

Additionally, the coefficient of financial development, proxy by credit provided by banks to 

the private sector, was found to have a negative and significant impact on carbon-dioxide 

emissions at the 10% level. The result indicates that, a percentage increase in private sector 

credit leads to 0.01 per capita metric tons decrease in carbon emissions in the short run. Thus, 

suggesting a rising adherence to the principles of sustainable financing in financial sector’s 

lending decisions by focusing on environment, social and governance issues towards achieving 

improved environmental sustainability.  

The coefficient of industrial production was found to have a significantly positive short-run 

impact on carbon-dioxide emission in Nigeria. The finding shows that, a percentage increase 

in industrial production results in 0.04 per capita metric tons rise in carbon emissions in the 

short run, suggesting that higher level of industrial production tends to negatively degrade the 

environment through resultant higher levels of carbon dioxide emissions.  

However, the coefficient of economic growth was not statistically significant at conventional 

tests levels in determining environmental damage, though negatively signed in the short-run 

and long run  ARDL model. This finding is in line with conclusions in studies conducted by 

Odugbesan and Rjoub (2020), Yahaya, et al.  (2020), Ahmad, et al. 2018, Soheila and Bahram 

(2017), Begum, et al. 2015.  

Meanwhile, the findings in the short-run ARDL Model was effectively robust to its long run 

ARDL estimates, in terms of sign of the parameter estimates, with the exception of the 

coefficient of industry performance value add, which was negative and significant in the long 

run ARDL model.  Only the coefficient of Gross Domestic Product Growth remained not 
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statistically significant at conventional test levels in both the estimated short run and long run 

ARDL models, with both negatively signed. 

Table 3. 5: Short Run Coefficients.  

Dependent Variable:𝚫𝐥𝐂𝟎 𝟐Emissions. ARDL (5, 0, 2, 0, 5) 

Nigeria 
Variables  Coefficient Standard Error t-statistic Prob. 
Credit provided by Financial Sector -0.01** 0.07 -1.88 0.06 
Foreign Direct Investment -0.02*** 0.05 -4.12 0.01 
Petroleum & other Liquid 
Consumption 

-0.02* 0.01 -1.68 0.09 

Gross Domestic Product Growth -0.03 0.02 -1.37 0.17 
Industry Value Added 0.04** 0.02 1.96 0.05 
ECTt-1 -0.06*** 0.01 -3.92 0.01 

Note: Δ is the first difference operator; ***, ** and * signify significance at 1%, 5% and 10% level, respectively. 
 
Table 3. 6: Long run coefficients Dependent Variable:  𝚫𝐥𝐂𝟎 𝟐Emissions. ARDL (5, 0, 2, 

5, 0) 

Nigeria 
Variables Coefficient Standard 

Error 
t-statistic Prob. 

Credit provided by Financial Sector -0.03*** 0.01 -2.03 0.04 
Foreign Direct Investment -0.10*** 0.03 -3.14 0.02 
Petroleum & other Liquid Consumption -0.06*** 0.29 -2.04 0.04 
Gross Domestic Product Growth -0.06 0.06 -1.37 0.17 
Industry Value Added -0.04*** 0.01 -3.68 0.03 
C 2.92*** 0.59 4.91 0.00 

Note: ***, ** and * signify significance at 1%, 5% and 10% level, respectively. 

To ensure the efficiency of the models it is important to apply the post estimation checking. 

Table 3.7 shows the diagnostic test of the ARDL model. 

 

Table 3.7:   Diagnostic Checking 

Country Nigeria 

 F-stat Prob. 

Autocorrelation 5.89 0.20 
Heteroskedasticity 1.09 0.36 
Normality 1.72 0.10 
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Table 3.8 and 3.9 present the short-run and long run ARDL estimated model and analysis for 

Ghana. The ECM term, which indicates the adjustment time before long-run relationship can 

be achieved between the dependent and explanatory variables, carried the appropriate negative 

sign and was statistically significant at the 1% level. Precisely, the ECM coefficient shows that 

67% of the disequilibrium errors in the short run are corrected annually, suggesting a relatively 

quick pace of adjustment to the long run equilibrium. 

All the coefficients in the short-run ARDL model were positive and significant, namely credit 

provided by the financial sector, foreign direct investment, fossil fuel consumption/usage, and 

economic output, except the coefficient representing growth in Industry Value Added, which 

was negative and statistically significant.  

The coefficient representing financial development, measured by credit provided by financial 

sector to the private sector, was found to have a positive and significant at the 5% significance 

level, suggesting that, a percentage increase in credit advanced to the private sector results in 

0.27 per capita metric tons rise in carbon emissions in the short run. Meanwhile in the long-run 

ARDL model, the coefficient was negative and significant, suggesting that in the long run, 

increases in credit channeled to the private sector (deficit economic units) of the economy, 

reduces the level of carbon dioxide emission/pollution in Ghana. 

 
The coefficients representing foreign direct investment was positive, but not significant in the 

short-run ARDL model, suggesting that, a percentage increase in foreign direct investment 

leads to 0.02 per capita metric tons increase in carbon-dioxide emissions. FDI coefficient was, 

however, negative, and significant at the 5% level in the long run ARDL model, suggesting 

that, a percentage increase in FDI results in 0.10 per capita metric tons decrease in spate of 

environmental damage in the long run.   

 
Fossil fuel usage/consumption coefficient, proxy by petroleum and other liquid fuels, was 

positive and statistically significant at the 5% level in the short run ARDL estimation, 

suggesting that, a percentage rise in fossil energy usage will result in 7.16 per capita metric 

tons increase in carbon emissions in the country, confirming its harmful effects on the 

environment. In the long run, the fossil energy usage coefficient was negative and significant 

at the 5% level, perhaps, showing increasing efforts at creating innovative ways of using fossil 

fuel in a sustainable way that preserves the environment. 
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The coefficient of industrial production was found to have a significantly negative impact on 

carbon-dioxide emission in both the short-run and long run. The finding suggests that a 

percentage increase in industrial production results in 0.56 per capita metric tons and 0.04 per 

capita metric tons decrease in carbon emissions in the short run and long run, respectively. This 

suggests that higher level of industrial production tends to negatively degrade the environment 

through resultant lower levels of carbon dioxide emissions. Findings confirmed conclusion in 

studies by Chibueze, et al. 2013, and Shafei and Rahul (2013).  This situation is associated with 

the recent sustainable development policies initiatives in Ghana. Therefore, policymakers 

should continue emphasizing on environmental quality measures to pursue sustainable 

development. The outcome is similar with the result of findings reported by Ahmad, et al. 

(2018), Riti, et al. (2017), Chibueze, et al. 2013, and Shafei and Rahul (2013). 

Table 3. 8:  Short Run Coefficients. Dependent Variable: 𝚫𝐥𝐂𝟎 𝟐Emissions. ARDL (10, 
4, 0, 2, 4, 1) 

Ghana 
Variables  Coefficient Standard Error t-statistic Prob. 
Credit provided by Financial Sector  0.27 0.11  1.88 0.01 
Foreign Direct Investment  0.02 0.02  1.23 0.21 
Petroleum & other Liquid 
Consumption 

7.16** 3.42  2.09 0.03 

Gross Domestic Product Growth  0.16** 0.05  3.03 0.03 
Industry Value Added -0.56* 0.04 -3.22 0.01 
ECTt-1 -0.67* 1.27 -5.32 0.00 

Note: Δ is the first difference operator; ***, ** and * signify significance at 1%, 5% and 10% level, respectively. 
 

Table 3. 9: Long Run Coefficient. Dependent Variable:  𝚫𝐥𝐂𝟎 𝟐Emissions. ARDL (10, 4, 
0, 2, 4, 1) 

Ghana 
Variables Coefficient Standard 

Error 
t-statistic Prob. 

Credit provided by Financial Sector -0.03***    0.01 -2.03 0.04 
Foreign Direct Investment -0.10***    0.03 -3.14 0.02 
Petroleum & other Liquid Consumption -0.06***    0.29 -2.04 0.04 
Gross Domestic Product Growth -0.06    0.06 -1.37 0.17 
Industry Value Added -0.04***    0.01 -3.68 0.03 
C  2.92***    0.59  4.91 0.00 

Note: ***, ** and * signify significance at 1%, 5% and 10% level, respectively. 

To ensure the efficiency of the models it is important to apply the post estimation checking. 

Table 3.10 shows the diagnostic test of the ARDL model. 
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Table 3. 10: Diagnostic Checking 

 
Country Ghana 

 F-stat Prob. 

Autocorrelation 0.91 0.40 
Heteroskedasticity 1.66 0.33 
Normality 1.33 0.10 

 

 

Table 3.11 and 3.12 present the short-run and long run ARDL estimated model for South 

Africa. The error correction term (ECT) coefficient is negative, as prescribed in economic 

theory, and was also statistically significant at the 5% level of significance. Precisely, the ECM 

coefficient shows that 70% of the disequilibrium errors in the short run are corrected annually, 

suggesting a relatively fast adjustment dynamics to its long run path.  

The coefficient of credit provided by financial sector to the private sector of the economy, a 

measure of financial development, was positive and significant at the 10% level in explaining 

dynamics in carbon dioxide emissions in South Africa. The result suggests that in the short run, 

a percentage rise in private sector credit will lead to a marginal 0.01 per capita metric tons 

decrease in the level of carbon emission. Meanwhile, the coefficient of private sector credit 

was positive and significant at 5% level, suggesting that, a percentage rise in private sector 

credit by banks will increase carbon emission by 0.06 per capita metric tons in the long run 

ARDL model. 

The coefficient of foreign direct investment was found to have a significantly positive impact 

on carbon dioxide emissions, suggesting that, a percentage rise in foreign direct investment 

will result in 0.01 per capita metric tons and 0.40 per capita metric tons increase in carbon 

emissions, respectively, in the short run and long run in South Africa.  

The coefficient of energy consumption/usage variable was negative, and highly significant at 

the 1% level in the short-run ARDL model but was observed in the long run to have no 

statistically significant effects on carbon dioxide emissions at conventional significance test 

levels in South Africa. This could show increasing efforts at creating innovative ways of using 

fossil fuels in a sustainable way that preserves the environment.  
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The coefficient of gross domestic product growth is positive and significant in both the short-

run ARDL and long run ARDL equations, though was not significant in the short run model. 

The result suggests that a percentage increase in GDP growth will lead to 0.29 per capita metric 

tons rise in carbon emission. The positive relationship between gross domestic product growth 

and carbon dioxide emissions aptly depicts the tenets of the Environmental Kuznets Curve 

Hypothesis that pollution increases at the early stages of a country’s development. 

The coefficient of industrial production showed mixed results, while it was negative and 

significant at the 5% level in the short run ARDL model, it was positive and highly significant 

at the 1% level in the long run ARDL model. The results suggest that, a percentage increase in 

industry value added production will lead to 0.11 per capita metric tons decrease in 

environmental degradation in the short run, and a 0.48 per capita metric tons increase in carbon 

emissions in the long run, suggesting industrial production is associated with environmental 

degradation and its crucial role in propagating and ameliorating environmental damage in a 

globalised world.   

Therefore, policymakers should promote all possible measures on these factors to mitigate 

carbon dioxide emissions for better environmental quality. The results of this findings are 

similar with the findings of Ahmad, et al. 2018, Salahudin, et al. 2018, and Shabaz, et al. 2015.  

Table 3.11: ARDL Short-Run Model Estimates (South Africa) Short Run Coefficients. 

Dependent Variable: 𝚫𝐥𝐂𝟎 𝟐Emissions. ARDL (6, 2, 9, 2, 4, 1) South Africa 

South Africa 
Variables  Coefficient Standard Error t-statistic Prob. 
Credit provided by Financial Sector -0.01** 0.06 -1.82 0.07 
Foreign Direct Investment  0.01** 0.06  2.04 0.04 
Petroleum & other Liquid 
Consumption 

-4.08* 0.94 -4.33 0.00 

Gross Domestic Product Growth  0.03 0.09  0.39 0.69 
Industry Value Added -0.11** 0.05 -2.17 0.03 
ECTt-1 -0.07* 0.01 -4.08 0.01 

Note: Δ is the first difference operator; ***, ** and * signify significance at 1%, 5% and 10% level, respectively 
 

Table 3.12: Long Run Coefficient. Dependent Variable:  𝚫𝐥𝐂𝟎 𝟐Emissions. ARDL (6, 2, 
9, 2, 4, 1) 

South Africa 
Variables Coefficient Standard 

Error 
t-statistic Prob. 

Credit provided by Financial Sector  0.06***    0.02  2.39 0.04 
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Foreign Direct Investment  0.40***    0.20  2.00 0.04 
Petroleum & other Liquid Consumption  0.07    1.39  0.05 0.95 
Gross Domestic Product Growth  0.29*    0.07  3.72 0.00 
Industry Value Added  0.48*    0.10  4.72 0.00 
C -1.45**    5.04 -2.88 0.04 

Note: ***, ** and * signify significance at 1%, 5% and 10% level, respectively. 

Table 3.13:   Diagnostic Checking 

To ensure the efficiency of the models it is important to apply the post estimation checking. 

Table 3.13 shows the diagnostic test of the ARDL model. 

Country South Africa 

 F-stat Prob. 

Autocorrelation 1.51 0.16 
Heteroskedasticity 2.42 0.39 
Normality 9.29 0.21 

 

3.6.1   Stability Analysis of Regression Relationships: CUSUM 
 

The study examined the stability of the parameters using the plots of the cumulative sum of the 

residuals (CUSUM), following procedure developed by Brown, Durbin, and Evans, (1975). 

Essentially, the presence of instability in regression relationships is established if the CUSUM 

of residuals go outside the bands represented by the two critical (dotted) lines at the 5 per cent 

level, as evident in figures 3.8 to 3.9, and 3.10. The CUSUM test is appropriate and suitable 

for detecting systematic changes in the regression coefficients, and according to the plots, the 

CUSUM remained inside the 5% critical lines throughout the study period. This implied that 

the model is stable, and consequently, the conclusion is reasonably reliable for policy making 

and formulation. 
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Figure 3. 8: Stability Test Using Cumulative Sum of Residuals (CUSUM): Nigeria 

 

 
Figure 3. 9: Stability Test Using Cumulative Sum of the Residuals (CUSUM): Ghana 

 

 

Figure 3. 10: Stability Test Using Cumulative Sum of Residuals (CUSUM): South Africa 
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3.7 Conclusion 

This chapter explored the empirical evidence on the impact of fossil fuel energy 

consumption/usage (FOS), foreign direct investment (FDI), financial development (FD), 

industrial performance (IND) and gross domestic product growth (GDPg) on environmental 

quality, measure by level of pollution (carbon dioxide (C02) emissions). The model to ascertain 

the determinants of carbon dioxide emissions uses quarterly time series data from 1980Q1 to 

2017Q1 for the three (3) largest economies of (SSA) countries, namely Ghana, Nigeria, and 

South Africa. The ADF unit root test was employed to conduct the stationarity status of the 

variables employed in this study. The results show presence of both I(1) variables for Nigeria, 

Ghana, and South Africa as all the variables were stationary only after first difference, that is, 

were I(1).  

Autoregressive distributed lag (ARDL) test for cointegration was adopted, being well-suited 

especially if included variables are either I(0), I(1) or mixture or both, to examine the 

cointegrating relationships among the variables. For Nigeria, Ghana, and South Africa the test 

results show existence of a long-run relationship among the variables, suggesting the need to 

estimate an ECM to ascertain the speed level of adjustments between the short-run dynamic 

changes with the long-run steady state equilibrium.  
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CHAPTER FOUR 

NEXUS BETWEEN ENERGY USE AND CARBON DIOXIDE 

EMISSIONS 

4.1    Introduction 

 
Climate change is the greatest concern being deliberated by the United Nations, and, relatedly, 

is global warming that is being caused by the accumulation of greenhouse gas emissions and 

mainly carbon dioxide (Boontome, et al. 2017). Global emissions are at all-time highs, with no 

signs of slowing down. The five hottest years on record occurred between 2015 and 2019, 

Arctic winter temperatures have risen by 3 degrees Celsius since 1990, with sea levels rising, 

coral reefs dying, and we are beginning to see the life-threatening effects of climate change on 

health, including air pollution, heat waves, and food security threats (Guterres, 2019). Both 

developed and developing countries contribute to carbon-dioxide emissions in the atmosphere. 

Developed countries emit carbon dioxide in the form of industrial pollution, vehicular 

emissions, and energy usage. Developing countries also contribute to emissions by consuming 

energy, which is very essential for better living standards and sustainable economic 

development (Yildirim and Aslan, 2012). 

Liberty, et al. (2013) that to sustain life, it is very essential to use natural resources, highlighted 

it. Humans to sustain and support the economic and developmental activities of humans are 

exploiting natural resources, both renewable and non-renewable. Energy is being utilised by 

people to carry out their daily activities and economic activities as well. Energy plays a pivotal 

role in the modern economy. All the goods and services that we enjoy today are the result of 

energy use. Energy therefore plays a major role in raising the living standards of people. It is 

not possible to run or build cities or factories that offer jobs, goods, and homes, and neither is 

it possible to enjoy modern amenities and technology without power, heat, and light. Therefore, 

energy is considered as oxygen for any economy (Kulionis, 2013).  The Sun is the main energy 

source to support life on Earth. Animals and plants store this energy, and it remains stored in 

them even after they have died. The energy stored in dead animals and plants over many years 

is converted to fossil fuels. One of the main side effects of burning fossil fuels as an energy 

source is that burning releases greenhouse gases, carbon dioxide being one of these (Sasana 

and Putri, 2018). 
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The quality of the environment has been deteriorating due to the increased human consumption 

of energy (Sasana and Putri, 2018). Increasing pollutants or emissions caused by energy 

exploration are used to measure the deteriorated quality of air. Pollutants and carbon dioxide 

emissions have an adverse effect on the environment in the long run. Although there are several 

challenges associated with energy sources, in this research project, the focus is on the main 

challenge of the use of fossil fuels and relatedly, the emission of carbon dioxide that will 

impacts the environment and has been a significant hurdle to sustainable development. It has 

been a topic of scientific discussion for a long time, whether fossil fuels have a major role in 

climate change or not. As is widely known nowadays, the main contributor to climate change 

is the increase of environmental greenhouse gases, of which carbon dioxide is considered the 

greatest contributor. Carbon dioxide is also the main gas released during fossil fuel combustion 

(Kulionis, 2013). 

The level of carbon dioxide in the environment is also used as an indicator of air pollution. As 

per the US Energy Information Administration (2017), carbon dioxide, which is the one of the 

main greenhouse gases, has been increasing in the atmosphere due to the human lifestyle. 

Ruijven, et al. (2016) believe that the air’s carbon-dioxide content has become the indicator of 

pollution because of its emission in most of the processes in chemical industries, mining 

industries, and other industries. For instance, almost 0.5 kg of carbon dioxide is released in the 

environment for producing a kg of cement in the cement industry. This is the major reason for 

carbon dioxide being considered the major indicator in all sectors for measuring air quality 

(Sasana and Putri, 2018). 

Thus, it can be assumed that energy consumption and pollution are interlinked. Few studies 

have been done by researchers on the topic of the relationship between energy consumption, 

economic growth, environmental pollution, and carbon-dioxide emissions. It has been found 

that the need for energy security, depleting sources of fossil fuel energy resources, greenhouse 

gas accumulations, and related environmental issues have led to the need to look for alternate 

sources of energy that can replace traditional energy sources (Boontome, et al. 2017). It has 

been stated by many researchers that to combat climatic changes drastic measures need to be 

taken before it is too late (Apergis, et al. 2010).  Consequently, initialised countries must endure 

a major part of the task of minimizing GHG releases because of their past responsibilities for 

climate change. However, even massive reductions in the emissions levels of these 

industrialised countries would not be adequate to meet these targets. Therefore, the emission 

levels in the sub – Saharan African region may have a nominal rise in the short term to boost 
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growth, but in the long term, it needs to go below the current levels (Richards Tyldesley, 2011; 

King, 2012). This atmospheric limitation conflicts with the growth trend witnessing the rapid 

growth of GHG emissions in the region owing to increased fossil fuel extraction and use, 

population growth, deforestation, and rise in cattle production (International Energy Agency, 

2014; Food and Agriculture Organisation, 2015). 

Since industrialisation in the sub-Saharan African region is still limited, most of the emissions 

are not because of fossil fuels but are rather due to land-use changes and agriculture. However, 

the estimated growth of population and economy suggests that GHG emissions in the sub–

Saharan African region will rise rapidly owing to increased extraction and consumption of 

fossil fuel, deforestation, and cattle production expansion (Energy information Agency, 2014; 

Food and Agriculture Organization, 2015). This issue of energy consumption and rise in 

carbon-dioxide emissions has become a policy issue especially for developing countries such 

as those in the sub-Saharan African region. 

Therefore, this chapter analyses the dynamics and transmission nexus between energy 

consumption factors and environmental quality metrics, measured by carbon dioxide emissions 

in three (3) largest economies of sub-Saharan African countries, namely Ghana, Nigeria, and 

South Africa. This chapter evaluates the fossil fuel energy use and carbon dioxide emissions 

nexus, focusing on variance decomposition and impulse response analysis. Accordingly, 

section 4.1 provides a brief introduction on the focus of the chapter; section 4.2 provides a brief 

literature review on the topic under study; and 4.3 highlights the research methodology, which 

dwells on the variance decomposition method and the impulse response method. In addition, 

section 4.4 highlights the results and discussions of analysis; and section 4.5 provides the 

concluding remarks of the chapter. 

 
4.2    Literature Review  
 

This section provides a brief literature review on the topic under study in this chapter. To 

achieve this, this section is divided into two main parts: 

4.2.1   Literature Review on the Nexus between Energy Consumption and Carbon Dioxide 
Emissions 

 

In recent times, the increase in carbon dioxide emissions has been linked with the increase in 

energy consumption by the significant amount of research that has been carried out on the 

topic. Sasana and Putri (2018) analysed the impact of fossil fuel energy consumption, the 

consumption of renewable energy, and population growth on carbon-dioxide emissions in 
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Indonesia. They used the Ordinary Least Square approach along with multiple linear regression 

analysis on time series data for the period of 1990 to 2004. It was concluded in the study that 

population growth and fossil fuel energy consumption have a positive impact on the carbon-

dioxide releases in the region. 

 
Thao and Chon (2016) also find a positive impact of energy consumption on the environment. 

They went further in stressing that carbon dioxide emissions are not only due to fossil fuel 

consumption but also due to the extraction process of fossil fuels. It was also found in the same 

study that a negative association exists between energy consumption and carbon-dioxide 

emissions. Li, et al. (2010) in their study of 28 provinces in China used panel data to find that 

economic growth and energy consumption in the long run influence carbon-dioxide emanation, 

however, long-term economic growth and carbon-dioxide emissions have an impact on energy 

consumption. Moreover, Ito (2017) find a negative influence of fossil energy consumption on 

economic growth of developing countries, and it was concluded that economic growth was 

positively impacted by energy consumption. The burning of fossil fuels is harmful to the 

environment; they cause excessive amounts of pollution. Renewable energy sources on the 

other hand do not damage the environment and thus can be termed as environment friendly 

(Ito, 2017). 

 
 

Shafei and Ruhul (2013) in their study of Organisation for Economic Co-operation and 

Development (OECD) countries test the concept of Kuznets curve hypothesis about the 

relationship between carbon-dioxide emissions and urbanisation and find that fossil fuel energy 

has a positive association with carbon-dioxide emissions, suggesting that an increase in fossil 

fuel consumption leads to increase in carbon-dioxide emission. It was also concluded in the 

study that negative association exists between renewable energy consumption and carbon-

dioxide emissions, which indicates that there will be a reduction in carbon-dioxide emissions 

with increased consumption of renewable energy. 

 
Fathinah and Djoni (2016) assert that for ASEAN countries significant and negative association 

exists between the quantity of renewable energy consumption and carbon-dioxide emission. 

Bilgili, et al. (2016) reported similar results in their study where it was found that the 

consumption of renewable energy has a significant and negative influence on the carbon 

dioxide released into the environment. The results of the study suggested that renewable energy 

consumption could be instrumental in reducing the level of carbon dioxide emissions. It was 
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concluded in the study that by increasing renewable energy consumption, the reliance on fossil 

fuel energy could be minimized and thus, carbon-dioxide releases can be reduced. 

 
Paramati, et al. (2017) discovered in their study of G20 countries that renewable energy 

consumption cuts carbon-dioxide releases, which increases the economic output of the 

countries. In a related study by Zoundi (2017), it was averred that the consumption of 

renewable energy has a significant and negative impact on carbon-dioxide emissions, and it 

was established that renewable energy is more environment friendly than fossil fuels. It is 

expected that in the long-run fossil energy will be replaced by renewable energy due to 

environmental concerns (Zoundi, 2017). Liu, et al. (2017) in their study of four ASEAN 

countries (namely Thailand, Philippines, Indonesia, and Malaysia) found similar results that 

consumption of renewable energy has a negative influence on carbon-dioxide emissions. The 

estimation results pointed out that carbon dioxide emissions could be reduced by increasing 

the consumption of renewable energy. The study suggested the efficient utilisation of 

renewable energy towards attaining a healthier and cleaner environment. 

 
Bulut (2017) finds a positive effect of fossil fuel energy sources on carbon-dioxide emission in 

Turkey for the period 1970 to 2013. Shafiei and Ruhul (2013) pronounced the same results in 

their study of OECD countries, for the period 1980 to 2011, where that consumption of fossil 

energy resulted in an escalation in carbon-dioxide emission. Dogan and Fahri (2016) in their 

study of European countries also find a direct relationship between fossil fuel energy 

consumption and an increase in carbon-dioxide emissions. They concluded that there exists a 

causal indirect relationship between carbon-dioxide emissions and non-renewable energy 

consumption. 

 
Danish, et al. (2017), reveal that fossil fuel energy consumption has a positive effect on carbon-

dioxide releases. It was further concluded in the study that the main cause of carbon-dioxide 

emission in Pakistan was the consumption of fossil energy and people's health and environment 

face danger due to the release of carbon dioxide during the combustion of fossil fuels. Zheng-

Xin and De-Jun (2017) provided evidence for a direct relationship between fossil energy and 

carbon dioxide emissions. In another study (Chibueze, et al. 2013) in Nigeria for the period of 

1971 to 2009, it was concluded that in the long term and short term, the consumption of fossil 

fuels has a significant and positive impact on the carbon dioxide released in the environment. 
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4.2.2    Energy Consumption in the Sub-Saharan African Region 
 
 

Energy usage is the major cause of harmful discharges in the sub-Saharan African region. 

Therefore, numerous opportunities for reducing emissions arising from energy include actions 

in other sectors either for adopting more energy-efficient practices and technologies or for 

switching to fuel sources with lower emissions. 

 
4.2.3    Biomass Energy 
 

The burning of solid biomass is the prominent source of energy in sub Saharan Africa, 

generating almost 80% of the energy consumed in this region, with the main consumption being 

household cooking. Almost 80% of households in the sub-Saharan African region do not have 

modern cooking facilities and are dependent upon charcoal or wood fuel for cooking (Energy 

Information Agency, 2014). While in rural areas, the use of fuel wood is more prevalent as it 

is available free, the urban areas use charcoal for cooking as its energy content per kilogram is 

higher and it is more suitable for transportation from the rural areas. Furthermore, biomass is 

the biggest energy source for industries that use it to produce process heat (Energy Information 

Agency, 2014). Relatedly, charcoal and fuel wood industries are generating significant 

employment opportunities for charcoal and wood producers, vendors, and transporters. For 

example, In Rwanda, the charcoal markets and fuel wood transaction values were $122 million 

in 2007, which was 5 per cent of the output, and approximately 50% of these revenues remained 

in the rural region (Energy Information Agency, 2014). 
 

 
The sale of forest products including charcoal in Zambia contributes 30-32% to household 

income in rural regions (Gumbo, et al. 2013). The marketplace worth of the charcoal market of 

the Sub-Saharan African region in 2012 was $11 billion (Energy Information Agency, 2014). 

However, even after being such a significant source of employment and income generation, a 

major part of charcoal production and consumption is carried out in the informal economy. 

According to data from the World Bank (2009), over 80% of the manufacture and sale of 

charcoal in Tanzania is in the informal economy. 

 
As per the report from “United Nations Environment Programme (UNEP) and International 

Criminal Police Organisation” (INTERPOL) (2014), the lack of regulation in the charcoal 

industry has made it into a profitable foundation of generating revenue for the local 
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paramilitaries and is an unexploited prospect for the regime to earn profits. It is projected that 

African governments lose approximately US$1.9 billion of potential revenue yearly due to a 

lack of regulation in the charcoal industry. In addition, the use of charcoal and fuel wood in 

traditional cooking practices poses a major health hazard, more so in deprived houses. 

 
According to The World Health Organisation (2014), there are around 600 thousand premature 

deaths in Africa every year due to indoor air pollution. Interior air contamination was ranked 

the second largest hazard cause in the East, West, and Central Africa causing the disease burden 

(calculated in disability-adjusted life years) among children just after the risk of low body 

weight due to malnutrition (Lim, et al. 2012). Generally, African women are more prone to this 

indoor air pollution than men are as they spend more time near the stoves. 

 
4.2.4 Biomass Energy and Carbon Dioxide Emissions 
 

 

As per data from the International Energy Agency (2014), the total fuel wood consumption in 

sub-Saharan Africa, including fuel wood used for charcoal consumption and direct 

consumption by households was 658 million tons in 2012, which was 0.5% of the overall 

accessible biomass store of 130 gigatons. However, the estimation of the overall carbon dioxide 

emission level produced due to biomass burning is very difficult. Since biomass is a renewable 

energy form, if it is consumed and harvested in a sustainable manner, it will create a nil or even 

negative impact on GHG emissions. Nevertheless, due to the unsustainable rate of harvesting 

and consumption of biomass, it can lead to climate change because of deforestation. The 

present rate of consumption is already causing the depletion of biomass stores in several 

regions. Further, even deforestation causes limited conservational effects such as reduced 

watershed maintenance and soil erosion (Chidumayo and Gumbo, 2013). 

 
As per the Food and Agriculture Organisation (FAO) (2010), the collection of fuel woods is 

responsible for over 75% of woodcutting from the African forest region. Nonetheless, the 

degree of deforestation caused due to fuel wood collection is a highly debated subject matter. 

In general, the fuel wood collected and consumed by rural people for their household 

consumption is mostly from dead trees while the wood, which is converted into charcoal to be 

used for industrial and urban household consumption, is from floored plants (Practical Action, 

2014). Hence, although the unsustainable assortment of fuel wood contributes to forestry 

dilapidation, charcoal business causes both deforestation and jungle depletion. When there is 
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charcoal production from the felled trees, subsequent deforestation often happens there for 

timber production or for agriculture. 

 
For instance, Chidumayo, et al. (2001) investigated charcoal production in Zambia and 

discovered that most of the forest harvested for charcoal production was thereafter converted 

into agricultural land and settlement. Even though it is difficult to determine the major forces 

responsible for deforestation, it is estimated that charcoal production has resulted in 14% of 

the overall deforestation in the sub-Saharan African region in 2009 (Chidumayo and Gumbo, 

2013). However, this phenomenon had a huge variation in sub-Saharan African countries 

wherein Zimbabwe it was merely 0.33% and Tanzania where charcoal production caused 

33.16% of the total deforestation. The countries with the highest level of forest loss due to 

charcoal production include Tanzania, Nigeria, Zambia, and DR Congo. During the production 

of charcoal, the earth-mound kilns create an oxygen-poor environment, which causes the partial 

combustion of fuelwood and leads to the generation of methane. Consequently, charcoal 

production causes emissions that have a greater potential of global warming as compared to 

emissions created from the burning of fuelwood or charcoal (Kammen Lew, 2005). 

 
In 2009, the sub-Saharan African region produced 67.23 Mt carbon dioxide emissions from the 

charcoal production process, and out of this, about 30% was caused by methane (Chidumayo 

Gumbo, 2013). While some of the carbon dioxide emitted during the manufacturing process of 

charcoal can be mitigated with forest regeneration, methane emissions cannot be undone 

(Chidumayo and Gumbo, 2013). As per the Energy Information Agency's new policies scenario 

projection, the overall consumption of biomass is expected to reach 1031 million tons by 2040. 

In addition, by 2040, the urban population of the sub-Saharan African region is projected to 

rise to 560 million people that will lead to the demand for charcoal surpassing the demand for 

fuel wood. This creates concerns regarding the likelihood of future biomass to cause further 

deforestation. 

 
The graphical depiction of trade across diverse areas in Africa in the new policies scenario 

based on coal, oil, gas, and bioenergy between 2012 and 2040, as well as total installed capacity 

and key indicators for sub Saharan Africa power pools can be perused at figure 4.1 and table 

4.1, respectively.   
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Figure 4. 1: Trade across Diverse Areas in Africa in the New Policies Scenario based on 
Coal, Oil, Gas and Bioenergy between 2012 and 2040 

Source: Data from the International Energy Agency, 2014, pp. 197-222. 
 

Table 4. 1: Total Installed Capacity and Key Indicators for SSA Power Pools 

Power Pool CAPP EAPP WAPP SAPP 

 2009 2008 2010 2010 
Installed capacity 
(GW) 6.07 28.37 14.09 49.88 
Hydropower share 86% 24% 30% 17% 
Fossil fuel share 14% 73% 70% 83% 
kW/1000 habitants 49 74 54 311 

Source: EIA (2014) 

 
4.3.     Research Methodology 
 

This section covers second objective of this study.  Objective 2 aims to analyse the dynamics 

and transmission channels of the energy consumption – carbon dioxide emission nexus in select 

largest economies of sub-Saharan African countries. Variance decomposition method and 

impulse response analysis are used for this purpose and the details of model specification for 

this objective and the estimation techniques used are discussed in the following section. 
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4.3.1    Vector Autoregressive Model (VAR) 
 

The vector Auto regression (VAR) model is one of the most successful, flexible, and easy to 

use models for the analysis of multivariate time series. It is a natural extension of the univariate 

autoregressive model to dynamic multivariate time series. The VAR model has proven to be 

especially useful for describing the dynamic behavior of economic, environmental, and 

financial time series and for forecasting. It often provides superior forecasts to those from 

univariate time series models and elaborate theory-based simultaneous equations models. 

Forecasts from VAR models are quite flexible because they can be made conditional on the 

potential future paths of specified variables in the model. In addition to data description and 

forecasting, the VAR model is also used for structural inference and policy analysis. In 

structural analysis, certain assumptions about the causal structure of the data under 

investigation are imposed, and the resulting causal impacts of unexpected shocks or 

innovations to specified variables on the variables in the model are summarised. These causal 

impacts are usually summarised with impulse response functions and forecast error variance 

decompositions. This focuses on the analysis of covariance stationary multivariate time series 

using VAR models. The other segment describes the analysis of nonstationary multivariate 

time series using VAR models that incorporate cointegration relationships. 

 

4.3.2:    Specification of Vector Autoregression (VAR) Model 

Let 𝑌𝑡 = (𝑦1𝑡 −  𝑦2𝑡 − − − 𝑦𝜋𝑡) 0 denote an (n×1) vector of time series variables. The basic 

p-lag vector autoregressive (VAR (p)) model has the form 𝑌𝑡 = 𝑐 +  𝜋1𝑦𝑡 − 1 +  𝜋2𝑦𝑡 − 2 +

⋯ . + 𝜋𝑝𝑦𝑡 − 𝑝 + 𝑒𝑡 = 1 … . 𝑇 -1  

Where 𝜋𝑖 are (n× n) coefficient matrices and εt is an (n × 1) unobservable zero mean white 

noise vector process (serially uncorrelated or independent) with time invariant covariance 

matrix Σ. Hence, the VAR (p) model is just a seemingly unrelated regression (SUR) model 

with lagged variables and deterministic terms as common regressors. 

The basic VAR (p) model may be too restrictive to represent sufficiently the main 

characteristics of the data. Other deterministic terms such as a linear time trend or seasonal 

dummy variables may be required to represent the data properly. Additionally, stochastic 

exogenous variables may be required as well. The general form of the VAR (p) model with 

deterministic terms and exogenous variables is given by 𝑌𝑡 =  𝜋1𝑌𝑡 − 1 + 𝜋2𝑌𝑡 − 2 +

⋯ . + 𝜋𝑝𝑌𝑡 − 𝑝 +  ∅𝐷𝑡 + 𝐺𝑋𝑡 + 𝑒𝑡         (4.1) 
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where Dt represents an (l × 1) matrix of deterministic components, Xt represents an (m × 1) 

matrix of exogenous variables, and Φ and G are parameter matrices. 

4.3.3   Vector Error Correction Model (VECM) 
 

In econometrics, a relational model can be developed between economic variables in a non-

structural way by making use of Vector Error Correction   model and the Vector Autoregressive   

model. The statistical properties of data are the basis for the vector autoregressive model. Each 

endogenous variable in the vector autoregressive model is taken as the lagged value of all the 

endogenous variables in the overall model, hence the univariate autoregressive model is 

generalized by consisting multivariate time series variables to the “vector” autoregressive 

model (Zou, 2018). Christopher Sims (1980) introduced the vector autoregressive model into 

the economic field that encouraged its extensive usage in dynamic analysis of economic 

systems. 
 

 

Engle and Granger created the trace error correction model by combining co-integration and 

error correction models. The error correction model can be developed from the autoregressive 

distributed lag model thanks to a co-integration relationship between variables. The vector 

autoregressive model has all the equations of an autoregressive distributed lag model; hence 

the vector error correction (VEC) model can be a vector autoregressive (VAR) model with co-

integration restrictions. Vector error correction expressions can confine the long-term behavior 

of endogenous variables and be convergent to their co-integration relationship when there is a 

vast range of short-term dynamic fluctuations, as there is in the vector error correction model. 

Only the vector error correction model (VECM) may be computed if the variables are co-

integrated. The co-integrated series' short- and long-run dynamics are investigated using the 

vector error correction model. The long-run behavior of endogenous variables is constrained 

by this model to converge to their co-integrating term. The term "co-integrating" is sometimes 

known as "error correction term." A lag is lost when vector autoregressive is differenced to 

obtain a vector error correction model. 

 

Assuming t=1,2,….,T and yt ` I(1) , yt=(y1t,y2t,…….,ykt)` as k-dimensional stochastic time 

series, each yit~I(1), i=1,2,……,k is influenced by the exogenous time series of d-

dimension xt=(x1t,x2t,…..,xdt)`; then the vector autoregressive (VAR)  model can be established 

as follows: 

 
y t = A1yt-1+A2yt-2+….+ Ap yt-p + B xt +µt,    t=1,2,…,T    (4.2) 
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If yt is not affected by the exogenous time series of d-dimension xt =(x1t, x2t,….., xdt)`, then the 

VAR model of formula (4.2) can be written as follows: 

y t = A1yt-1+A2yt-2+….+ Ap yt-p + µt,    t=1,2,…,T     (4.3) 

 

with the co-integration transformation of formula (4.4), we can get that 
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If yt has a co-integration relationship, then − )0(1 Iyt and formula (4.4) can be written as 

follows: 
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where 11 −− = tt ecmy  is the error correction term, which reflects long-term equilibrium 

relationships between variables and the above formula can be written as follows: 
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Formula (4.7) is the VECM, in which each equation is an error correction model. 

Using the assumption that each equation contains k lag values of carbon dioxide, the following 

regression estimations were developed from (Gujirati and Porter 2009): 

𝐶𝑂2𝑡1 =  𝛼 + ∑ 𝛼𝑖
𝑘
𝑗=1 𝐶𝑂2𝑡−𝑗 + ∑ 𝑌𝑗

𝑛
𝑗=1 𝑋𝑡−𝑗 + 𝜇1𝑡     (4.7) 

𝐼𝑁𝐷𝑡1 =  𝛼 + ∑ 𝛾𝑖
𝑘
𝑗=1 𝐶𝑂2𝑡−𝑗 + ∑ 𝛿𝑗𝑛

𝑗=1 𝐼𝑁𝐷𝑡−𝑗 + 𝜇2𝑡                                         (4.8) 

𝐸𝑁𝐺𝑡1 =  𝛼 + ∑ 𝛾𝑖
𝑘
𝑗=1 𝐶𝑂2𝑡−𝑗 + ∑ 𝛿𝑗𝑛

𝑗=1 𝐸𝑁𝐺𝑡−𝑗 + 𝜇2𝑡                                      (4.9) 

𝐹𝐷𝐼𝑡1 =  𝛼 + ∑ 𝛾𝑖
𝑘
𝑗=1 𝐶𝑂2𝑡−𝑗 + ∑ 𝛿𝑗𝑛

𝑗=1 𝐹𝐷𝐼𝑡−𝑗 + 𝜇2𝑡                                         (4.10) 

𝐹𝐷𝑡1 =  𝛼 + ∑ 𝛾𝑖
𝑘
𝑗=1 𝐶𝑂2𝑡−𝑗 + ∑ 𝛿𝑗𝑛

𝑗=1 𝐹𝐷𝑡−𝑗 + 𝜇2𝑡                                             (4.11) 

𝐺𝐷𝑃𝑔𝑡1 =  𝛼 + ∑ 𝛾𝑖
𝑘
𝑗=1 𝐶𝑂2𝑡−𝑗 + ∑ 𝛿𝑗𝑛

𝑗=1 𝐺𝐷𝑃𝑡−𝑗 + 𝜇2𝑡                                      (4.12) 
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In the equation above, disturbances of 𝜇1𝑡 and 𝜇2𝑡 are uncorrelated. The above equation also 

indicates that the dependent and the independent will influence each other. 

where: carbon dioxide =Environmental quality (proxy by carbon emissions); IND=Industrial 

performance (proxy by industry value added); ENG=Energy use (proxy by petroleum and other 

liquid fuel consumption); FDI=foreign direct investment; FD=financial development (proxy 

by credit to the private sector as a % of GDP); and GDPg=Output growth (proxy by growth 

rate of GDP). 

4.4:   Model Specifications: Empirical Model of the Dynamics and Forecast Error 
Variance Decomposition Analysis between Energy Use and Carbon Dioxide 
Discharge 

 
To analyse the dynamics and the forecast variance among energy use and carbon dioxide 

discharge, consistent with empirical literature, the study used a modified model by (Ohlan, 

2015) which is presented in the following model specified in equations: 

CO2 = f (ENG),                                                                                               (4.13) 
 
where carbon dioxide emission is (C02), and fossil fuel energy consumption represents (ENG). 

The inclusion of fossil fuel energy consumption as the measurement of energy use in these 

countries is due the fact of availability of data as the data on biomass energy is not scientifically 

reliable. The data on biomass energy usage is not available in these countries. 

 
Equation 4.13 is further transformed into an econometric specification in equation 4.14, shown 

as follows: 

 
𝐶𝑂2𝑡 = ∝ +𝛽1𝐸𝑁𝐺𝑡 + 휀𝑡        (4.14) 
 
where carbon dioxide emission is (C02), and fossil fuel energy consumption represents (ENG), 

Subscript t stands for the period (t = 1980Q1 to 2017Q1), 𝛼 and 𝛽 signify the parameters and 

휀 denote the stochastic error, the rest as defined in the previous equation. The apriori 

expectation (𝛽1> 0), therefore energy consumption, is positively related to carbon dioxide 

discharge.  
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4.4.1:    Definitions of Variables: 

Fossil fuel energy consumption (percentage of total energy)  

Energy consumption/ energy use implies the basic use of energy prior to its transmission into 

other forms of fuels mainly those termed as end-use ones (Santamouris, 2018). This usage is 

the same as the in-house creation of energy and that procured through imports and changes in 

stock. However, in this energy use, the deduction is made of fuels that are exported or provided 

to ships and aircraft in global transportation. Kg of oil equivalent (kgoe) is the standardized 

unit of measurement of energy. This is an equivalent value as kgoe is the energy that is 

extracted from 1 kilogram of crude oil. Extant literature on similar study shows energy usage 

have positive and statistically significant effects on carbon dioxide (CO2) emissions, and these 

studies include Zhang and Cheng (2009); Apergis and Payne, (2010); Kohler, M. (2013); 

Farhani, et al. (2014). Kasman, and Duman, (2015); Sun, et al. (2020). 

 
Carbon Dioxide Emissions Per Capita (Metric Tons)  

Carbon dioxide emissions mainly comprise of emissions that arise due to burning or 

combustion of fossil fuels. These are also known as greenhouse gases (GHG) which   pollute 

and remain harmful to the quality of the environment. These gasses are harmful mainly because 

they tend to captivate as well as release infrared radiations, which are hazardous to the entire 

universe. They keep the heat trapped and do not allow it to be released in space. The outcome 

is the rising temperatures of the Earth making it a difficult place to live. The calculations for 

carbon dioxide emission are done by calculating the total number of people living and the 

overall quantum of carbon dioxide emitted per person (Saboori Sulaiman 2013), which results 

an average to identify per capita emissions. For simplicity, and ensuring a holistic analysis is 

executed in the present study, carbon dioxide emissions are measured based on per capita 

(metric tons) and is the dependent variable employed in the study. 

 

4.5:    Estimation Techniques 
 

Impulse response and forecast error variance decomposition analysis will be employed for the 

select largest economies in sub-Saharan African countries. Prior to conducting the variance 

decomposition and impulse response analysis, the time series data was checked for the presence 

of unit roots by means of a stationarity test. For carrying out the stationarity test, ADF unit root 

test procedure was adopted. An essential element in the specification of vector auto regression 
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(VAR) models is the determination of the lag length of VAR (Ozcicek and McMilin 1999).AIC 

and SBIC are used in the study to determine the lag of the VAR model for the study. VAR 

model is the base for generating variance decomposition for the variables as well as for impulse 

response analysis. 

 
4.5.1    Forecast Error Variance Decomposition Analysis 

This study also generated both the variance decomposition and impulse response functions 

from the empirical models due to their intrinsic benefits in empirical research to capture the 

nature and weight of dynamic interactions among included variables within a modelled 

framework. The analysis of variance decomposition improves understanding of relationship 

among variables within a VAR framework and effectively provides answers to explaining how 

relevant and useful sets variables are in helping to forecast changes in other variables in a 

defined system. Thus, variance decomposition analysis as an econometric technique indicates 

the proportion of variations in one variable that is effectively explained by shocks (innovations) 

of another variable over a defined period.  

Meanwhile, most macroeconomic data is often explained by its own trend shocks within the 

forecast error variance in the short run, which should decline over the horizon, effectively 

indicating that the percentage share accounted for by other variables will increase, as the 

number of lags increase over the time periods.  While impulse response estimates look at the 

amount and direction of a variable's response to a one-time innovation in another, variance 

decomposition looks at the proportion contribution of each form of shock to the variable's 

prediction error variance (Kilian, 2009). It provides a relative explanation for each shock based 

on the system's other endogenous factors. Variance decomposition can reveal which factors are 

related to dependent variables in the short and long run. The fraction of unexpected variation 

in each variable caused by shocks from other variables is calculated using the variance 

decomposition of the forecast error. The percentage of variations in a time series of variables 

can also be described using variance decomposition. Furthermore, the chosen independent 

variables can be used to explain variations in the dependent variable. The link between Y and 

X is used to explain variation. The variance of Y (dependent variable) will expect two 

conditions as follows: 

E (Var [Y|X]) = explained variation directly because of changes in X. 

Var (E [Y|X]) = unexplained variation that comes from other than X. 
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Variance decomposition is based on complete variance decomposition of the uncertainty of y. 

It is expressed as follows: 

𝑉 (𝐶𝑂2) = ∑ 𝑉𝑗𝑛𝑥
𝑗=1 + ∑ ∑ 𝑉𝑗𝐾𝑛𝑥

𝑘=𝑗+1
𝑛𝑥
𝑗=1 + ⋯ 𝑉12,𝑛𝑥(    (4.15) 

where Vj = Contribution of xj to V (carbon dioxide) 

Vjk = Contribution of the interaction of xj and xk to V (carbon dioxide). 

V12…...nx = Contribution of the interaction X1, X2, Xn to V (carbon dioxide). 

 

4.5.2    Impulse Response Function 

The evolution of the variable of interest over a given time horizon after a shock at each moment 

is described by the impulse response function. It has also used to illustrate "pass-through," or 

how changes in one variable are passed on to other variables at different stages, either directly 

or indirectly. One standard deviation shock to one of the innovations is traced using an impulse 

response graph on present and future values of the endogenous variable. It is useful for 

determining the long- and short-term effects of a single system variable. The impulse response 

function, in essence, depicts how one variable reacts to shocks in other variables within the 

system while keeping other variables constant. It shows how one standard deviation shock in 

a variable affects the variables' current and future values. 

The central difference between the variance decomposition and impulse response function rests 

on the fact that, while the later traces effect of a shock to an endogenous variable and to other 

variables within the framework, variance decomposition isolates the respective forecast 

variances for each variable into separate components attributable to each endogenous variable 

within the system (Enders, 1995).  

 

4.6. Results and Discussions of Analysis 

4.6.1 Unit Root Test 

The Augmented Dickey-Fuller test of stationarity of the two variables, carbon-dioxide 

emission, and energy consumption is presented in table 4.2.  The two series are stationary after 

first difference that is I(1) across the three countries, Nigeria, Ghana, and South Africa.  
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Table 4. 2: ADF Unit Root Test 

 Without Intercept 
and Trend 

 Intercept and Trend  

 Level First 
Difference 

 Level First 
Difference 

Remark 

NIGERIA       
Carbon-dioxide Emissions  
 

-0.17 -3.15**  -2.17 -3.27** 

  
  I(1) 

Petroleum & Other Liquid 
Consumption 

0.67 -2.80***  -2.56 -2.97   I(1) 

GHANA       
Carbon-dioxide Emissions  
 

-1.30 -3.02**  -3.02 -3.43* 

  
  I(1) 

Petroleum & Other Liquid 
Consumption 

2.82 -2.31**  -1.09 -4.02**   I(1) 

SOUTH AFRICA       
Carbon-dioxide Emissions  
 

-0.63 -3.52**  -2.26 -3.51* 

  
  I(1) 

Petroleum & Other Liquid 
Consumption 

 0.78 -1.63*  -2.84 -1.85**   I(1) 
       

***, ** and * signify significance at 1%, 5% and 10% level respectively. 

 

4.7: Bivariate Model (Carbon-dioxide Emission and Energy Consumption) 

4.7.1:    Nigeria: Impulse Response Function 

As noted earlier, the applicable method to analyse the dynamic nexus and transmission 

channels of fossil fuel energy consumption to carbon dioxide emissions for the countries under 

study is the vector autoregressive (VAR) -in-difference modelling framework. The impulse 

response function for the bivariate model is shown in figure 4.2. The impulse responses explain 

how shocks transmit in the entire system of the bivariate model for Nigeria and determines the 

response of a variable because of one standard deviation innovation shock of another variable. 

Initially, the IRF was considered through the generalize impulse response analysis of multiple 

graphs and analytical asymptotic for the standard error. Similarly, the default of ten quarter-

period split is maintained to predict the impact of the shock on the concerned variable at each 

of the periods. An innovation shock of one standard deviation of the endogenous variables (left 

to right diagonal boxes). Figure 4.2 is divided into four panels i.e., panel A to panel D, where 

panel A shows the response of carbon dioxide emissions to itself, panel B shows response of 

carbon dioxide emissions to fossil fuel energy consumption, panel C represents response of 

fossil fuel energy consumption to carbon dioxide emissions and panel D shows response of 
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fossil fuel energy consumption to itself. Panel B fossil fuel energy consumption (FOS) had 

immediate positive shocks on carbon dioxide emissions in the first quarter of the 10 year 

horizon periods at an increasing rate. Panel C response of fossil fuel energy consumption to 

carbon dioxide emissions also shows an increase at increasing rate through the first quarter to 

ten quarter. However, panels A and D, are responses which reveals a decreasing at decreasing 

rate for each variable to itself.  It implies that one shock in carbon dioxide emissions results to 

a change in energy use from the first quarter to positive increase over last quarter period. The 

results of the fossil fuel energy consumption and carbon dioxide  discharge support the outcome 

of earlier studies that energy resources influence explosion positively (Zafar, et al. 2019). 

Therefore, it is imperatively important for policymakers to enhance the practical measures for 

mitigating the carbon dioxide discharge for environmental and economic sustainability. 
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Figure 4.2: Impulse Response (Nigeria)  

Source: Author, computed from data 
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4.7.2   Nigeria: Forecast Error Variance Decomposition 
 

To further investigate the relative importance of energy consumption shocks on carbon dioxide 

emissions, the forecast error variance decomposition of carbon dioxide emissions is computed. 

The variance decomposition apportions the total fluctuations in a particular indicator to the 

constituent shocks or innovations in the VAR system. The result is presented in table 4.3 for 

the short run horizon of ten quarters. The estimation shows carbon dioxide emission’s shocks 

dominates the contribution of standard errors with over 99% across all the quarters, which 

reveals the higher influence in the short term for Nigeria. Comparatively, energy consumption 

contributes a minimum of 0.5% and a maximum of 1.24% during the period. Energy 

consumption made a linear contribution over 10 quarter simulation period between 0% and 

0.6% carbon dioxide emission. However, it dominated the contribution of energy consumption 

with over 98% over the period. Nonetheless, the finding of the study confirmed the crucial 

importance of energy consumption as a major determinant of variation in carbon dioxide 

emissions in Nigeria. This result is consistent with the results of the studies by Khobai and 

Roux 2017, and Albiman, et al. 2015, that energy use positively determines carbon dioxide 

emissions (CO2). Hence, carbon dioxide emission (CO2) mitigation measures must be put in 

place for better environmental quality. 

 
Table 4. 3: Variance Decomposition of Carbon Dioxide Emission (Nigeria) 

    
     Variance 

Decomposition 
of CO2:    

 Period S.E. CO2 Energy consumption 
    
     1  0.014305  100.0000  0.000000 

 2  0.030171  99.99044  0.009556 
 3  0.047723  99.97218  0.027823 
 4  0.066088  99.95109  0.048911 
 5  0.078893  99.90063  0.099372 
 6  0.088472  99.81775  0.182249 
 7  0.095775  99.70251  0.297486 
 8  0.101337  99.55857  0.441428 
 9  0.107574  99.44580  0.554204 

 10  0.114312  99.38919  0.610813 
    
     Variance 

Decomposition 
of FOS:    

 Period S.E. CO2 Energy consumption 
    
     1  0.011914  0.551429  99.44857 

 2  0.024652  0.548941  99.45106 
 3  0.038386  0.548882  99.45112 
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 4  0.052475  0.551030  99.44897 
 5  0.063223  0.625433  99.37457 
 6  0.071643  0.734287  99.26571 
 7  0.078263  0.870672  99.12933 
 8  0.083453  1.033404  98.96660 
 9  0.088330  1.157589  98.84241 

 10  0.093120  1.243369  98.75663 
    
    Source: Author, computed from data. 

 

4.7.3:    Impulse Response Function (Ghana) 

The graphical representation of the impulse response scenarios for the Ghanian bivariate model 

is presented in figure 4.3. Dividing the plots into four (4) panel A to D. The central focus is on 

panel B, which shows the impulse response of carbon dioxide emissions to fossil fuel energy 

consumption (FOS). From the graph, the responses remained positive on average throughout 

the 10 periods horizon. Specifically, carbon dioxide emissions had a very steep positive 

response to shock in fossil fuel energy consumption till the fourth quarter before a little 

moderation. Overall, fossil fuel energy consumption shocks exerted positive impact on carbon 

dioxide emissions through the simulation periods. The result is similar with the report of 

previous studies (Beneli and Feki 2018; Jabeur and  Sghaier 2018; Salahuddin and Gow 2015).  
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Figure 4. 3: Impulse Responses (Ghana) 

Source: Author, computed from data 

 

4.8:    Forecast Error Variance Decomposition (Ghana) 
 

The forecast error variance decomposition of carbon dioxide emissions was used to further 

examine the relative relevance of energy consumption shocks on carbon dioxide emissions in 

Ghana. Table 4.4 shows the variance decomposition of carbon dioxide emissions in Ghana and   

reveals that, as with other macroeconomic time series data, the first quarter explains the short 

run horizon of ten quarters. The estimation shows that carbon dioxide emission shocks 

dominate the contribution of the standard errors with over 99% throughout the simulation 

period, signifying higher influence in the short term for Ghana. Similarly, energy consumption 

contributes a minimum of 5.41% and maximum of 5.71%. Most empirical research have found 

that the biggest percentage error variance breakdown of macroeconomic variables often comes 

from the past shocks, but this is predicted to decrease over time.  This implies that in the long 

run the forecast analysis reveals that explosion of carbon dioxide discharge may raise by 5.71% 

because of the shocks in energy utilisation in Ghana. The result is consistent with the findings 

of studies by Khobai and Roux 2017, and Albiman, et al. 2015. 



112 
 

Table 4. 4: Forecast Error Variance Decomposition of Carbon Dioxide Emission (Ghana) 

    
     Variance 

Decomposition 
of CO2:    

 Period S.E. CO2 FOS 
    
     1  0.013529  100.0000  0.000000 

 2  0.016258  99.98531  0.014686 
 3  0.016368  99.86042  0.139576 
 4  0.016425  99.27582  0.724184 
 5  0.151237  99.99101  0.008992 
 6  0.151318  99.93746  0.062538 
 7  0.160186  99.74444  0.255555 
 8  0.163013  98.69654  1.303456 
 9  1.213642  99.96736  0.032644 

 10  2.01623  99.96657  0.033434 
    
      
 

Variance 
Decomposition 

of FOS:    
 Period S.E. CO2 FOS 

    
     1  0.000860  0.520652  99.47935 

 2  0.001860  0.146651  99.85335 
 3  0.003021  0.055749  99.94425 
 4  0.004262  0.028197  99.97180 
 5  0.006090  25.34721  74.65279 
 6  0.007254  29.31038  70.68962 
 7  0.007877  25.54990  74.45010 
 8  0.008566  21.67486  78.32514 
 9  0.035417  94.58279  5.417207 

 10  0.036152  94.28450  5.715500 
    
     Cholesky 

Ordering: CO2 
FOS    

    
    Source: Author, Computed from Data 

4.8.1: Impulse Response Function (South Africa) 
 

The impulse responses of the variables employed in the bivariate model for South Africa is 

shown in figure 4.5. Breaking down the figure into four (4) panels A to D. From panel B of the 

figure, which is response of carbon dioxide emissions to fossil fuel energy consumption shocks. 

Fossil fuel energy consumption had immediate positive shocks on carbon dioxide emissions in 

the first quarter of the 10 horizon periods, with a steeper tangent between 1st quarter through to 

8th quarter. However, the positive shocks reduced considerably until 9th quarter and remained 

positive before the response became negative until the final period of the 10 periods horizon. 

The result is similar with the report of previous studies (Jabeur and  Sghaier 2018; Khobai and 

Roux 2017; Salahuddin and  Gow 2015).Carbon dioxide emissions and fossil fuel energy 

consumption response to their self positively in the first quarter and decline in the last quarter. 
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Figure 4.5: Impulse Responses (South Africa) 

Source: Author, computed from data 

 
4.8.2:    Forecast Error Variance Decomposition (South Africa) 

The forecast error variance decomposition was used to further examine the relative importance 

of fossil fuel energy consumption shocks on carbon dioxide emissions in South Africa as shown 

in table 4.5. As previously stated, the variance decomposition assigns the entire fluctuations in 

each indicator to the VAR systems constituents shocks or innovations. A ten year short run and 

long run simulation periods is chosen from year one to year 4 short run while from year five to 

year ten is the long run periods. The variance decomposition of carbon dioxide emissions in 

South Africa  reveals that, as with other macroeconomic time series data the short run explains 

100% of its own variation, meaning that carbon dioxide emissions is strongly endogenous, it 

has strong influence from its own variable. Suggesting that fossil fuel energy consumption do 

not have real strong influence on carbon dioxide emissions, fossil fuel energy consumption has 

strong exogenous impact in the sense that it does not influence carbon dioxide emissions in the 

short run, it exhibits weak influence in predicting carbon dioxide emissions. Furthermore, the 

result of carbon dioxide emissions in the long run 99.9% of forecast error variation 

decomposition of the variable is explained by carbon dioxide emissions itself. So, carbon 
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dioxide emissions show strong influence from short run to long run simulation periods. 

However, fossil fuel energy consumption explains a minimum of 5.41% and maximum of 

5.71% in the long run simulation periods. The result is similar with the findings of the studies 

by Ahad, et al. 2018, and Kobai and Roux 2017.  Thus, policymakers should focus in designing 

effective and efficient measures in mitigating the level of carbon dioxide discharge. This should 

be emphasised through encouraging citizens on the other energy sources which can emit low 

emission such as wind, solar and thermal energy for better and clean environment. 

Table 4.5: Forecast Error Variance Decomposition of Carbon Dioxide Emission (South Africa) 
    
     Variance 

Decompositio
n of CO2:    

 Period S.E. CO2, FOS 
    
     1  0.077349  100.0000  0.000000 

 2  0.161703  99.99566  0.004345 
 3  0.253355  99.98756  0.012439 
 4  0.347281  99.97857  0.021429 
 5  0.407711  99.30160  0.698396 
 6  0.450877  97.78269  2.217313 
 7  0.483247  95.51066  4.489337 
 8  0.508335  92.62107  7.378932 
 9  0.533495  91.75322  8.246779 

 10  0.558910  91.97430  8.025697 
    
     Variance 

Decompositio
n of FOS:    

 Period S.E. CO2 FOS 
    
     1  0.007851  1.43E-06  100.0000 

 2  0.016327  0.005973  99.99403 
 3  0.025542  0.020288  99.97971 
 4  0.035073  0.041245  99.95875 
 5  0.041997  0.169323  99.83068 
 6  0.047268  0.295383  99.70462 
 7  0.051314  0.367575  99.63242 
 8  0.054410  0.381396  99.61860 
 9  0.057663  0.343044  99.65696 

 10  0.061124  0.353728  99.64627 
    
     Cholesky 

Ordering: 
CO2 FOS    

    
    Source: Author, computed from data 
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4.8.3    Post estimation checks 
 
For establishing the validity of the estimated models, various diagnostic tests are performed 

such as serial correlation, normality of the residuals and Heteroskedasticity tests. Table 4.6 

shows that the estimated model for Nigeria, Ghana and South Africa has no problems of serial 

correlation, Heteroskedasticity and the residual are normally distributed. 

 
Table 4.6: Post Estimation Tests 

Test Statistics Prob. 
Nigeria   
VEC Residual serial correlation  4.4684 0.346 
VEC Residual Heteroskedasticity  32.074 0.364 
VEC Residual Normality (Jarque-Bera) 0.3030 0.915 
Ghana   
VEC Residual serial correlation  5.8802 0.208 
VEC Residual Heteroskedasticity  37.965 0.150 
VEC Residual Normality (Jarque-Bera) 1.1403 0.565 
South Africa   
VEC Residual serial correlation  3.0841 0.543 
VEC Residual Heteroskedasticity  31.730 0.380 
VEC Residual Normality (Jarque-Bera) 3.1855 0.203 

 

4.9:     Conclusion 

This objective of the study investigated the transmission path of the energy consumption and 

carbon dioxide emissions nexus in three largest economies sub-Saharan African countries, 

namely Ghana, Nigeria, and South Africa, within a bivariate modelling framework, using 

quarterly time series data from 1980Q1 to 2017Q1. Variance decomposition method and 

impulse response analysis were employed for estimation of the variables. Variance 

decomposition, on the other hand, provides and identifies the percentage of unexpected 

variations in each variable(s) caused by shocks from other variables, whereas impulse response 

estimates examine the magnitude and direction of a variable's response to a one-time innovation 

in another. Both strategies are useful for tracking the long- and short-term impacts of a single 

variable in a system. Most empirical investigations have found that the biggest percentage error 

variance decomposition of macroeconomic variables generally stems from past shocks, but that 

this is projected to decrease throughout projection periods. 

ADF unit root test procedure was adopted to test for stationarity of included parameters in the 

studied countries in which all the variables significant at first difference in Nigeria, Ghana, and 
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South Africa. Lastly, post estimation checks were adopted to validate the models for efficient 

policy recommendations. 
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CHAPTER FIVE  
 

MARKET - INDUCED VARIABLES AND DYNAMISM IN CARBON 
DIOXIDE EMISSIONS IN THREE LARGEST ECONOMIES OF SUB-

SAHARAN AFRICA 
 

5.1    Introduction 
 

The greenhouse gas carbon dioxide emission is one of the major reasons for global warming. 

Its main source of origination is human activities due to which it is present in the atmosphere 

in abundance, thereby causing ecological issues and climatic transformations (IPCC, 2014).  

Climate change is a worldwide problem that poses a serious threat. Temperature fluctuations 

have been seen to cause an imbalance in the region's environment, posing a threat to human 

health (UN Environment, 2019). Climate change is having a major impact on people's lives, 

affecting national economies, and costing us a lot of money today and tomorrow. However, 

there is a growing realisation that now is the time to implement affordable, scalable solutions 

that will allow all countries to make the transition to cleaner, more resilient economies 

(Guterres, 2019). Climate and environmental change are occurring at a faster rate than 

expected, putting enormous pressure on governments to act quickly to undo the damage to our 

planet Earth (IPCC, 2014). The World Health Organisation estimates that almost seven million 

people die each year because of poor air quality, with nearly three million of those deaths 

occurring prematurely. 

Major sources of air pollution, as we have seen, are the consumption of fossil fuels, industrial 

activities, and inefficient transport systems. Total anthropogenic carbon-dioxide emissions in 

the atmosphere were 2040 ± 310 GTCO2 for the years = from 1750 to 2011. Almost 40 per 

cent of these emissions are still in the environment (880 ± 35 GTCO2) (IPCC, 2014); while the 

remaining 60 per cent have been absorbed by land (in soil and plants) as well as in the water 

bodies and oceans. Due to these environmental threats and climatic changes, the life expectancy 

of humans is in danger because of the lack of access to pure water, land, and food. Hence, it is 

imperative to minimise carbon dioxide emissions in the environment (IPCC, 2014).  

In normal conditions, the carbon dioxide emissions from humans, animals, volcanoes, and 

other sources are almost balanced by the equal amount being absorbed by photosynthesis by 

plants and oceans. Nevertheless, this equilibrium is being disturbed by human activities 
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involving the consumption of fossil fuels, industry, mining, transportation, and domestic use, 

all of which significantly increase carbon emissions in the environment (Rahman and Hasan, 

2017). This imbalance in the environment is also referred to as the greenhouse effect, which 

leads to global warming, ice sheets melting at poles, the consequent rise in sea level, 

submergence of coastal areas, as well as damage to agriculture, plant life, animal life, and 

human life. The greenhouse gases worldwide have been showing an increasing trend due to 

human activities with an increase in carbon dioxide emissions level in the atmosphere (EPA, 

2014).  Carbon dioxide is the most abundant greenhouse gas; it accounts for 77 per cent of the 

overall global greenhouse gas emissions whereas methane, N20, and other gases account for 

only 14 per cent, 8 per cent, and 1 per cent respectively (IPCC, 2007). The intergovernmental 

panel has also reported it on climate change in 2007 that within the next 100 years, there will 

be approximately 1.1 ̊C and 6.4 ̊C increase in average global temperature (IPCC, 2007).  

 

 
Figure: 5.1 Top Carbon Dioxide Emitting Countries in 2020 

Source:   ATLAS, 2020 

As seen in figure 5.1, South Africa from the sub-Saharan African region is on the thirteenth 

rank in carbon dioxide emissions. It means sub-Saharan Africa contributes to carbon dioxide 

emissions significantly. The fifth chapter of this thesis examines the extent to which energy 

consumption financial development, foreign direct investment, industrial performance, and 

gross domestic product growth explains systematic dynamism in carbon dioxide emissions in 

three largest economies of sub-Saharan African countries. To accomplish this goal, Section 5.1 
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covers the introduction, while section 5.2 provides a brief literature review on the subject under 

study. Section 5.3 covers the model specification; and section 5.4 highlights the presentation 

and discussion of results focusing on unit root test, estimation of multivariate models for the 

countries.  Lastly, section 5.5 presents the conclusion of the chapter. 

5.2    Literature Review 

In line with the report of the third Assessment by IPCC (2007), fundamental changes in the 

environment have occurred due to global warming. According to a report of IPCC (2001), there 

will be an expected loss of 20.7 per cent in landmass due to a one-meter sea level rise and a 

loss of 10.9 per cent in landmass due to a 45cm increase in sea level. It has been scientifically 

proven that the major reason for global warming is the increase in the levels of carbon dioxide 

in the atmosphere, which is due to various human activities (Querol, et al. 2018; UN 

Environment, 2019; Fogarty, 2019).  

Sarkar, et al. (2015) posits that there is an increase of 6.7 per cent per annum in carbon dioxide 

emissions in Bangladesh, which is much higher than its energy consumption, and growth of 

output (Sarkar, et al. 2015).  In another study conducted in the Cox’s Bazar and the Sylhet 

region of Bangladesh, it was found that there is a significant increase in temperature by 0.021 

degree Celsius per year (Rahman and Hasan, 2017).  It has been concluded in some studies that 

the production and use of energy affects the climate and air quality (Ciupageanu, et al. 2017, 

2019; Capellán-Péreza, et al. 2019; Herrerias, 2012; Wang, 2013). Between 2014 and 2016, 

stagnation was observed in fossil fuel emissions with an increase in the global gross domestic 

product (output). However, the trend discontinued in 2017 when global emissions jumped by 

1.6 per cent. It has been projected by the Global Carbon Project that the carbon dioxide 

emissions will rise by approximately 2.7 per cent up to 37.1 gigatons at the end of the year 

3000 (Fogarty, 2019). 

Climate change and global warming have been issues of scientific discussion for decades, few 

of studies have examine that with the doubling of carbon dioxide emissions, the global mean 

temperature is going to increase from 3 ̊C to 4 ̊C (Reddy, et al. 1995). The relationship between 

financial development and environmental quality is very significant for policymakers to 

comprehend the interaction between financial development and the environment (Mitic, et al. 

2017). It is very critical to understand the influence of financial development on carbon dioxide 

emissions, being that the main purpose of any economy is to maximise financial development 
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(Živanovi´c, et al. 2016; Narayan and Narayan, 2010). Significant environmental degradation 

is occurring which has raised alarms in both the scientific community and political circles. The 

main factors for this environmental degradation have been identified to be population growth, 

transportation, industrialisation, exploitation of natural resources, and the liberal use of fossil 

fuels (Borhan, et al. 2012). 

The global trend of carbon dioxide discharge is becoming a threat to all countries’ ecosystem 

and development (Sehrawat, et al. 2015). It is argued that in recent years, the portion of carbon 

dioxide explosion from the countries in industrialised and emerging economies increases the 

level of deteriorating environmental quality due to atmospheric heat and climate alteration 

(Meratizaman, et al. 2015; Nejat, et al. 2015). Nowadays, countries like China, India, sub-

Saharan African countries, North Africa, Asia, and Latin America account for almost 63 per 

cent of the total carbon dioxide discharge in the globe (Hansen  Sato, 2016; IPCC, 2014). 

Hence, developing countries become increasingly vulnerable to all effects of carbon dioxide 

explosion. The increased incidences of disease outbreak, changes in the ecosystem and water 

ways alterations, floods, drought, low yields of agricultural productivity, extreme poverty all 

adversely affect human welfare and development  Danlami, et al. (2018). These have translated 

into rising crises especially in the African countries with reference to issues of farmers-

herdsmen and Boko Haram conflicts that have seriously affected economic and human 

development (Edward, 2014).  

In sub-Saharan Africa, the level of carbon dioxide discharge has taken an increasing dimension 

with the upsurge of economic progress, financial resources, population growth, urbanization 

and fossil fuel use for domestic and industrial utilization (Asongu, 2018; Yahaya, Mohd-jali,  

Raji, 2020). The manufacturing industry, non-renewable sources of energy and fossil fuels are 

mostly used for the generation of electricity (Mitic, et al. 2017). Carbon dioxide emissions and 

other greenhouse gases are emitted on the combustion of such fuels, which damage the 

environment. Financial development is directly related to an increase in production, which 

suggests that an increase in financial development and fossil fuel consumption leads to an 

increase in carbon dioxide emissions in the environment.  

Financial development has been associated with environment quality by a considerable number 

of studies (Charfeddine and Kahia, 2019; Jiang and Ma, 2019; Khan, et al. 2019; Shahbaz, et 

al. 2013; Boutabba, 2014; Zhang, 2012; Tamazian, et al. 2009). The financial development of 

the region assists firms to put more funds in research and development, which has a positive 
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impact on the environment. However, some authors have focussed more on investigating the 

relationship between pollution and financial development, with no common theory established. 

On one hand, it has been argued that financial development can lead to an increase in pollution 

due to increased activities. On the other hand, it has been argued that financial development 

can lead to a reduction in emissions due to more funding in the cleaner energy sector (Bui, 

2020). Accordingly, the environmental Kuznets curve hypothesis has been the subject of most 

investigations on the relationship between economic growth and carbon dioxide emissions. 

Under this hypothesis, environmental degradation increases during the early stages of 

economic expansion until some threshold level or turning point in relation to income is 

achieved, after which environmental degradation begins to drop. (Heidari, et al. 2015). (p. 785). 

This hypothesis proposes an inverted U-shaped curve for the relationship between economic 

growth and environmental pollution.  

Some research studies have examined the environmental kuznets curve hypothesis and yet no 

consensus was found on the topic (Mitic, et al. 2017). The association among energy use, 

financial development, growth performance and foreign direct investment is given 

considerable concern in the literature. Bolük and Mert (2014), for example, estimate the 

performance of energy on carbon dioxide emissions in 16 EU countries from 1990 to 2008 

using the fixed effect technique. They discovered that the use of energy hastens the carbon 

dioxide explosion. From 1989 to 2011, Mahdi (2015) used the PVAR method to assess the 

impact of energy use on carbon dioxide emissions in European and Asian countries. He 

discovered that increasing energy utilization increases carbon dioxide explosion capacity. 

According to Begum, et al. (2015), the utilisation of energy resources in Malaysia increases 

carbon dioxide emissions.  

Mirzaei and Bekri (2017) provide evidence for their work by calculating the impact of energy 

use on carbon dioxide emissions in Iran. The findings show that using a lot of energy causes 

more carbon dioxide emissions. Danish, et al. (2018) assesses the impact of energy resources 

on Pakistan's carbon dioxide emissions. They reveal that energy accelerates carbon dioxide 

emissions. The influence of fossil fuel on Nigeria was investigated by Yahaya, et al. (2019). 

They established that increasing the amount of energy usage increases the capacity to discharge 

carbon dioxide. Nguyen and Kakinaka (2019), on the other hand, revealed that energy use in 

170 countries reduces carbon dioxide emissions. In contrast, Acheampong (2018) finds that 

industrial growth performance slows the rate of carbon dioxide emissions in 116 emerging 

economies using PVAR analysis. Ren, et al. (2014), for example, used the generalised method 



122 
 

of moments technique to assess the impact of foreign direct investment on carbon dioxide 

emissions in China from 2000 to 2010, concluding that foreign direct investment raises carbon 

dioxide emissions. Foreign direct investment and energy resources in Turkey, according to 

Gökmenolu and Taspinar (2016), increase the amount of carbon dioxide explosion. This 

conclusion is backed by earlier findings (Shao 2018).  Therefore, it is important to know the 

level of emissions by the region at present as well as in the future. As greenhouse gases are 

aggravating, environmental issues so the prediction of carbon-dioxide emissions has become a 

major concern worldwide (Nyoni and Bonga, 2019).  It has also become important to forecast 

carbon dioxide emissions so that public awareness could be created with the hope that this will 

help resolve environmental issues (Abdullah and Pauzi, 2015). To make a reliable prediction 

about future environmental scenarios, it is vital to forecast carbon dioxide emissions, and this 

research has set out to model and forecast carbon-dioxide emissions in selected largest 

economies of sub-Saharan Africa countries (i.e., Ghana, Nigeria, and South Africa). 

5.3     Model Specification 
 

This study employed a modified model developed by Ohlan (2015) to investigate the extent to 

which fossil fuel energy use, foreign direct investment, financial development, industrial 

performance and gross domestic product growth explains dynamics in carbon dioxide 

emissions using  forecast error variance decomposition and impulse response analysis.  

The functional form of the model is presented in equation 5.1: 

 

CO2 = f (ENG, FDI, FD, IND, GDPg),                                                                         (5.1) 

where carbon dioxide emissions is (CO2), fossil fuel energy consumption represents (ENG), 

foreign direct investments indicates (FDI), financial development is (FD), industrial 

performance is (IND), while gross domestic product growth is (GDPg).  

The econometric specification of the functional form equation 5.1 is represented as follows in 

equation 5.2: 

𝐶𝑂2𝑡 = ∝ +𝛽1𝐸𝑁𝐺𝑡 + 𝛽2𝐹𝐷𝐼𝑡 + 𝛽3𝐹𝐷𝑡 + 𝛽4𝐼𝑁𝐷𝑡 + 𝛽5𝐺𝐷𝑃𝑔𝑡 + 휀𝑡                         (5.2) 

where Subscript t stands for the quarterly period from 1980-2017,𝛼 and 𝛽 signify the 

parameters and 휀 denotes the stochastic error, the rest as defined in the previous equation. The 

apriori expectation is 𝛽1 > 0; 𝛽2 > 0; 𝛽3 > 0; 𝛽4 > 0; 𝛽5 </> 0, therefore ENG, FDI, FD, 

IND, and GDPg are positively related to carbon dioxide discharge while theory provides that 
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gross domestic product growth could either increase or decrease carbon dioxide emission 

depending on the stage of economic development.  

 

5.4: Estimation of Multivariate Models for the Countries 

Following the determination of the stationary properties of the variables and the investigation 

of the long run relationship among the variables for the three (3) countries under study, the 

next step is to estimate the multivariate models for the respective countries. In this view, Toda-

Yamamoto model (T-Y model) in the VAR framework, proposed by Toda and Yamamoto 

(1995) is the appropriate estimation method for Nigeria, Ghana, and South Africa since they 

are I(1) variables in their respective models which can be accommodated in T-Y estimation 

model.  

5.5: VAR Lag Order Selection Criteria (Nigeria, Ghana, and South Africa) 
 

Tables 5.1, 5.2 and 5.3 present the VAR lag order selection criteria for both Nigeria Ghana and 

South Africa. As indicated in the table, the VAR lag order selection criteria show the optimal 

lag preference for Nigeria (6), Ghana (8) and South Africa (6) as identified by all available 

information criterion at the 5% significance level, namely Sequential Modified LR test statistic 

(LR), Final Prediction Error (FPE), Akaike Information Criterion (AIC), Schwarz Information 

Criterion (SIC) and Hannan-Quinn (HQ) information criterion. Thus, optimal lag employed in 

the Toda-Yamamoto multivariate models is justified.   

 

Table 5. 1: VAR Lag Order Selection Criteria (Nigeria) 

       
 Lag LogL LR FPE AIC SC HQ 

       
       0 -1133.978 NA   0.424280  16.16990  16.29538  16.22089 

1  135.7614  2413.405  1.07e-08 -1.329949 -0.451595 -0.973016 
2  457.2701  583.7321  1.86e-10 -5.379718  -3.748489*  -4.716843* 
3  466.4034  15.80513  2.75e-10 -4.998629 -2.614526 -4.029812 
4  481.3896  24.65822  3.75e-10 -4.700562 -1.563583 -3.425802 
5  568.8007  136.3861  1.85e-10 -5.429797 -1.539944 -3.849095 
6  669.2496   148.1799*   7.63e-11*  -6.343966* -1.701238 -4.457322 
7  680.9144  16.21485  1.13e-10 -5.998785 -0.603182 -3.806199 
8  698.6001  23.07928  1.55e-10 -5.739009  0.409469 -3.240480 
       
       

• indicates lag order selected by the criterion 

 

Table 5. 2: VAR Lag Order Selection Criteria (Ghana) 

 Lag LogL LR FPE AIC SC HQ 
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0 -1781.389 NA   4128.914  25.35303  25.47851  25.40402 
1 -127.8468  3142.902  4.48e-07  2.409174  3.287528  2.766107 
2  150.7392  505.8014  1.44e-08 -1.031762   0.599467* -0.368887 
3  161.0871  17.90710  2.09e-08 -0.667903  1.716201  0.300915 
4  186.8762  42.43299  2.44e-08 -0.523066  2.613913  0.751694 
5  397.8432  329.1684  2.09e-09 -3.004868  0.884986 -1.424166 
6  498.8033  148.9340  8.57e-10 -3.926288  0.716441 -2.039643 
7  528.9848  41.95448  9.73e-10 -3.843756  1.551847 -1.651170 
8  654.7118   164.0692*   2.90e-10*  -5.116479*  1.031999  -2.617950* 
       

* indicates lag order selected by the criterion 

 

Table 5. 3: VAR Lag Order Selection Criteria (South Africa) 

 Lag LogL LR FPE AIC SC HQ 
       
       0 -1332.880 NA   7.127366  18.99120  19.11668  19.04219 

1  74.78371  2675.559  2.53e-08 -0.465017  0.413337 -0.108084 
2  350.6753  500.9096  8.45e-10 -3.867735  -2.236506* -3.204860 
3  367.8095  29.65064  1.11e-09 -3.600135 -1.216031 -2.631318 
4  392.2911  40.28184  1.33e-09 -3.436754 -0.299775 -2.161994 
5  500.4479  168.7552  4.87e-10 -4.460254 -0.570400 -2.879552 
6  646.4951   215.4456*   1.05e-10*  -6.021208* -1.378479  -4.134564* 
7  656.8960  14.45791  1.59e-10 -5.658099 -0.262496 -3.465513 
8  670.1417  17.28518  2.33e-10 -5.335343  0.813135 -2.836814 
       

* Indicates lag order selected by the criterion 

 
5.5.1  Granger Causality Test Results (Nigeria, Ghana, and South Africa) 

The Toda-Yamamoto estimation model for Nigeria, Ghana and South Africa are presented and 

discussed, respectively.  The granger causality test results for Nigeria, Ghana and South Africa 

are presented in table 5.4. Among all variables, foreign direct investment granger causes carbon 

dioxide emissions in Nigeria, and credit provided by financial sector granger causes carbon 

dioxide emissions. In this regard, energy consumption granger causes carbon dioxide emissions 

in Nigeria, directly pointing to the country’s reliance on the hydrocarbon industry for fiscal 

sustenance. Similarly, carbon dioxide emissions granger causes industrial performance on one 

hand, as well as carbon dioxide emissions and output growth, measured by the growth rate of 

gross domestic product, on the other. However, there was no causality between credit to the 

private sector and carbon dioxide emission in Nigeria. This is in line with findings of   

Chontanawat, et al. (2016), Wei, et al. (2021). 

For Ghana, there is presence of unidirectional causality between gross domestic credit and 

carbon dioxide emissions, but the causation running from gross domestic product growth to 

carbon dioxide emissions was found to have stronger significance and more potent. Similar to 

the findings of Saibu and Jaiyesola. (2013), Sun, et al.  (2011), Bowden and Payne (2009), Yu, 
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et al. (2008).  In addition, there was a unidirectional causality between energy consumption 

and carbon dioxide emission in Ghana. For the other variables, there was no observed causality 

among carbon dioxide emissions, foreign direct investment, industrial performance, and 

financial development. 

In the case of South Africa, none of the exogenous variable’s granger causes carbon dioxide 

emission. Similarly, carbon dioxide emissions do not granger cause any of the exogenous 

variables. This result further reinforces the omnipotent role of the country’s financial sector 

development and ensuing financing structure/arrangements in determining economic 

interactions and activities, with profound effects on the environmental quality in South Africa. 

This result is remarkably instructive and aptly confirms position of South Africa’s financial 

sector as some of the most dominant in the African continent.   

 
Table 5. 4: Granger Causality Test 

 Null Hypothesis Chi-square P-Value Remark 

N
IG

E
R

IA
 

CO2 Emission does not granger cause FD 2.37 0.88 No causality 

FD does not granger cause CO2 Emission 17.6 0.00 Causality 
CO2 Emission does not granger cause IP 18.7 0.00 Causality 

Causality IP does not granger cause CO2 Emission 29.4 0.00 
CO2 Emission does not granger cause GDPg 11.6 0.00 Causality 

Causality GDPg does not granger cause CO2 Emission 20.6 0.00 
CO2 Emission does not granger cause FOS 1.88 0.92 No causality 
FOS does not granger cause CO2 Emission 12.5 0.05 Causality 
CO2 Emission does not granger cause FDI 40.3 0.00 Causality 
FDI does not granger cause CO2 Emission 2.85 0.82 No causality 

     
G

H
A

N
A

 

CO2 Emission does not granger cause FD 5.62 0.68 No causality 
FD does not granger cause CO2 Emission 3.62 0.69 
CO2 Emission does not granger cause IP 14.9 0.05 Causality 

No Causality IP does not granger cause CO2 Emission 4.44 0.81 
CO2 Emission does not granger cause GDPg 10.6 0.22 No causality 

Causality GDPg does not granger cause CO2 Emission 17.4 0.02 
CO2 Emission does not granger cause FOS 7.34 0.49 No causality 

Causality FOS does not granger cause CO2 Emission 78.5 0.00 
CO2 Emission does not granger cause FDI 5.52 0.70 No causality 

FDI does not granger cause CO2 Emission 3.62 0.88 
 

S 
O 
U 
T 
H  
 

CO2 Emission does not granger cause FD 1.20 0.97 No causality 
FD does not granger cause CO2 Emission 3.83 0.69 

 

CO2 Emission does not granger cause IP 2.22 0.87 No causality 
IP does not granger cause CO2 Emission 0.91 0.98  
CO2 Emission does not granger cause GDPg 4.51 0.60 No causality 
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A 
F 
R 
I 
C 
A 

GDPg does not granger cause CO2 Emission 0.43 0.99  
CO2 Emission does not granger cause FOS 6.26 0.48 No causality 

FOS does not granger cause CO2 Emission 4.22 0.64  

CO2 Emission does not granger cause FDI 5.52 0.48 No causality 
FDI does not granger cause CO2 Emission 6.22 0.29  

Note: FDI=Foreign Direct Investment; FD=Financial Development; IP=Industrial Performance; CO2= CO2 
Emissions; GDPg=GDP Growth Rate; FOS=Fossil Energy Consumption 

 
5.5.2     Impulse Responses of Carbon Dioxide Emissions to other Variables (Nigeria) 
 

Figure 5.2  shows the impulse response function of the models for Nigeria that determine the 

response of a variable because of one standard deviation shock of other variables. The impulse 

response function (IRF) was considered through the generalized impulse response analysis of 

multiple graphs, and analytical asymptotic for the standard error. Similarly, the default of ten-

period split is maintained to predict the impact of the shock on the concerned variable at each 

of the quarter periods. A shock of one standard deviation of almost all variables to themselves 

apart from carbon dioxide emissions and fossil fuel energy use leads negative adjustment in 

the short run up to the long run quarter period in Nigeria. 

The response reveals that one shock in carbon dioxide discharge results to a negative change 

in fossil fuel energy use, foreign direct investments, domestic credit, and industrial 

performance over a certain period. The result further illustrates that fossil fuel energy use 

response negatively to carbon dioxide discharge from the short run to long run horizons. 

Similarly, foreign direct investments, financial progress, and industrial performance have 

decreased the capacity of carbon dioxide emissions from period of short to the long run. 

However, economic growth has increasing response on carbon dioxide explosion in Nigeria. 

These results are similar with the outcome of earlier studies (Sulaiman and Abdul-Rahim 2017; 

Qureshi, et al. 2016).  Their findings confirm the negative effect of these variables on carbon 

dioxide discharge. Thus, it is essential for government and policymakers to continue with 

enhance measures for mitigating the carbon dioxide discharge for environmental and economic 

sustainability. 
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Figure 5.2: Impulse Responses of Carbon Dioxide Emissions to other Variables (Nigeria) 

 

 

5.5.3  Forecast Error Variance Decomposition of Carbon Dioxide Emissions (Nigeria) 
 

The relative importance of the shocks of each variable on variance of carbon dioxide emissions 

is presented as forecast error variance decomposition for Nigeria in table 5.5. Economic growth 

has the relative importance among the variables as its shocks explained 1.09% and 6.45% in 

the short run and long run of the ten quarter simulation periods. This followed by foreign direct 

investment whose shocks also explained about 4.32% of the variation in carbon dioxide 

emissions at quarter 10 of the simulation periods. Similarly, the result of forecast error variance 

decomposition of industrial performance shows 0.40% and 3.55% in the short run and long run 

horizon. Suggesting the importance of both gross domestic product growth, foreign direct 

investments, and industrial value addition as key determinants in explaining the variations in 

environmental quality (measured by carbon dioxide emissions) in Nigeria. True to expectation, 

the variance in carbon dioxide emissions like most macroeconomic variables, declined from its 

own past shocks, as expected over the forecast horizon. From the results, gross domestic 

product growth (6.45%), foreign direct investments (4.32%), industrial performance (3.55%), 
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financial development (2.7%), and energy consumption (1.89%) explained marginal shocks in 

carbon dioxide emissions in the 10th quarter of the forecast horizon, are important in explaining 

variations in carbon dioxide emissions in Nigeria. Therefore, the hierarchical order for 

policymakers in mitigating carbon dioxide emission could begin with economic growth and 

foreign direct investments with greater emphasis followed by domestic credit. It is argued that 

increase in economic growth and foreign direct investments and energy utilisation accelerates 

the capacity of environmental pollution. This is consistent with studies conducted by Ohlan, 

2015 

 

 

Table 5.5: Forecast Error Variance Decomposition of Carbon dioxide (CO2) Emissions 
(Nigeria) 

 Period S.E. 

Financial 

Development 

Foreign 

Direct 

investment 

Industrial 

Performance GDP Growth 

Energy 

Consumption 

CO2 

Emission 

 1  0.017293  0.000000  0.000000  0.000000  0.000000  0.000000  2.305781 

 2    0.035600   0.026661  0.209376  0.274901  0.462561  0.014419  2.558611 

 3  0.053449  0.130021  0.502493  0.400334  1.094373  0.017800  2.478252 

 4  0.069670  0.337874  0.884249  0.518895  1.880686  0.036687  2.326168 

 5  0.084102  0.656631  1.355049  0.707105  2.778199  0.100539  2.187723 

 6     0.096992   1.067563  1.906275  1.019524  3.723213  0.250181  2.084458 

 7    0.108701   1.530064  2.514403  1.486074  4.631010  0.516958  2.014832 

 8  0.119555   1.993569  3.144559  2.099516  5.419859  0.903539  1.970642 

 9  0.129783  2.412494  3.758030  2.813104  6.034067  1.379404  1.942964 

 10 0.139515   2.757018  4.320677  3.555495  6.454869  1.891985  1.924195 

        

Source: Author’s Computations 
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5.5.4    Impulse Responses of Carbon Dioxide Emissions to other Variables (Ghana) 

The impulse responses of carbon dioxide emissions to the shocks of other variables in the 

multivariate model of Ghana are shown in figure 5.3. The shocks response of financial 

development, which is proxy by the credit provided by the financial sector, exerted a negative 

response on carbon dioxide emissions throughout the simulation periods. Similarly, foreign 

direct investment shocks exerted an immediate positive response in the 1st four quarters of the 

simulation periods before maintaining an almost steady response on carbon dioxide emissions 

for the rest of the simulation periods. The response of carbon dioxide emissions to industrial 

performance is moderately/slightly positive over the horizon. However, a positive shock in 

gross domestic product growth induced a slow and even response from carbon dioxide 

emissions. There was a sharp positive response of carbon dioxide emissions to fossil fuel 

energy consumption proxy by petroleum and other liquid energy consumption, up to the fourth 

quarter, before the response became sideways throughout the rest of the periods. The response 

of carbon dioxide emissions to itself was first positive, before declining asymptotically for the 

rest of the periods.Hence, the finding is confirmed by the outcome of the study by Ahad, 2018; 

Rasli and Zaman 2016 , that elavorates the nagetive linkage among the variables.  
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Figure 5. 3: Impulse Responses of Carbon Dioxide Emission to other Variables (Ghana) 

Source: Author’s Computations 

 
5.5.5  Forecast Error Variance Decomposition of Carbon Dioxide Emissions (Ghana) 
 

Table 5.6 indicates that in Ghana more than 10% forecast variance against carbon dioxide 

emissions for both short and long run quarter period among the determinants in the vector. 

Similarly, shocks in fossil fuel energy consumption is strongly endogenous to carbon dioxide 

and has the relative importance among the other variables in explaining the variation in carbon 

dioxide emissions in Ghana. The shocks in fossil fuel energy consumption accounted for 0.34% 

and 5.4% in the short run and long run in the simulation periods. Industrial performance, which 

explained 0.20% variation in carbon dioxide emissions in the short run account for 2.33% in 

the forecast errors of carbon dioxide emissions in the 10 quarter periods. The other variables, 

financial development (0.16%), gross domestic product growth (0.12%), and foreign direct 

investment (0.018%), explained relatively marginal variance in carbon dioxide emissions in 

the final quarter. From the result, fossil fuel energy consumption, industrial performance, and 

perhaps financial development, gross domestic product growth, and foreign direct investments 

are real determinants of carbon dioxide emissions. The finding is similar with the result 

reported by Sulaiman and Abdul-Rahim (2017); Eso and Keho 2016.  Therefore, the 

hierarchical order for policymakers in mitigating carbon dioxide emissions could start with 

foreign direct investments and industrial performance with greater emphasis followed by 

financial development.  

 
Table 5.6:  Forecast Error Variance Decomposition of Carbon Dioxide (CO2) Emissions 

(Ghana) 

 Period S.E. 

Financial 

Development 

Foreign 

Direct 

investment 

Industrial 

Performance GDP Growth 

Energy 

Consumption 

CO2 

Emission 

 1  0.055749  0.000000  0.000000  0.000000  0.000000  0.000000  1.066038 

 2  0.122041  0.003290  0.006795  0.045731  0.001062  0.041609  1.306589 

 3  0.200804  0.021054  0.005020  0.203138  0.000393  0.349270  1.585789 

 4  0.291229  0.050133  0.002540  0.446454  0.000224  0.944152  2.060043 

 5  0.393579  0.082872  0.001392  0.738479  0.001564  1.720597  2.709554 

 6  0.508732  0.113001  0.000958  1.053364  0.007995  2.567164  3.463935 

 7  0.637887  0.137033  0.001704  1.376179  0.022910  3.399720  4.225180 

 8  0.782388  0.153987  0.004610  1.699097  0.047630  4.166574  4.907766 

 9  0.943624  0.164506  0.010275  2.018118  0.081261  4.843448  5.462394 
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 10  1.122978  0.169972  0.018679  2.330980  0.121520  5.425201  5.878238 

        

Source: Author’s Computations 

 

5.6: Impulse Response Function (South Africa) 

The impulse response function of South Africa is presented in figure 5.4 which illustrates the 

results. The figure gives the description of carbon dioxide emissions reactions to the shocks or 

innovation in other variables in the South Africa multivariate model, being estimated. The 

response of carbon dioxide emissions to a positive shock in fossil fuel energy consumption is 

sluggish and negatively retarding. This response is also like the reaction of carbon dioxide 

emissions to shocks in financial development, foreign direct investment, and industrial 

performance. However, among all the variables, only shock in gross domestic product growth 

induced a positive response from carbon dioxide emissions, while response from carbon 

dioxide emissions to itself rose throughout the simulation periods. The result is consistent with 

the outcome of previous studies (Abbasi and  Riaz, 2016; Salahuddin and Gow, 2016). Thus, 

since credit provided by the financial sector and economic activities positively influence carbon 

dioxide explosion in South Africa policies should be focus on carbon dioxide emissions 

mitigation to enhance environmental quality. 
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Figure 5.4:  Impulse Responses of Carbon Dioxide Emission to other Variables (South 

Africa) 

Source: Author’s Computation 
 
 
5.6.1:   Forecast Error Variance Decomposition of Carbon Dioxide Emissions (South 

Africa) 
 
Table 5.7 illustrates that in South Africa more than 50% forecast error variance against carbon 

dioxide emissions for both short and long run quarter period among the determinants in the 

vector. The highest percentage error emanates from its own shocks throughout the simulation 

periods. Apart from its own shocks, energy consumption shocks accounted for 0.47% and 

9.82% of the total variations in carbon dioxide emissions in the first quarter of the simulation 

periods. Shocks in energy consumption has the highest relative importance in explaining the 

variance in carbon dioxide emissions. In the final period, the variables that provided 

explanations for variations in carbon dioxide emissions include energy consumption (9.82%), 

gross domestic product growth (1.8%), foreign direct investments (1.76%), financial 

development and industrial performance explained negligible variances in carbon dioxide 
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emissions over the forecast horizon at only 0.77% and 0.18% respectively, in the 10th quarter. 

The overall outcome shows fossil fuel energy consumption and economic growth have the 

highest influence compared to other variables within the vector. The result is accordance with 

the findings of Salahuddin and  Gow (2016). Hence, the hierarchical order for policymakers in 

mitigating carbon dioxide emission could consider energy consumption and growth 

performance with greater emphasis followed by industrial performance and financial 

development.  

 
Table 5.7: Forecast Error Variance Decomposition of Carbon Dioxide Emission (South Africa) 

 

 Period S.E. 

Financial 

Development 

Foreign 

Direct 

investment 

Industrial 

Performance GDP Growth 

Energy 

Consumption 

CO2 

Emission 

 1  0.107127  0.000000  0.000000  0.000000  0.000000  0.000000  0.688463 

 2  0.222840  0.011167  0.006041  2.44E-08  0.139022  0.046957  0.861407 

 3  0.334856  0.054167  0.075193  0.000278  0.337156  0.470853  0.946721 

 4  0.438328  0.143495  0.228004  0.000193  0.592513  1.479545  0.974004 

 5  0.533910  0.267021  0.446831  0.001269  0.873247  2.941035  0.985112 

 6  0.623094  0.400762  0.705153  0.009158  1.149434  4.590920  1.000206 

 7  0.706912  0.524741  0.979714  0.030256  1.392667  6.201703  1.023889 

 8  0.785922  0.628753  1.253653  0.067875  1.585971  7.638882  1.053432 

 9  0.860421  0.710323  1.516308  0.120934  1.724933  8.848481  1.084235 

 10  0.930618  0.771301  1.761510  0.185017  1.814913  9.827688  1.112521 

Source: Author’s Computation 

 
5.6.2: Post Estimation Checks 
 
The post estimation diagnostic tests such as the serial correlation, normality of the residuals 

and Heteroskedasticity tests have been conducted to ensure the model is free from such 

econometric problems for the reliability of the estimated model. Table 5.8 indicates that the 

estimated model for Nigeria, Ghana and South Africa has no problems of serial correlation; 

Heteroskedasticity and the residual are normally distributed. 

 
Table 5.8:    Post Estimation Tests 

Test Statistics Prob. 
Nigeria   
VEC Residual serial correlation  13.479 0.970 
VEC Residual Heteroskedasticity  295.35 0.915 
VEC Residual Normality (Jarque-Bera) 11.869 0.293 
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Ghana   
VEC Residual serial correlation  20.153 0.738 
VEC Residual Heteroskedasticity  167.24 0.516 
VEC Residual Normality (Jarque-Bera) 0.4795 0.786 
South Africa   
VEC Residual serial correlation  25.974 0.408 
VEC Residual Heteroskedasticity  199.61 0.150 
VEC Residual Normality (Jarque-Bera) 6.1196 0.805 

 

 

5.6.3: Conclusion 

The study examines the transmission channel of the fossil fuel energy consumption and carbon 

dioxide emissions nexus in three largest economies in sub-Saharan African countries, including 

other key control variables, namely foreign direct investment, financial development (proxy by 

financial sector credit to the private sector as a % of gross domestic product), industrial 

performance (measured by industry value added as a % of gross domestic product) and output 

growth. The analysis was conducted for Ghana, Nigeria, and South Africa, within a 

multivariate modelling framework, using quarterly time series data from 1980Q1 to 2017Q1. 

The Augmented Dickey-Fuller (ADF) unit root test was employed to conduct the stationarity 

status of the variables used in this study. The results showed the existence of both I I(1) 

variables for Nigeria, Ghana, and South Africa. Based on the nature and order of variable 

integration/ stationarity, as well as existence of cointegrating long run relationships, the Toda-

Yamamoto model within a VAR framework is considered the appropriate estimation method 

for Nigeria, Ghana, and South Africa. 
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CHAPTER SIX 
 

SUMMARY OF FINDINGS, CONCLUSION, POLICY      
 RECOMMENDATIONS, LIMITATIONS OF THE STUDY, AND 

AGENDA FOR FURTHER STUDIES 
 
6.1    Introduction 

The sixth chapter of this research establishes the policy recommendations for reducing carbon 

dioxide emissions. Section 6.1 provides an introductory statement into the focus of the chapter, 

while 6.2 Summary of the study’s findings and section 6.3 identify key policy implications and 

recommendations.   

The impact of carbon dioxide emission is gravely affecting both the ecosystem, humanity and 

causes several environmental hazards. Rapid industrialisation and urbanisation have led to an 

increase in energy-related carbon dioxide emissions and environmental degradation. The one 

of the major sources of energy in developing countries is fossil fuels, which lead to the issue 

of lowering the efficiency of energy consumption and increasing carbon dioxide emissions. 

There has been an upsurge in energy-related carbon dioxide emissions around the world and 

Africa due to its stage of development, which will most likely contribute to global warming 

and greenhouse gases emissions in the coming years.  

The future energy use of Africa is expected to increase due to its growing economy, the pace 

of economic development, and a rapidly increasing population (USEIA, 2018). Hence this 

empirically examine the impact of energy consumption, financial development, foreign direct 

investment, gross domestic product growth, and industrial performance on carbon dioxide 

emissions in the three largest economies of sub - Saharan African countries namely: Nigeria, 

Ghana, and South Africa by applying autoregressive distributive lag model (ARDL), vector 

autoregressive and Toda-Yamamoto causality techniques from first quarter 1980 to first quarter 

2017. The study firstly, starts with descriptive statistics analysis of all the variables for all the 

three the countries in which the variables response well on carbon dioxide emissions. 

6.2    Summary of the study’s Findings 
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The major findings from the first objective of the study reveal an existence of cointegration 

among the variables in the estimated models of the three largest economies of sub-Saharan 

African countries. The results confirm the African continent’s pollution–haven hypothesis. 

Similarly, the finding from the estimated model for Nigeria illustrates a negative and significant 

relationship between fossil fuel energy consumption, financial development, foreign direct 

investments, gross domestic product growth and industrial performance and carbon dioxide 

emissions. The result from the model of Ghana also reveals a negative link among fossil fuel 

energy consumption, domestic credit provided, foreign direct investments, industrial value 

addition, gross domestic product growth, and carbon dioxide emissions. Signifying energy use 

also intensifies carbon dioxide emissions, thus confirming the reliance and dependence on 

fossil fuels for fiscal sustainability in the region, with attendant effects on environmental 

quality.  

The results show a high gross domestic product growth level enhances the range of 

environmental degradation because of increased in carbon dioxide emissions. It effectively 

supports the applicability of the environmental Kuznets “inverted U-shaped” curve hypothesis. 

However, the outcome from South African model shows that domestic credit provided by the 

financial sector, foreign direct investments, economic growth, and industrial value addition 

increase the level of carbon dioxide emissions. This finding confirmed fossil fuel energy 

consumption as a key determinant of carbon dioxide emissions in the studied countries, and in 

the overall African continent. These results are in line with findings from the outcome of the 

studies by Salahuddin, et al. (2015) 

In another development, the findings form the second objective reveals the estimated outcome 

of impulse response and variance forecasting models on fossil fuel energy use and carbon 

dioxide emissions nexus of the three largest economies in sub-Saharan Africa. The result from 

the impulse response model of Nigeria shows a positive shock among fossil fuel energy 

consumption and carbon dioxide emissions from the short run to long quarter periods. 

Similarly, the finding from the impulse response model for Ghana and South Africa also 

illustrates that shock in energy use accelerates the capacity of carbon dioxide emission in these 

countries. Moreover, the estimate from the variance decomposition in Nigeria, Ghana and 

South Africa reveals a positive and significant shock of fossil fuel energy consumption on 

carbon dioxide emission. This means fossil fuel use increase the level of carbon dioxide 

emissions in these countries. Moreover, the finding from the third objective show estimated 
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model of impulse response and variance decomposition on market-induced variables and 

carbon dioxide emissions in Nigeria, Ghana, and South Africa.  

The result of impulse response for Nigeria, Ghana and South Africa indicates negative shocks 

of fossil fuel energy consumption, foreign direct investments, credit provided by the financial 

sector and industrial performance towards carbon dioxide emissions. This finding illustrates 

that the overall situation from the first quarter period to last quarter these variables reduce the 

capacity of carbon dioxide emissions. However, domestic credit and economic growth 

positively influence carbon dioxide in South Africa. Nonetheless, the result from variance 

decomposition for Nigeria, Ghana and South Africa reveals that fossil fuel use, economic 

growth, foreign direct investments, and industrial performance forecast positively on the trend 

of carbon dioxide emissions in long-run quarter in these countries. The outcome is justified by 

the work of Zafar, et al. (2019). 

Lastly, the outcome from the Toda-Yamamoto causality model in Nigeria shows the existence 

of causality between economic growth, industrial value, credit, fossil fuel energy consumption 

and carbon dioxide emissions. In the case of Ghana and South Africa, the result reveals no 

causality among the variables. However, fossil fuel energy use has no influence on carbon 

dioxide discharge in South Africa. Previous studies on energy, financial development, 

industrial performance, and carbon dioxide exists in the literature among them are Salahuddin, 

et al. (2015), Paramati, et al. (2017) Meng, et al. (2018) and Zafar, et al.  (2019). However, 

none of these studies examines the influence of energy use, financial development, foreign 

direct investments, and industrial performance on carbon dioxide discharge for quarterly data 

basis in Nigeria, Ghana, and South Africa. This study examined the influence of energy use, 

financial development, foreign direct investments, and industrial performance on carbon 

dioxide discharge for quarterly data. 

6.3    Conclusion 

The present study empirically examines the effect of energy consumption, financial progress, 

foreign direct investments, and industrial performance on carbon dioxide discharge in Nigeria, 

Ghana, and South Africa by applying ARDL, VAR, IRF, VDF, and Toda-Yamamoto 

techniques from first quarter of 1980 to first quarter of 2017. The result shows the existence of 

cointegration among the variables. The outcome for Nigeria reveals that energy use, financial 

progress, foreign direct investments, and industrial performance decelerate carbon dioxide 

discharge. Financial development and industrial performance reduce the capacity of carbon 
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dioxide explosion in Ghana. The estimated result from the model of South Africa illustrates 

that industrial performance and financial development increase carbon dioxide, while foreign 

direct investments negatively influence carbon dioxide discharge. However, the outcome from 

the causality estimate reveals causality between economic growth, industrial value, fossil fuel 

energy consumption, and carbon dioxide emissions in Nigeria. However, Ghana and South 

African estimate reveals no causality among the variables. 

 

The findings provide broader information concerning the contribution of fossil fuel energy 

consumption and industrial performance on carbon dioxide in Nigeria, Ghana, and South 

Africa. Hence, the research is significant to Nigerian, Ghanaian and South African 

policymakers on the policies aimed at mitigating carbon dioxide emissions. Various studies in 

the literature have analyse the effect of energy consumption and industrial performance on 

carbon dioxide. However, the effect of quarterly data on these variables in Nigeria, Ghana and 

South Africa has been left uninvestigated. Therefore, the findings of this study contribute to 

the existing literature as none of the studies investigated these effects in Nigeria, Ghana, and 

South Africa. 

6.4   Policy implications and Recommendations 

This thesis provides its academic inputs by presenting pertinent information and evidence-

based findings to relevant stakeholders in the policymaking sphere to assist them formulate 

suitable environmental and industrial policies towards effective maintenance of environmental 

quality in the sub-Saharan African region. Based on the empirical investigation of fossil fuel 

energy consumption, industrial performance and other market induced macro-economic 

variables in the three largest economies of sub-Saharan African countries namely: Nigeria, 

Ghana and South Africa, the following key policy implications and recommendations were 

offered for governments and policymakers to consider: 

• It has become essential for sub-Saharan African countries to explore cleaner and 

greener energy sources due to the impact of fossil fuel consumption on carbon dioxide 

emissions. The concentration of clean and green energy should however not be strictly 

on industries but must also be available for household usage and transportation. In 

addition, low carbon household units are prerequisites for the attainment of low-carbon 

transition in economic development by vigorously endorsing the usage of wind power, 

biogas/biofuel, solar power, and other clean renewable energy. Thus, a shift towards a 

low-carbon economy holds potentials to evade carbon lock-in and path dependence 
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along with the urban infrastructural development and high energy-consuming 

infrastructure in creating of utilities for households’ consumption. 

• The result of the study suggested that foreign direct investment inflow in the region 

have broadly enhance carbon dioxide emission across the three (3) countries, alluding 

to the prevalence of bulk of investments in the region that is mostly in the hydrocarbon 

sector, known for intense pollution and driver of environmental degradation.  

Therefore, this study recommends the need for governments of sub-Saharan African 

countries to leverage on foreign direct investment inflow to sectors where carbon 

emissions are low and or used to help transfer efficient green technologies from other 

countries. The study noted that developed countries possess notable multinational 

companies with state-of-the-art clean technologies, which could be transferred to 

developing countries. Thus, countries in sub-Saharan African region and other 

developing countries could consider the conduct of environmental impact assessments 

of foreign direct investment inflows to ensure that such investments remain green, 

emphasises environment-friendly economic growth, that curtail adverse effects on the 

environment from industrial production process. This verdict will guarantee that these 

developing countries attain economic growth and achieve noteworthy reduction in 

environmental emissions. 

• The study established that financial development, proxy by credit to the private sector, 

enhances carbon-dioxide emissions in the three largest sub-Saharan African countries. 

This ultimately implies that financial development will in the long run inherently 

increase carbon-dioxide emissions in the environment. This situation is due to increase 

emissions in industries and players in the transportation sector due to investment in 

inefficient energy sources. The proposition to mitigate the impact of financial 

development on carbon dioxide emissions can be actualised through increased 

investment in research and development towards facilitating efficient and greener 

production processes, exploring green energy, and apt utilisation of solar energies.  

With efficient financial development, sub-Saharan African countries can afford to 

invest funds in research and development for green energy. 

 

• Financial systems regulators of sub-Saharan African countries should develop 

regulatory incentives to encourage banking credit intermediation for businesses to 

adopt environmentally friendly energy sources in their production activities. This call 
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for increased awareness of the benefits of enhancing environmental quality and 

heightened demand for innovative energy technologies that reduce environmental 

degradation. 

 

• It is imperative for sub-Saharan African countries to design their economic 

development path and frameworks in such ways that do not cause a large-scale rise in 

greenhouse gas (GHG) emissions. The tenets of the environmental kuznets hypothesis, 

notwithstanding, that pollution increases with economic growth/activities, should be 

technically and strategically be decoupled through the adoption of innovative modern 

energy sources in the production process. This will effectively provide scope for 

tackling of several prevalent developmental challenges related to healthcare, lack of 

access to renewable energy-sources, amidst widespread poverty and environmentally 

induced socio-economic conflicts, and ultimate environmental degradation. 

 
 

• Governments of sub-Saharan Africa should as a matter of urgency strengthen their 

environmental protection laws and regulations to avoid a situation where the region is 

increasingly being seen as haven for pollution by foreign companies due to lax control 

and monitoring. Consequently, authorities in the region should continue to pay attention 

to improving environmental quality through appropriate pricing, imposition of 

penalties/sanctions and setting of standards, as foreign energy firms, for example, often 

relocate their factories/companies to poorly regulated developing economies to avoid 

paying environmental control costs obtainable in developed countries. The practice of 

non-compliance of firms to extant laws will no doubt enhance emissions that directly 

degrade the environment. 

6.5    Limitations of the Study 

This study is not free from limitations despite the efforts made at obtaining robust reasonable 

findings. One probable inherent limitation to this study is unavailability of data on some sub-

Saharan African countries. In addition, this shortage of data availability has prevented further 

disaggregation of some variables into different components and their inclusion in the models. 

This constraint is recognised while pursuing this research. However, attempt was made to 

overcome to a reasonable extent, and it is believed that this study can possibly provide useful 

information to understanding of the impact of energy consumption and industrial performance 
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in determining carbon dioxide discharge in Nigeria, Ghana, and South Africa as well as a signal 

to future studies in the area.  

 
The study-utilises variables like, fossil fuel energy consumption, foreign direct investments 

financial development, industrial performance, and gross domestic product growth that explain 

the dependents variable. Nevertheless, certain variables such as banks liquidity ratio, energy 

prices and other disaggregated energy variables that have been used in the earlier studies were 

not considered in this study.  The study also considered the use of time series analysis due the 

fact that it provides efficient and unbiased estimation. Nonetheless, the analysis was limited to 

the period first quarter of 1980 to first quarter of 2017 due to the unavailability of data for long 

period especially those on the carbon dioxide emission variable. Furthermore, the study was 

limited to only Nigeria, Ghana, and South Africa due to the unavailability of data employed 

especially data on carbon dioxide and fossil fuel energy consumption. Moreover, the data 

employed, and the number sample limited the choice of using other estimations techniques 

such as the Generalized System of Moments (GMM), which requires a greater number of 

samples. 

6.6    Suggestions for Further Research 

Following the limitations of this study, the study suggests that further research should consider 

the following issues. Firstly, future studies should expand the coverage by extending the data 

set to cover the whole sub-Saharan African countries if data is available as the issue of carbon 

dioxide, fossil fuel energy consumption are not only limited to the sampled countries, but 

rather, the whole sub-Saharan African countries. Furthermore, this study only examines fossil 

fuel energy consumption as well as industrial performance and their relationship with carbon 

dioxide by including financial development and foreign direct investments as the determinants 

of carbon dioxide discharge. 

However, there are other factors that determine carbon dioxide emissions, which were not 

included in this study. Therefore, future research should investigate these other factors such as 

energy prices and population density and integrate them into the relationship to see how they 

affect carbon dioxide discharge; also, further studies could consider panel study of sub-Saharan 

African countries.  This will require a large data set that will include all the countries in sub–

Saharan African countries. Finally, this study employed ARDL, VAR, IRF, VDF, causality, 

and Toda-Yamamoto techniques. Future studies may consider other approach in terms of panel 



142 
 

analysis such as FMOLS, GMM and DOLS to study energy consumption, industrial 

performance, and carbon dioxide emissions in sub–Saharan African countries. Besides, future 

research should expand the scope of this study by making a comparison with other continents 

in the world to see the extent to which the result differs across different continents. 
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APPENDIXES 

APPENDIX 1: Impulse response and variance decomposition and Toda-Yamamoto causality 

Nigeria 

 
VAR Lag Order Selection Criteria     
Endogenous variables: CO2 FD FDI FOS GDPG IP     
Exogenous variables: C      
Date: 09/04/22   Time: 10:03     
Sample: 1980Q1 2017Q1     
Included observations: 141     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -1133.978 NA   0.424280  16.16990  16.29538  16.22089 

1  135.7614  2413.405  1.07e-08 -1.329949 -0.451595 -0.973016 
2  457.2701  583.7321  1.86e-10 -5.379718  -3.748489*  -4.716843* 
3  466.4034  15.80513  2.75e-10 -4.998629 -2.614526 -4.029812 
4  481.3896  24.65822  3.75e-10 -4.700562 -1.563583 -3.425802 
5  568.8007  136.3861  1.85e-10 -5.429797 -1.539944 -3.849095 
6  669.2496   148.1799*   7.63e-11*  -6.343966* -1.701238 -4.457322 
7  680.9144  16.21485  1.13e-10 -5.998785 -0.603182 -3.806199 
8  698.6001  23.07928  1.55e-10 -5.739009  0.409469 -3.240480 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 
 

 
VAR Granger Causality/Block Exogeneity Wald Tests 
Date: 09/04/22   Time: 10:01  
Sample: 1980Q1 2017Q1  
Included observations: 135  

    
        

Dependent variable: CO2  
    
    Excluded Chi-sq df Prob. 
    
    FD  17.66794 6  0.0071 

FDI  2.853565 6  0.8270 
FOS  12.53149 6  0.0511 

GDPG  20.64562 6  0.0021 
IP  29.47766 6  0.0000 
    
    All  66.07075 30  0.0002 
    
        

Dependent variable: FD  
    
    Excluded Chi-sq df Prob. 
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CO2  2.376754 6  0.8820 
FDI  0.693422 6  0.9946 
FOS  4.977721 6  0.5467 

GDPG  1.904177 6  0.9283 
IP  2.624549 6  0.8543 
    
    All  13.56539 30  0.9957 
    
        

Dependent variable: FDI  
    
    Excluded Chi-sq df Prob. 
    
    CO2  40.37014 6  0.0000 

FD  4.374424 6  0.6261 
FOS  3.099535 6  0.7963 

GDPG  4.894590 6  0.5574 
IP  7.117329 6  0.3101 
    
    All  56.69572 30  0.0023 
    
        

Dependent variable: FOS  
    
    Excluded Chi-sq df Prob. 
    
    CO2  1.888630 6  0.9297 

FD  7.986798 6  0.2391 
FDI  5.539876 6  0.4767 

GDPG  6.950852 6  0.3254 
IP  7.648394 6  0.2650 
    
    All  23.41312 30  0.7979 
    
        

Dependent variable: GDPG  
    
    Excluded Chi-sq df Prob. 
    
    CO2  11.63622 6  0.0706 

FD  7.584822 6  0.2701 
FDI  6.821386 6  0.3377 
FOS  10.21623 6  0.1158 
IP  12.14948 6  0.0587 
    
    All  43.11246 30  0.0573 
    
        

Dependent variable: IP  
    
    Excluded Chi-sq df Prob. 
    
    CO2  18.75145 6  0.0046 

FD  32.59812 6  0.0000 
FDI  2.309134 6  0.8892 
FOS  13.86531 6  0.0312 

GDPG  8.183881 6  0.2249 
    
    All  44.98924 30  0.0387 
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Date: 09/04/22   Time: 07:21     
Sample (adjusted): 1981Q2 2017Q1     
Included observations: 144 after adjustments    
Trend assumption: Linear deterministic trend    
Series: CO2 FD FDI FOS GDPG IP      
Lags interval (in first differences): 1 to 4    

       
Unrestricted Cointegration Rank Test (Trace)    
       
       Hypothesized  Trace 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.338798  99.84054  95.75366  0.0254   

At most 1  0.110335  40.26841  69.81889  0.9435   
At most 2  0.091932  23.43326  47.85613  0.9536   
At most 3  0.040266  9.546519  29.79707  0.9862   
At most 4  0.024562  3.628230  15.49471  0.9312   
At most 5  0.000327  0.047068  3.841466  0.8282   

       
        Trace test indicates 1 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)   
       
       Hypothesized  Max-Eigen 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.338798  59.57213  40.07757  0.0001   

At most 1  0.110335  16.83516  33.87687  0.9279   
At most 2  0.091932  13.88674  27.58434  0.8304   
At most 3  0.040266  5.918289  21.13162  0.9845   
At most 4  0.024562  3.581162  14.26460  0.9007   
At most 5  0.000327  0.047068  3.841466  0.8282   

       
        Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):    
       
       CO2 FD FDI FOS GDPG IP  

 7.693430  0.567019  0.212941  10.30344  0.145579 
 0.658

661  

 2.131149 -0.320327 -0.040828 -5.141754  0.088715 

-
0.0894

42  

 4.002219 -0.006857  1.303330  0.657494 -0.030803 
 0.001

419  

 0.704810  0.167282  0.099445 -3.413362 -0.186493 
 0.042

929  

-1.722921  0.199429 -0.420277 -9.557123  0.101756 

-
0.0698

34  

 5.671899 -0.002142  0.017685  5.589902 -0.050259 

-
0.0421

29  
       
              
 Unrestricted Adjustment Coefficients (alpha):     
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D(CO2) -0.006305 -0.003157 -0.002031 -0.000193 

-
0.0002

64  3.63E-05 

D(FD) -0.003891  0.057463 -0.015534 -0.030264 

-
0.0208

39  0.002300 

D(FDI)  0.038915  0.032433 -0.032437 -0.004179 
 0.019

665 -0.000604 

D(FOS)  9.59E-05 -0.000559  0.000686  0.000674 
 0.000

652  0.000183 

D(GDPG) -0.404463  0.184818  0.007491  0.180073 

-
0.0177

35 -0.001071 

D(IP) -0.159654 -0.016364  0.075284 -0.026736 
 0.037

294 -0.000924 
       
              
1 Cointegrating Equation(s):  Log likelihood  536.1009    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  

 1.000000  0.073702  0.027678  1.339252  0.018922 
 0.085

613  

  (0.01045)  (0.01995)  (0.20420)  (0.00457) 
 (0.008

38)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.048507      

  (0.01052)      
D(FD) -0.029935      

  (0.21152)      
D(FDI)  0.299389      

  (0.14381)      
D(FOS)  0.000738      

  (0.00836)      
D(GDPG) -3.111705      

  (0.85315)      
D(IP) -1.228286      

  (0.30937)      
       
              
2 Cointegrating Equation(s):  Log likelihood  544.5185    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  

 1.000000  0.000000  0.012269  0.104825  0.026393 
 0.043

637  

   (0.04868)  (0.50112)  (0.01131) 
 (0.012

33)  

 0.000000  1.000000  0.209081  16.74896 -0.101360 
 0.569

541  

   (0.64224)  (6.61155)  (0.14920) 
 (0.162

64)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.055234 -0.002564     

  (0.01066)  (0.00087)     
D(FD)  0.092528 -0.020613     

  (0.21539)  (0.01757)     
D(FDI)  0.368509  0.011676     

  (0.14731)  (0.01202)     
D(FOS) -0.000454  0.000234     

  (0.00866)  (0.00071)     
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D(GDPG) -2.717829 -0.288540     
  (0.87479)  (0.07136)     

D(IP) -1.263160 -0.085285     
  (0.32080)  (0.02617)     

       
              
3 Cointegrating Equation(s):  Log likelihood  551.4619    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.101378  0.027733  0.045292  

    (0.52222)  (0.01113)  (0.01280)  
 0.000000  1.000000  0.000000  16.69021 -0.078527  0.597734  

    (6.32494)  (0.13479)  (0.15499)  
 0.000000  0.000000  1.000000  0.280980 -0.109207 -0.134847  

    (3.20274)  (0.06825)  (0.07848)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.063363 -0.002550 -0.003861    

  (0.01181)  (0.00086)  (0.00175)    
D(FD)  0.030358 -0.020507 -0.023420    

  (0.24060)  (0.01755)  (0.03560)    
D(FDI)  0.238690  0.011899 -0.035314    

  (0.16261)  (0.01186)  (0.02406)    
D(FOS)  0.002289  0.000229  0.000937    

  (0.00967)  (0.00071)  (0.00143)    
D(GDPG) -2.687847 -0.288592 -0.083909    

  (0.97855)  (0.07137)  (0.14478)    
D(IP) -0.961858 -0.085801  0.064791    

  (0.35348)  (0.02578)  (0.05230)    
       
              
4 Cointegrating Equation(s):  Log likelihood  554.4210    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.000000  0.024805  0.044077  

     (0.01148)  (0.01164)  
 0.000000  1.000000  0.000000  0.000000 -0.560441  0.397672  

     (0.31431)  (0.31870)  
 0.000000  0.000000  1.000000  0.000000 -0.117320 -0.138215  

     (0.06763)  (0.06857)  
 0.000000  0.000000  0.000000  1.000000  0.028874  0.011987  

     (0.01833)  (0.01859)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.063499 -0.002582 -0.003880 -0.049410   

  (0.01185)  (0.00089)  (0.00175)  (0.01591)   
D(FD)  0.009028 -0.025570 -0.026430 -0.242464   

  (0.24005)  (0.01802)  (0.03551)  (0.32233)   
D(FDI)  0.235744  0.011200 -0.035729  0.227129   

  (0.16308)  (0.01224)  (0.02412)  (0.21897)   
D(FOS)  0.002765  0.000342  0.001004  0.002014   

  (0.00969)  (0.00073)  (0.00143)  (0.01301)   
D(GDPG) -2.560930 -0.258469 -0.066001 -5.727376   

  (0.97030)  (0.07283)  (0.14352)  (1.30287)   
D(IP) -0.980702 -0.090273  0.062132 -1.420084   

  (0.35389)  (0.02656)  (0.05234)  (0.47519)   
       
              
5 Cointegrating Equation(s):  Log likelihood  556.2116    
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Normalized cointegrating coefficients (standard error in parentheses)   
CO2 FD FDI FOS GDPG IP  

 1.000000  0.000000  0.000000  0.000000  0.000000  0.044936  
      (0.01671)  

 0.000000  1.000000  0.000000  0.000000  0.000000  0.378256  
      (0.17044)  

 0.000000  0.000000  1.000000  0.000000  0.000000 -0.142279  
      (0.08327)  

 0.000000  0.000000  0.000000  1.000000  0.000000  0.012987  
      (0.00885)  

 0.000000  0.000000  0.000000  0.000000  1.000000 -0.034644  
      (0.48636)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.063044 -0.002635 -0.003769 -0.046886 -0.001126  

  (0.01206)  (0.00093)  (0.00184)  (0.02032)  (0.00036)  
D(FD)  0.044932 -0.029725 -0.017672 -0.043302  0.008533  

  (0.24383)  (0.01875)  (0.03715)  (0.41064)  (0.00733)  
D(FDI)  0.201862  0.015121 -0.043994  0.039184  0.012322  

  (0.16524)  (0.01271)  (0.02518)  (0.27829)  (0.00497)  
D(FOS)  0.001641  0.000472  0.000730 -0.004222 -0.000116  

  (0.00985)  (0.00076)  (0.00150)  (0.01659)  (0.00030)  
D(GDPG) -2.530373 -0.262006 -0.058548 -5.557878 -0.078103  

  (0.98797)  (0.07596)  (0.15055)  (1.66387)  (0.02969)  
D(IP) -1.044957 -0.082836  0.046458 -1.776512 -0.018232  

  (0.35901)  (0.02760)  (0.05471)  (0.60463)  (0.01079)  
       
        
 
Impulse response Nigeria 
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Variance decomposition Nigeria 

         
          Varian

ce 
Decom
position 
of CO2:   

 

     
 Period S.E. CO2  FD FDI FOS GDPG IP 

         
          1  0.017293  100.0000   0.000000  0.000000  0.000000  0.000000  0.000000 

 2  0.035600  99.01208   0.026661  0.209376  0.014419  0.462561  0.274901 
 3  0.053449  97.85498   0.130021  0.502493  0.017800  1.094373  0.400334 
 4  0.069670  96.34161   0.337874  0.884249  0.036687  1.880686  0.518895 
 5  0.084102  94.40248   0.656631  1.355049  0.100539  2.778199  0.707105 
 6  0.096992  92.03324   1.067563  1.906275  0.250181  3.723213  1.019524 
 7  0.108701  89.32149   1.530064  2.514403  0.516958  4.631010  1.486074 
 8  0.119555  86.43896   1.993569  3.144559  0.903539  5.419859  2.099516 
 9  0.129783  83.60290   2.412494  3.758030  1.379404  6.034067  2.813104 
 10  0.139515  81.01996   2.757018  4.320677  1.891985  6.454869  3.555495 

         
          Varian

ce 
Decom
position 
of FD:   
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NIGERIA 
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VARIANCE DECOM 

 
     
      Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  0.017449  100.0000  0.000000  0.000000 

 2  0.036172  99.93223  0.025027  0.042742 
 3  0.054331  99.86836  0.081445  0.050199 
 4  0.070705  99.75824  0.192209  0.049550 
 5  0.085038  99.55003  0.390778  0.059193 
 6  0.097473  99.19176  0.711280  0.096958 
 7  0.108313  98.62890  1.180177  0.190919 
 8  0.117899  97.81650  1.808765  0.374736 
 9  0.126549  96.73477  2.588808  0.676418 
 10  0.134530  95.39850  3.492966  1.108532 

     
      Varian

ce 
Decom
position 
of FOS:     
 Period S.E. CO2 FOS IP 

     
      1  0.012756  0.066390  99.93361  0.000000 
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 2  0.026334  0.023303  99.92942  0.047275 
 3  0.039468  0.010413  99.89347  0.096117 
 4  0.051298  0.009223  99.83577  0.155005 
 5  0.061662  0.021337  99.73443  0.244236 
 6  0.070673  0.054988  99.56004  0.384973 
 7  0.078536  0.119139  99.28372  0.597137 
 8  0.085470  0.219230  98.88510  0.895669 
 9  0.091669  0.355003  98.35819  1.286812 
 10  0.097300  0.520581  97.71318  1.766241 

     
      Varian

ce 
Decom
position 

of IP:     
 Period S.E. CO2 FOS IP 

     
      1  0.490857  2.147041  0.853758  96.99920 

 2  0.992671  1.740101  0.527391  97.73251 
 3  1.477027  1.183967  0.326254  98.48978 
 4  1.911949  0.738548  0.196529  99.06492 
 5  2.287904  0.565971  0.185605  99.24842 
 6  2.607366  0.761876  0.379296  98.85883 
 7  2.878843  1.366285  0.863603  97.77011 
 8  3.112957  2.365330  1.694614  95.94006 
 9  3.319876  3.695730  2.879622  93.42465 
 10  3.507855  5.258382  4.374068  90.36755 

     
      Choles

ky 
Orderin
g: CO2 
FOS IP     
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APPENDIX 2: Impulse response and variance decomposition and Toda-Yamamoto causality 

Ghana 

 
VAR Lag Order Selection Criteria     
Endogenous variables: CO2 FD FDI FOS GDPG IP     
Exogenous variables: C      
Date: 09/04/22   Time: 10:06     
Sample: 1980Q1 2017Q1     
Included observations: 141     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -1781.389 NA   4128.914  25.35303  25.47851  25.40402 

1 -127.8468  3142.902  4.48e-07  2.409174  3.287528  2.766107 
2  150.7392  505.8014  1.44e-08 -1.031762   0.599467* -0.368887 
3  161.0871  17.90710  2.09e-08 -0.667903  1.716201  0.300915 
4  186.8762  42.43299  2.44e-08 -0.523066  2.613913  0.751694 
5  397.8432  329.1684  2.09e-09 -3.004868  0.884986 -1.424166 
6  498.8033  148.9340  8.57e-10 -3.926288  0.716441 -2.039643 
7  528.9848  41.95448  9.73e-10 -3.843756  1.551847 -1.651170 
8  654.7118   164.0692*   2.90e-10*  -5.116479*  1.031999  -2.617950* 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 
 
VAR Granger Causality/Block Exogeneity Wald Tests 
Date: 09/04/22   Time: 10:08  
Sample: 1980Q1 2017Q1  
Included observations: 131  

    
        

Dependent variable: CO2  
    
    Excluded Chi-sq df Prob. 
    
    FD  5.568740 8  0.6954 

FDI  3.623159 8  0.8894 
FOS  78.59650 8  0.0000 

GDPG  17.43800 8  0.0259 
IP  4.445924 8  0.8148 
    
    All  129.3149 40  0.0000 
    
        

Dependent variable: FD  
    
    Excluded Chi-sq df Prob. 
    
    CO2  5.622040 8  0.6895 

FDI  3.107491 8  0.9274 
FOS  10.14145 8  0.2552 

GDPG  8.211693 8  0.4131 
IP  9.634200 8  0.2916 
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    All  42.76392 40  0.3533 
    
        

Dependent variable: FDI  
    
    Excluded Chi-sq df Prob. 
    
    CO2  5.524988 8  0.7003 

FD  5.828360 8  0.6665 
FOS  10.88224 8  0.2085 

GDPG  7.658577 8  0.4675 
IP  20.45998 8  0.0087 
    
    All  73.21050 40  0.0010 
    
        

Dependent variable: FOS  
    
    Excluded Chi-sq df Prob. 
    
    CO2  7.346246 8  0.4998 

FD  6.611623 8  0.5791 
FDI  16.27358 8  0.0386 

GDPG  12.06151 8  0.1485 
IP  1.171874 8  0.9969 
    
    All  56.93926 40  0.0401 
    
        

Dependent variable: GDPG  
    
    Excluded Chi-sq df Prob. 
    
    CO2  10.62615 8  0.2238 

FD  19.34467 8  0.0131 
FDI  11.18685 8  0.1913 
FOS  11.81412 8  0.1597 
IP  18.49432 8  0.0178 
    
    All  54.09793 40  0.0675 
    
        

Dependent variable: IP  
    
    Excluded Chi-sq df Prob. 
    
    CO2  14.96455 8  0.0598 

FD  9.645847 8  0.2908 
FDI  9.766311 8  0.2818 
FOS  11.69413 8  0.1654 

GDPG  12.43362 8  0.1329 
    
    All  44.00591 40  0.3058 
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Date: 09/04/22   Time: 07:29     
Sample (adjusted): 1981Q2 2017Q1     
Included observations: 144 after adjustments    
Trend assumption: Linear deterministic trend    
Series: CO2 FD FDI FOS GDPG IP      
Lags interval (in first differences): 1 to 4    

       
Unrestricted Cointegration Rank Test (Trace)    
       
       Hypothesized  Trace 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.849199  344.5724  95.75366  0.0000   

At most 1 *  0.214705  72.15442  69.81889  0.0322   
At most 2  0.125550  37.35025  47.85613  0.3312   
At most 3  0.060970  18.03118  29.79707  0.5637   
At most 4  0.060218  8.972471  15.49471  0.3679   
At most 5  0.000202  0.029074  3.841466  0.8646   

       
        Trace test indicates 2 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)   
       
       Hypothesized  Max-Eigen 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.849199  272.4180  40.07757  0.0001   

At most 1 *  0.214705  34.80418  33.87687  0.0387   
At most 2  0.125550  19.31907  27.58434  0.3903   
At most 3  0.060970  9.058706  21.13162  0.8277   
At most 4  0.060218  8.943397  14.26460  0.2909   
At most 5  0.000202  0.029074  3.841466  0.8646   

       
        Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):    
       
       CO2 FD FDI FOS GDPG IP  

-1.718250 -0.057473 -0.024701  11.49071 -0.039084  0.024341  
-0.694776  0.321161  0.124341 -9.501048  0.129119 -0.134749  
 0.220741 -0.198542  0.383672 -18.66993  0.087444  0.240550  
-0.554741  0.212495  0.564320 -65.36143 -0.340551  0.116832  
-0.108171  0.339086 -0.590697 -9.893706 -0.113740  0.052391  
-1.479430  0.146590  0.174666 -54.19535  0.318896 -0.041723  

       
              
 Unrestricted Adjustment Coefficients (alpha):     
       
       D(CO2)  4.069014  0.152754 -0.000216  0.013433 -0.008469  0.001991 

D(FD) -0.014937 -0.029669  0.050150  0.005980  0.007061 -0.002641 
D(FDI) -0.004940  0.031103 -0.015562 -0.018326  0.021467 -0.001665 
D(FOS) -0.000122  0.000277  0.000169  2.70E-05 -6.82E-05 -1.85E-06 

D(GDPG)  0.011165  0.021213 -0.121510  0.148768 -0.003344 -0.002463 
D(IP)  0.036647 -0.041899 -0.036492 -0.011823 -0.073031 -0.002058 
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1 Cointegrating Equation(s):  Log likelihood  372.0229    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.033449  0.014376 -6.687451  0.022747 -0.014166  

  (0.01192)  (0.02050)  (1.77787)  (0.01115)  (0.00689)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -6.991581      

  (0.27727)      
D(FD)  0.025666      

  (0.03879)      
D(FDI)  0.008488      

  (0.02888)      
D(FOS)  0.000210      

  (0.00013)      
D(GDPG) -0.019185      

  (0.11329)      
D(IP) -0.062968      

  (0.05722)      
       
              
2 Cointegrating Equation(s):  Log likelihood  389.4250    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.001329 -5.313442  0.008671 -0.000123  

   (0.02369)  (1.96783)  (0.01301)  (0.00792)  
 0.000000  1.000000  0.390037 -41.07821  0.420799 -0.419836  

   (0.44820)  (37.2362)  (0.24610)  (0.14979)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -7.097711 -0.184800     

  (0.29794)  (0.05245)     
D(FD)  0.046280 -0.008670     

  (0.04154)  (0.00731)     
D(FDI) -0.013121  0.010273     

  (0.03069)  (0.00540)     
D(FOS)  1.74E-05  9.59E-05     

  (0.00013)  (2.4E-05)     
D(GDPG) -0.033923  0.006171     

  (0.12214)  (0.02150)     
D(IP) -0.033858 -0.015563     

  (0.06130)  (0.01079)     
       
              
3 Cointegrating Equation(s):  Log likelihood  399.0845    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000 -5.239438  0.008184 -0.000577  

    (1.25808)  (0.01292)  (0.00748)  
 0.000000  1.000000  0.000000 -19.36561  0.277693 -0.552909  

    (21.7117)  (0.22290)  (0.12916)  
 0.000000  0.000000  1.000000 -55.66801  0.366904  0.341182  

    (26.4684)  (0.27173)  (0.15746)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -7.097759 -0.184757 -0.081597    

  (0.30005)  (0.06140)  (0.06496)    
D(FD)  0.057350 -0.018627  0.015921    

  (0.04093)  (0.00838)  (0.00886)    
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D(FDI) -0.016556  0.013363 -0.001981    
  (0.03079)  (0.00630)  (0.00667)    

D(FOS)  5.47E-05  6.24E-05  0.000102    
  (0.00013)  (2.7E-05)  (2.9E-05)    

D(GDPG) -0.060745  0.030296 -0.044258    
  (0.12122)  (0.02480)  (0.02624)    

D(IP) -0.041913 -0.008317 -0.020116    
  (0.06142)  (0.01257)  (0.01330)    

       
              
4 Cointegrating Equation(s):  Log likelihood  403.6139    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.000000  0.104539 -0.007213  

     (0.03589)  (0.01669)  
 0.000000  1.000000  0.000000  0.000000  0.633834 -0.577438  

     (0.28395)  (0.13203)  
 0.000000  0.000000  1.000000  0.000000  1.390662  0.270672  

     (0.61226)  (0.28468)  
 0.000000  0.000000  0.000000  1.000000  0.018390 -0.001267  

     (0.00718)  (0.00334)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -7.105211 -0.181903 -0.074017  44.43056   

  (0.31301)  (0.07026)  (0.11157)  (11.1868)   
D(FD)  0.054033 -0.017356  0.019295 -1.216881   

  (0.04269)  (0.00958)  (0.01522)  (1.52566)   
D(FDI) -0.006390  0.009469 -0.012323  1.136069   

  (0.03196)  (0.00717)  (0.01139)  (1.14209)   
D(FOS)  3.97E-05  6.82E-05  0.000117 -0.008946   

  (0.00014)  (3.1E-05)  (4.9E-05)  (0.00491)   
D(GDPG) -0.143273  0.061908  0.039695 -7.528385   

  (0.12362)  (0.02775)  (0.04406)  (4.41809)   
D(IP) -0.035354 -0.010830 -0.026788  2.273252   

  (0.06404)  (0.01437)  (0.02283)  (2.28871)   
       
              
5 Cointegrating Equation(s):  Log likelihood  408.0856    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.000000  0.000000 -0.067367  

      (0.01611)  
 0.000000  1.000000  0.000000  0.000000  0.000000 -0.942155  

      (0.15358)  
 0.000000  0.000000  1.000000  0.000000  0.000000 -0.529536  

      (0.15944)  
 0.000000  0.000000  0.000000  1.000000  0.000000 -0.011849  

      (0.00258)  
 0.000000  0.000000  0.000000  0.000000  1.000000  0.575415  

      (0.23960)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -7.104295 -0.184775 -0.069014  44.51435 -0.142941  

  (0.31349)  (0.08892)  (0.14651)  (11.2991)  (0.06324)  
D(FD)  0.053269 -0.014962  0.015124 -1.286743 -0.001701  

  (0.04274)  (0.01212)  (0.01997)  (1.54032)  (0.00862)  
D(FDI) -0.008712  0.016748 -0.025004  0.923679  0.006648  

  (0.03177)  (0.00901)  (0.01485)  (1.14518)  (0.00641)  
D(FOS)  4.71E-05  4.50E-05  0.000158 -0.008271  5.38E-05  

  (0.00014)  (3.9E-05)  (6.4E-05)  (0.00494)  (2.8E-05)  
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D(GDPG) -0.142911  0.060775  0.041670 -7.495305 -0.058606  
  (0.12381)  (0.03512)  (0.05786)  (4.46247)  (0.02497)  

D(IP) -0.027454 -0.035593  0.016351  2.995795  0.002300  
  (0.06278)  (0.01781)  (0.02934)  (2.26290)  (0.01266)  

       
       
Impulse response Ghana 
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Variance decompo Ghana 

 
        
         Varian

ce 
Decom
position 
of CO2:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  5.574958  100.0000  0.000000  0.000000  0.000000  0.000000  0.000000 

 2  12.20418  99.90151  0.003290  0.006795  0.041609  0.001062  0.045731 
 3  20.08047  99.42112  0.021054  0.005020  0.349270  0.000393  0.203138 
 4  29.12297  98.55650  0.050133  0.002540  0.944152  0.000224  0.446454 
 5  39.35791  97.45510  0.082872  0.001392  1.720597  0.001564  0.738479 
 6  50.87325  96.25752  0.113001  0.000958  2.567164  0.007995  1.053364 
 7  63.78872  95.06245  0.137033  0.001704  3.399720  0.022910  1.376179 
 8  78.23881  93.92810  0.153987  0.004610  4.166574  0.047630  1.699097 
 9  94.36248  92.88239  0.164506  0.010275  4.843448  0.081261  2.018118 
 10  112.2978  91.93365  0.169972  0.018679  5.425201  0.121520  2.330980 

        
         Varian

ce 
Decom
position 
of FD:        

 Period S.E. CO2 FD FDI FOS GDPG IP 
        
         1  0.280023  1.066038  98.93396  0.000000  0.000000  0.000000  0.000000 

 2  0.578970  1.306589  97.82175  0.003808  0.038404  0.817532  0.011919 
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 3  0.864428  1.585789  96.44912  0.055332  0.182320  1.692514  0.034921 
 4  1.121070  2.060043  94.82111  0.188759  0.431287  2.453015  0.045784 
 5  1.350471  2.709554  93.10580  0.382451  0.772904  2.989072  0.040219 
 6  1.558633  3.463935  91.42512  0.592322  1.197179  3.291215  0.030225 
 7  1.751018  4.225180  89.87324  0.780437  1.691885  3.398907  0.030351 
 8  1.931386  4.907766  88.50771  0.925704  2.239008  3.372555  0.047259 
 9  2.101975  5.462394  87.35197  1.022608  2.815187  3.269220  0.078625 
 10  2.264032  5.878238  86.40168  1.075717  3.395063  3.131838  0.117460 

        
         Varian

ce 
Decom
position 
of FDI:        

 Period S.E. CO2 FD FDI FOS GDPG IP 
        
         1  0.197967  0.281272  6.024381  93.69435  0.000000  0.000000  0.000000 

 2  0.417025  0.236358  6.066195  93.66117  0.000464  0.035810  5.88E-06 
 3  0.645267  0.230473  6.086767  93.48955  0.116586  0.071222  0.005405 
 4  0.870724  0.240897  6.104744  93.05404  0.493057  0.079860  0.027400 
 5  1.087607  0.252615  6.155371  92.33355  1.119213  0.069136  0.070114 
 6  1.293021  0.254901  6.253681  91.38191  1.927078  0.052401  0.130026 
 7  1.485756  0.243407  6.396706  90.28049  2.840762  0.039778  0.198854 
 8  1.665607  0.220101  6.572519  89.11188  3.792362  0.035929  0.267214 
 9  1.832965  0.191029  6.766677  87.94652  4.727220  0.041069  0.327480 
 10  1.988573  0.163288  6.965792  86.83743  5.605424  0.052934  0.375126 

        
         Varian

ce 
Decom
position 
of FOS:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.000989  7.820223  7.015768  0.252489  84.91152  0.000000  0.000000 

 2  0.002066  7.633382  6.148027  0.238782  84.84014  1.138273  0.001395 
 3  0.003156  7.750458  5.185466  0.102402  84.75183  2.207901  0.001943 
 4  0.004215  8.204856  4.278955  0.216749  84.18827  3.109707  0.001463 
 5  0.005224  8.821081  3.556738  0.641052  83.21357  3.755204  0.012354 
 6  0.006173  9.467826  3.031725  1.291341  81.99590  4.162783  0.050430 
 7  0.007054  10.03529  2.671960  2.061739  80.72651  4.379907  0.124594 
 8  0.007863  10.44593  2.438775  2.867334  79.55336  4.461661  0.232936 
 9  0.008602  10.65739  2.299390  3.650942  78.57179  4.455736  0.364748 
 10  0.009276  10.65949  2.228043  4.378617  77.83088  4.397929  0.505043 

        
         Varian

ce 
Decom
position 

of 
GDPG:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.924948  0.080113  0.565802  0.043243  0.210243  99.10060  0.000000 

 2  1.518296  0.200927  0.779061  0.104263  0.215586  98.15079  0.549369 
 3  2.033837  0.431665  1.000226  0.212316  0.144946  95.60346  2.607393 
 4  2.457800  2.458894  1.080455  0.309374  0.101029  90.07536  5.974892 
 5  2.877729  10.36519  0.968753  0.352970  0.131214  78.83432  9.347544 
 6  3.451863  27.71938  0.715141  0.312034  0.305890  60.42568  10.52187 
 7  4.359175  50.20284  0.450095  0.216576  0.671721  39.71633  8.742435 
 8  5.714028  69.08172  0.263361  0.129022  1.187881  23.54055  5.797470 
 9  7.548226  81.02761  0.153489  0.073942  1.782980  13.54584  3.416139 
 10  9.851476  87.48667  0.091012  0.043706  2.411000  7.952333  2.015281 
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         Varian

ce 
Decom
position 

of IP:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.410572  6.132577  1.051057  2.173963  1.770373  1.122382  87.74965 

 2  0.868234  5.431394  0.824204  2.049998  1.791267  1.545898  88.35724 
 3  1.350457  5.157059  0.594901  2.244508  1.352884  2.337045  88.31360 
 4  1.835008  5.024858  0.413333  2.550050  0.899901  3.162557  87.94930 
 5  2.313336  5.000578  0.284098  2.849102  0.576568  3.880787  87.40887 
 6  2.781775  5.141875  0.199370  3.087356  0.418706  4.413684  86.73901 
 7  3.238901  5.531274  0.147199  3.248810  0.418394  4.742254  85.91207 
 8  3.684990  6.268536  0.116299  3.336879  0.553606  4.882451  84.84223 
 9  4.122261  7.470342  0.098174  3.361593  0.802943  4.865653  83.40130 
 10  4.555191  9.263161  0.087339  3.332766  1.151043  4.725524  81.44017 

        
         Choles

ky 
Orderin
g: CO2 
FD FDI 

FOS 
GDPG 

IP        
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VARIANCE DECOMPO 

 
     
      Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  0.103863  100.0000  0.000000  0.000000 

 2  0.213179  99.89959  0.077376  0.023031 
 3  0.317342  99.25642  0.656739  0.086840 
 4  0.410187  97.88030  1.932634  0.187067 
 5  0.490735  95.94226  3.750476  0.307263 
 6  0.559633  93.73046  5.838210  0.431329 
 7  0.618012  91.48676  7.962421  0.550814 
 8  0.667163  89.36099  9.974661  0.664353 
 9  0.708407  87.42377  11.80182  0.774412 
 10  0.743017  85.69378  13.42160  0.884617 

     
      Varian

ce 
Decom
position 
of FOS:     
 Period S.E. CO2 FOS IP 

     
      1  0.009090  6.108490  93.89151  0.000000 



186 
 

 2  0.018694  4.920279  95.07923  0.000493 
 3  0.027675  4.059549  95.89744  0.043008 
 4  0.035557  3.344700  96.47058  0.184717 
 5  0.042406  2.735845  96.84430  0.419858 
 6  0.048429  2.232020  97.06057  0.707406 
 7  0.053830  1.835312  97.15946  1.005229 
 8  0.058771  1.540044  97.17505  1.284905 
 9  0.063372  1.333091  97.13431  1.532599 
 10  0.067715  1.197646  97.05758  1.744772 

     
      Varian

ce 
Decom
position 

of IP:     
 Period S.E. CO2 FOS IP 

     
      1  0.126021  0.347208  1.706592  97.94620 

 2  0.258516  0.201516  1.755326  98.04316 
 3  0.384979  0.091792  1.425470  98.48274 
 4  0.498797  0.165726  1.057379  98.77689 
 5  0.600197  0.625061  0.770343  98.60460 
 6  0.691721  1.642364  0.580303  97.77733 
 7  0.776353  3.301626  0.473559  96.22481 
 8  0.856701  5.577734  0.434707  93.98756 
 9  0.934694  8.354051  0.452406  91.19354 
 10  1.011549  11.46290  0.518255  88.01885 

     
      Choles

ky 
Orderin
g: CO2 
FOS IP     

GHANA 
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VARIANCE DECOMPO 

 
     
      Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  5.451628  100.0000  0.000000  0.000000 

 2  11.91112  99.97101  0.016472  0.012516 
 3  19.61747  99.75766  0.133238  0.109100 
 4  28.30235  99.35020  0.354293  0.295509 
 5  37.74077  98.82104  0.632165  0.546796 
 6  47.70968  98.23763  0.926024  0.836342 
 7  57.97699  97.64438  1.213665  1.141953 
 8  68.30178  97.06636  1.487080  1.446562 
 9  78.43923  96.51608  1.746382  1.737535 
 10  88.14771  95.99872  1.995604  2.005677 

     
      Varian

ce 
Decom
position 
of FOS:     
 Period S.E. CO2 FOS IP 

     
      1  0.001004  8.035280  91.96472  0.000000 

 2  0.002111  8.031865  91.93525  0.032882 
 3  0.003218  8.600976  91.33022  0.068809 
 4  0.004265  9.605619  90.29202  0.102357 
 5  0.005244  11.04420  88.81482  0.140979 
 6  0.006166  12.94857  86.85824  0.193185 
 7  0.007048  15.35066  84.38171  0.267633 
 8  0.007910  18.26151  81.36566  0.372835 
 9  0.008771  21.65660  77.82721  0.516193 
 10  0.009648  25.46872  73.82860  0.702676 

     
      Varian

ce 
Decom
position 

of IP:     
 Period S.E. CO2 FOS IP 

     
      1  0.400639  7.821996  0.178592  91.99941 

 2  0.843320  7.763920  0.083653  92.15243 
 3  1.311738  7.910130  0.103570  91.98630 
 4  1.785434  8.364882  0.508415  91.12670 
 5  2.255451  9.218819  1.243229  89.53795 
 6  2.717940  10.55226  2.167426  87.28031 
 7  3.172494  12.43771  3.158237  84.40405 
 8  3.621464  14.93098  4.130865  80.93816 
 9  4.069294  18.05567  5.031815  76.91251 
 10  4.521721  21.78792  5.829155  72.38292 

     
      Choles

ky 
Orderin
g: CO2 
FOS IP     
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APPENDIX 3: Impulse response and variance decomposition and Toda-Yamamoto causality 

South Africa 

 
VAR Lag Order Selection Criteria     
Endogenous variables: CO2 FD FDI FOS GDPG IP     
Exogenous variables: C      
Date: 09/04/22   Time: 10:11     
Sample: 1980Q1 2017Q1     
Included observations: 141     

       
        Lag LogL LR FPE AIC SC HQ 
       
       0 -1332.880 NA   7.127366  18.99120  19.11668  19.04219 

1  74.78371  2675.559  2.53e-08 -0.465017  0.413337 -0.108084 
2  350.6753  500.9096  8.45e-10 -3.867735  -2.236506* -3.204860 
3  367.8095  29.65064  1.11e-09 -3.600135 -1.216031 -2.631318 
4  392.2911  40.28184  1.33e-09 -3.436754 -0.299775 -2.161994 
5  500.4479  168.7552  4.87e-10 -4.460254 -0.570400 -2.879552 
6  646.4951   215.4456*   1.05e-10*  -6.021208* -1.378479  -4.134564* 
7  656.8960  14.45791  1.59e-10 -5.658099 -0.262496 -3.465513 
8  670.1417  17.28518  2.33e-10 -5.335343  0.813135 -2.836814 
       
        * indicates lag order selected by the criterion    

 LR: sequential modified LR test statistic (each test at 5% level)   
 FPE: Final prediction error     
 AIC: Akaike information criterion     
 SC: Schwarz information criterion     
 HQ: Hannan-Quinn information criterion    

       
 
VAR Granger Causality/Block Exogeneity Wald Tests 
Date: 09/04/22   Time: 10:17  
Sample: 1980Q1 2017Q1  
Included observations: 135  

    
        

Dependent variable: CO2  
    
    Excluded Chi-sq df Prob. 
    
    FD  3.832659 6  0.6993 

FDI  6.222138 6  0.3988 
FOS  4.228128 6  0.6458 

GDPG  0.438287 6  0.9985 
IP  0.914594 6  0.9886 
    
    All  19.58750 30  0.9268 
    
        

Dependent variable: FD  
    
    Excluded Chi-sq df Prob. 
    
    CO2  1.267136 6  0.9734 



190 
 

FDI  8.616984 6  0.1963 
FOS  12.10675 6  0.0596 

GDPG  0.697373 6  0.9945 
IP  9.951108 6  0.1267 
    
    All  49.61091 30  0.0136 
    
        

Dependent variable: FDI  
    
    Excluded Chi-sq df Prob. 
    
    CO2  5.510822 6  0.4801 

FD  11.91834 6  0.0638 
FOS  9.866574 6  0.1304 

GDPG  6.220861 6  0.3989 
IP  14.01919 6  0.0294 
    
    All  41.46276 30  0.0795 
    
        

Dependent variable: FOS  
    
    Excluded Chi-sq df Prob. 
    
    CO2  6.261657 6  0.3945 

FD  28.49753 6  0.0001 
FDI  32.97575 6  0.0000 

GDPG  11.01770 6  0.0878 
IP  7.563214 6  0.2719 
    
    All  58.98318 30  0.0012 
    
        

Dependent variable: GDPG  
    
    Excluded Chi-sq df Prob. 
    
    CO2  4.513092 6  0.6076 

FD  28.03433 6  0.0001 
FDI  10.70062 6  0.0981 
FOS  6.861338 6  0.3339 
IP  23.54132 6  0.0006 
    
    All  79.14093 30  0.0000 
    
        

Dependent variable: IP  
    
    Excluded Chi-sq df Prob. 
    
    CO2  2.445770 6  0.8745 

FD  10.63951 6  0.1002 
FDI  1.014277 6  0.9851 
FOS  19.87404 6  0.0029 

GDPG  17.77245 6  0.0068 
    
    All  54.87653 30  0.0037 
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Date: 09/04/22   Time: 07:35     
Sample (adjusted): 1981Q2 2017Q1     
Included observations: 144 after adjustments    
Trend assumption: Linear deterministic trend    
Series: CO2 FD FDI FOS GDPG IP      
Lags interval (in first differences): 1 to 4    

       
Unrestricted Cointegration Rank Test (Trace)    
       
       Hypothesized  Trace 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.290542  124.4531  95.75366  0.0001   

At most 1 *  0.214890  75.02453  69.81889  0.0181   
At most 2  0.117508  40.18637  47.85613  0.2159   
At most 3  0.089889  22.18564  29.79707  0.2883   
At most 4  0.048245  8.622436  15.49471  0.4015   
At most 5  0.010376  1.501913  3.841466  0.2204   

       
        Trace test indicates 2 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)   
       
       Hypothesized  Max-Eigen 0.05    

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**   
       
       None *  0.290542  49.42854  40.07757  0.0034   

At most 1 *  0.214890  34.83816  33.87687  0.0383   
At most 2  0.117508  18.00073  27.58434  0.4951   
At most 3  0.089889  13.56321  21.13162  0.4019   
At most 4  0.048245  7.120523  14.26460  0.4750   
At most 5  0.010376  1.501913  3.841466  0.2204   

       
        Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level   
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values    

       
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):    
       
       CO2 FD FDI FOS GDPG IP  

-0.982572  0.067824  0.267496 -0.602735  0.530995  0.547248  
-0.934344 -0.028268 -1.072400  0.821306  0.129490 -0.038463  
-0.462940  0.172012 -0.632115 -0.202712 -0.283603  0.914813  
-0.640809 -0.132502  1.638285  10.46690 -0.152521 -0.081697  
 0.117145  0.107288  0.345917 -12.93340 -0.516403  0.154771  
 1.873781  0.028386  0.044092 -4.914379 -0.040756  0.021458  

       
              
 Unrestricted Adjustment Coefficients (alpha):     
       
       D(CO2)  0.030798  0.000977  0.006172  0.007034  0.005342 -0.005923 

D(FD) -0.181950  0.232896 -0.313463 -0.004042 -0.087946 -0.060332 
D(FDI)  0.041360  0.057982 -0.001517 -0.051446 -0.009168 -0.001713 
D(FOS)  0.001841 -0.000754 -0.000940 -0.000217  0.000482  0.000575 

D(GDPG) -0.144101  0.009490 -0.004300 -0.035560  0.093897 -0.015970 
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D(IP) -0.002874 -0.035643  0.014089 -0.021441 -0.005084 -0.001424 
       
              
1 Cointegrating Equation(s):  Log likelihood  468.6387    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000 -0.069027 -0.272241  0.613426 -0.540413 -0.556954  

  (0.03724)  (0.30797)  (2.31877)  (0.11529)  (0.15060)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.030261      

  (0.00766)      
D(FD)  0.178779      

  (0.11727)      
D(FDI) -0.040639      

  (0.02049)      
D(FOS) -0.001808      

  (0.00067)      
D(GDPG)  0.141590      

  (0.04723)      
D(IP)  0.002824      

  (0.01050)      
       
              
2 Cointegrating Equation(s):  Log likelihood  486.0578    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.715033 -0.424219 -0.261039 -0.141103  

   (0.26020)  (1.50776)  (0.10549)  (0.07001)  
 0.000000  1.000000  14.30280 -15.03252  4.047333  6.024510  

   (4.51941)  (26.1887)  (1.83229)  (1.21601)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.031174  0.002061     

  (0.01057)  (0.00057)     
D(FD) -0.038826 -0.018924     

  (0.15919)  (0.00863)     
D(FDI) -0.094814  0.001166     

  (0.02733)  (0.00148)     
D(FOS) -0.001104  0.000146     

  (0.00093)  (5.0E-05)     
D(GDPG)  0.132723 -0.010042     

  (0.06517)  (0.00353)     
D(IP)  0.036127  0.000813     

  (0.01378)  (0.00075)     
       
              
3 Cointegrating Equation(s):  Log likelihood  495.0581    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.142006 -0.546043 -0.189472  

    (1.59633)  (0.10685)  (0.06779)  
 0.000000  1.000000  0.000000 -3.706343 -1.653579  5.056979  

    (15.3245)  (1.02577)  (0.65074)  
 0.000000  0.000000  1.000000 -0.791885  0.398587  0.067646  

    (1.80433)  (0.12078)  (0.07662)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.034031  0.003123  0.003289    
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  (0.01114)  (0.00145)  (0.00990)    
D(FD)  0.106289 -0.072843 -0.100284    

  (0.16305)  (0.02129)  (0.14490)    
D(FDI) -0.094112  0.000905 -0.050158    

  (0.02888)  (0.00377)  (0.02567)    
D(FOS) -0.000669 -1.55E-05  0.001895    

  (0.00097)  (0.00013)  (0.00086)    
D(GDPG)  0.134713 -0.010781 -0.046005    

  (0.06886)  (0.00899)  (0.06119)    
D(IP)  0.029604  0.003236  0.028549    

  (0.01445)  (0.00189)  (0.01284)    
       
              
4 Cointegrating Equation(s):  Log likelihood  501.8397    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.000000 -0.528866 -0.193922  

     (0.10239)  (0.03457)  
 0.000000  1.000000  0.000000  0.000000 -2.101874  5.173126  

     (1.08745)  (0.36712)  
 0.000000  0.000000  1.000000  0.000000  0.302806  0.092462  

     (0.10229)  (0.03453)  
 0.000000  0.000000  0.000000  1.000000 -0.120953  0.031337  

     (0.03305)  (0.01116)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.038538  0.002191  0.014812  0.054607   

  (0.01216)  (0.00178)  (0.01607)  (0.08147)   
D(FD)  0.108879 -0.072308 -0.106905  0.322186   

  (0.17862)  (0.02609)  (0.23613)  (1.19701)   
D(FDI) -0.061145  0.007722 -0.134440 -0.515476   

  (0.03075)  (0.00449)  (0.04065)  (0.20609)   
D(FOS) -0.000530  1.32E-05  0.001540 -0.003806   

  (0.00106)  (0.00016)  (0.00141)  (0.00712)   
D(GDPG)  0.157501 -0.006070 -0.104262 -0.276681   

  (0.07526)  (0.01099)  (0.09949)  (0.50435)   
D(IP)  0.043344  0.006077 -0.006578 -0.254820   

  (0.01552)  (0.00227)  (0.02052)  (0.10401)   
       
              
5 Cointegrating Equation(s):  Log likelihood  505.4000    
       
       Normalized cointegrating coefficients (standard error in parentheses)   

CO2 FD FDI FOS GDPG IP  
 1.000000  0.000000  0.000000  0.000000  0.000000 -0.192748  

      (0.04229)  
 0.000000  1.000000  0.000000  0.000000  0.000000  5.177790  

      (0.32887)  
 0.000000  0.000000  1.000000  0.000000  0.000000  0.091790  

      (0.02913)  
 0.000000  0.000000  0.000000  1.000000  0.000000  0.031606  

      (0.00709)  
 0.000000  0.000000  0.000000  0.000000  1.000000  0.002219  

      (0.08049)  
       

Adjustment coefficients (standard error in parentheses)    
D(CO2) -0.037913  0.002764  0.016660 -0.014481  0.010898  

  (0.01217)  (0.00196)  (0.01626)  (0.12886)  (0.00632)  
D(FD)  0.098576 -0.081743 -0.137327  1.459625  0.068474  

  (0.17866)  (0.02873)  (0.23878)  (1.89235)  (0.09285)  
D(FDI) -0.062219  0.006738 -0.137612 -0.396903  0.042481  
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  (0.03081)  (0.00495)  (0.04118)  (0.32633)  (0.01601)  
D(FOS) -0.000473  6.49E-05  0.001707 -0.010036  0.000930  

  (0.00106)  (0.00017)  (0.00142)  (0.01127)  (0.00055)  
D(GDPG)  0.168500  0.004004 -0.071782 -1.491084 -0.117133  

  (0.07423)  (0.01194)  (0.09921)  (0.78625)  (0.03858)  
D(IP)  0.042749  0.005532 -0.008336 -0.189069 -0.004241  

  (0.01555)  (0.00250)  (0.02078)  (0.16466)  (0.00808)  
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Variance decompo South Africa 

 
        
         Varian

ce 
Decom
position 
of CO2:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.107127  100.0000  0.000000  0.000000  0.000000  0.000000  0.000000 

 2  0.222840  99.79681  0.011167  0.006041  0.046957  0.139022  2.44E-08 
 3  0.334856  99.06235  0.054167  0.075193  0.470853  0.337156  0.000278 
 4  0.438328  97.55625  0.143495  0.228004  1.479545  0.592513  0.000193 
 5  0.533910  95.47060  0.267021  0.446831  2.941035  0.873247  0.001269 
 6  0.623094  93.14457  0.400762  0.705153  4.590920  1.149434  0.009158 
 7  0.706912  90.87092  0.524741  0.979714  6.201703  1.392667  0.030256 
 8  0.785922  88.82487  0.628753  1.253653  7.638882  1.585971  0.067875 
 9  0.860421  87.07902  0.710323  1.516308  8.848481  1.724933  0.120934 
 10  0.930618  85.63957  0.771301  1.761510  9.827688  1.814913  0.185017 

        
         Varian

ce 
Decom
position 
of FD:        

 Period S.E. CO2 FD FDI FOS GDPG IP 
        
         1  1.468754  0.688463  99.31154  0.000000  0.000000  0.000000  0.000000 

 2  3.036120  0.861407  98.92173  0.010776  0.000371  0.203362  0.002359 
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 3  4.599972  0.946721  98.32587  0.312629  0.006217  0.407535  0.001028 
 4  6.074712  0.974004  97.29831  1.024586  0.010695  0.683209  0.009197 
 5  7.430141  0.985112  96.02730  1.912533  0.012240  1.014654  0.048161 
 6  8.657147  1.000206  94.70552  2.742101  0.011868  1.398540  0.141763 
 7  9.759802  1.023889  93.43761  3.401636  0.010750  1.819128  0.306983 
 8  10.74996  1.053432  92.26230  3.872647  0.009557  2.253774  0.548288 
 9  11.64291  1.084235  91.19317  4.181592  0.008583  2.675209  0.857207 
 10  12.45441  1.112521  90.23777  4.368147  0.007956  3.058025  1.215583 

        
         Varian

ce 
Decom
position 
of FDI:        

 Period S.E. CO2 FD FDI FOS GDPG IP 
        
         1  0.296403  0.393357  10.20748  89.39917  0.000000  0.000000  0.000000 

 2  0.599042  0.305595  9.991495  89.57972  0.048418  0.073076  0.001700 
 3  0.865701  0.363840  10.76804  88.62177  0.040593  0.189860  0.015897 
 4  1.086872  0.528191  11.90444  87.14598  0.027913  0.296259  0.097214 
 5  1.270664  0.775739  13.21592  85.34323  0.066055  0.359773  0.239281 
 6  1.426989  1.070040  14.63498  83.33753  0.166354  0.381091  0.410004 
 7  1.563573  1.370961  16.11973  81.23928  0.310760  0.375203  0.584065 
 8  1.685774  1.647508  17.62478  79.14883  0.473434  0.357573  0.747871 
 9  1.797197  1.882770  19.09912  77.15071  0.634077  0.338349  0.894975 
 10  1.900290  2.072317  20.49279  75.30821  0.781798  0.322906  1.021979 

        
         Varian

ce 
Decom
position 
of FOS:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.009157  7.472469  8.736987  6.740460  77.05008  0.000000  0.000000 

 2  0.018645  6.935470  9.124897  6.039085  77.79508  0.105442  2.63E-05 
 3  0.027453  6.304019  8.699742  4.753714  80.06538  0.172450  0.004693 
 4  0.035166  5.714774  7.877573  3.542018  82.56823  0.271032  0.026374 
 5  0.041894  5.219812  6.944440  2.622995  84.73659  0.410651  0.065516 
 6  0.047837  4.837920  6.052423  2.013650  86.39274  0.587459  0.115808 
 7  0.053170  4.564808  5.271759  1.657302  87.55820  0.777109  0.170824 
 8  0.058022  4.386249  4.621921  1.479361  88.33714  0.949873  0.225457 
 9  0.062490  4.284216  4.095273  1.411231  88.85129  1.082795  0.275191 
 10  0.066646  4.239557  3.673292  1.399782  89.20480  1.166456  0.316111 

        
         Varian

ce 
Decom
position 

of 
GDPG:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.705783  0.226297  0.131204  0.214314  0.223189  99.20500  0.000000 

 2  1.108043  0.767684  0.435160  0.583051  0.363288  97.68491  0.165907 
 3  1.437746  2.123231  0.599180  0.885091  0.816431  94.12684  1.449231 
 4  1.675189  4.334921  1.058695  1.518884  1.161086  88.17563  3.750781 
 5  1.854976  7.067897  2.167442  2.766808  1.199962  80.44220  6.355688 
 6  2.007435  9.689761  4.339804  4.839373  1.035864  71.71337  8.381829 
 7  2.158510  11.57226  7.680939  7.606617  1.006251  62.80583  9.328111 
 8  2.320686  12.44764  11.82476  10.61630  1.387346  54.46443  9.259512 
 9  2.493224  12.47879  16.14470  13.37668  2.198974  47.20448  8.596372 
 10  2.667901  12.02374  20.11327  15.60850  3.261397  41.23901  7.754075 
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         Varian

ce 
Decom
position 

of IP:        
 Period S.E. CO2 FD FDI FOS GDPG IP 

        
         1  0.130316  0.899803  13.87530  5.159193  11.76987  0.192816  68.10301 

 2  0.270436  1.006395  13.59933  5.245577  11.92759  0.313991  67.90711 
 3  0.411534  0.933924  12.45060  5.850284  10.78369  0.416155  69.56535 
 4  0.547010  0.802971  11.06510  6.519066  9.395165  0.522925  71.69477 
 5  0.674555  0.667241  9.691720  6.936192  8.100302  0.625071  73.97947 
 6  0.793622  0.548105  8.433617  7.013536  6.984384  0.716162  76.30420 
 7  0.904509  0.451609  7.332628  6.812581  6.051237  0.790866  78.56108 
 8  1.007836  0.376693  6.398224  6.441377  5.281190  0.845476  80.65704 
 9  1.104258  0.319552  5.621862  5.996208  4.649242  0.878291  82.53484 
 10  1.194356  0.275988  4.985620  5.542918  4.131064  0.890104  84.17431 

        
         Choles

ky 
Orderin
g: CO2 
FD FDI 

FOS 
GDPG 

IP        
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VARIANCE DECOMPO 

 
     
      Varian

ce 
Decom
position 
of CO2:     
 Period S.E. CO2 FOS IP 

     
      1  0.103863  100.0000  0.000000  0.000000 

 2  0.213179  99.89959  0.077376  0.023031 
 3  0.317342  99.25642  0.656739  0.086840 
 4  0.410187  97.88030  1.932634  0.187067 
 5  0.490735  95.94226  3.750476  0.307263 
 6  0.559633  93.73046  5.838210  0.431329 
 7  0.618012  91.48676  7.962421  0.550814 
 8  0.667163  89.36099  9.974661  0.664353 
 9  0.708407  87.42377  11.80182  0.774412 
 10  0.743017  85.69378  13.42160  0.884617 

     
      Varian

ce 
Decom
position 
of FOS:     
 Period S.E. CO2 FOS IP 

     
      1  0.009090  6.108490  93.89151  0.000000 

 2  0.018694  4.920279  95.07923  0.000493 
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 3  0.027675  4.059549  95.89744  0.043008 
 4  0.035557  3.344700  96.47058  0.184717 
 5  0.042406  2.735845  96.84430  0.419858 
 6  0.048429  2.232020  97.06057  0.707406 
 7  0.053830  1.835312  97.15946  1.005229 
 8  0.058771  1.540044  97.17505  1.284905 
 9  0.063372  1.333091  97.13431  1.532599 
 10  0.067715  1.197646  97.05758  1.744772 

     
      Varian

ce 
Decom
position 

of IP:     
 Period S.E. CO2 FOS IP 

     
      1  0.126021  0.347208  1.706592  97.94620 

 2  0.258516  0.201516  1.755326  98.04316 
 3  0.384979  0.091792  1.425470  98.48274 
 4  0.498797  0.165726  1.057379  98.77689 
 5  0.600197  0.625061  0.770343  98.60460 
 6  0.691721  1.642364  0.580303  97.77733 
 7  0.776353  3.301626  0.473559  96.22481 
 8  0.856701  5.577734  0.434707  93.98756 
 9  0.934694  8.354051  0.452406  91.19354 
 10  1.011549  11.46290  0.518255  88.01885 

     
      Choles

ky 
Orderin
g: CO2 
FOS IP     
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APPENDIX: 4 ARDL ESTIMATE FOR NIGERIA, GHANA, AND SOUTH AFRICA 

Nigeria 

 
 CO2 FD FDI FOS GDPG IP 

 Mean  0.610068  9.210868  1.528186  0.554622  3.518211  29.99289 
 Median  0.610025  8.144584  1.266578  0.538799  4.102091  29.85481 
 Maximum  0.928241  19.62560  5.790847  0.906598  15.87961  39.24509 
 Minimum  0.325560  4.957522 -1.150856  0.347140 -11.55525  18.17313 
 Std. Dev.  0.178221  3.619655  1.308790  0.133846  5.812052  5.525767 
 Skewness -0.064903  1.174064  1.330622  1.259021 -0.551951 -0.241201 
 Kurtosis  1.858354  3.839329  5.513240  4.021076  3.771914  2.046490 

       
 Jarque-Bera  2.090323  9.845452  21.21445  11.68995  2.872881  1.807998 
 Probability  0.351635  0.007279  0.000025  0.002894  0.237773  0.404947 

       
 Sum  23.18259  350.0130  58.07107  21.07565  133.6920  1139.730 
 Sum Sq. Dev.  1.175216  484.7704  63.37848  0.662842  1249.858  1129.762 

       
 Observations  38  38  38  38  38  38 
 
Ghana 

 
 CO2 FD FDI FOS GDPG IP 

 Mean  7.240894  9.156950  2.916409  0.078274  4.484533  21.32333 
 Median  0.314521  10.22622  1.705456  0.059734  4.695101  23.72110 
 Maximum  268.6775  15.88200  9.517043  0.177078  13.44524  34.85998 
 Minimum -4.471123  1.542268  0.045328  0.028909 -7.144235  6.247470 
 Std. Dev.  43.56386  5.301333  2.979765  0.045727  3.696774  6.993689 
 Skewness  5.915317 -0.088509  0.834145  0.859586 -1.120767 -0.264515 
 Kurtosis  36.00394  1.338776  2.344111  2.507326  6.501685  2.729325 

       
 Jarque-Bera  1946.271  4.419083  5.087851  5.063946  27.36993  0.559135 
 Probability  0.000000  0.109751  0.078557  0.079502  0.000001  0.756111 

       
 Sum  275.1540  347.9641  110.8235  2.974407  170.4123  810.2865 
 Sum Sq. Dev.  70218.96  1039.853  328.5229  0.077366  505.6471  1809.733 

       
 Observations  38  38  38  38  38  38 
 
South Africa 

 
 CO2 FD FDI FOS GDPG IP 

 Mean  8.922869  112.3904  0.903997  0.964020  2.339302  31.99790 
 Median  8.823257  115.9312  0.510649  0.926654  2.655457  29.62173 
 Maximum  9.979458  160.1248  5.983101  1.353412  6.533849  45.27759 
 Minimum  7.361072  53.96717 -0.766120  0.647961 -2.611739  26.02838 
 Std. Dev.  0.683839  33.60682  1.263622  0.222851  2.285522  5.722216 
 Skewness -0.187261 -0.325638  2.048342  0.364743 -0.247764  0.747608 
 Kurtosis  2.293273  1.652252  8.185288  1.756954  2.472957  2.206747 

       
 Jarque-Bera  1.012907  3.547595  69.14421  3.289078  0.828594  4.536131 
 Probability  0.602629  0.169687  0.000000  0.193102  0.660805  0.103512 

       
 Sum  339.0690  4270.837  34.35190  36.63278  88.89349  1215.920 
 Sum Sq. Dev.  17.30252  41788.48  59.07943  1.837507  193.2735  1211.519 

       
 Observations  38  38  38  38  38  38 
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Unit root test 

Without intercept and trend 

Nigeria 

 
Null Hypothesis: CO2 has a unit root  
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.719754  0.4033 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/09/22   Time: 03:59   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -0.001401 0.001946 -0.719754 0.4729 

D(CO2(-1)) 0.885586 0.072453 12.22283 0.0000 
D(CO2(-2)) 0.000739 0.089217 0.008287 0.9934 
D(CO2(-3)) 0.000739 0.089217 0.008287 0.9934 
D(CO2(-4)) -0.692857 0.092366 -7.501203 0.0000 
D(CO2(-5)) 0.564392 0.077445 7.287688 0.0000 

     
     R-squared 0.700786     Mean dependent var -0.001045 

Adjusted R-squared 0.689866     S.D. dependent var 0.025640 
S.E. of regression 0.014279     Akaike info criterion -5.619057 
Sum squared resid 0.027931     Schwarz criterion -5.494742 
Log likelihood 407.7626     Hannan-Quinn criter. -5.568542 
Durbin-Watson stat 1.920418    

     
      

 
Null Hypothesis: D(CO2) has a unit root  
Exogenous: None   
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.153669  0.0018 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
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Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:00   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) -0.235992 0.074831 -3.153669 0.0020 

D(CO2(-1),2) 0.124548 0.074331 1.675585 0.0961 
D(CO2(-2),2) 0.124548 0.074331 1.675585 0.0961 
D(CO2(-3),2) 0.124548 0.074331 1.675585 0.0961 
D(CO2(-4),2) -0.567387 0.077198 -7.349800 0.0000 

     
     R-squared 0.452001     Mean dependent var 0.000432 

Adjusted R-squared 0.436117     S.D. dependent var 0.018982 
S.E. of regression 0.014254     Akaike info criterion -5.629269 
Sum squared resid 0.028037     Schwarz criterion -5.525673 
Log likelihood 407.4927     Hannan-Quinn criter. -5.587173 
Durbin-Watson stat 1.921458    

     
      

 
Null Hypothesis: FD has a unit root  
Exogenous: None   
Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.617442  0.4484 

Test critical values: 1% level  -2.580788  
 5% level  -1.943012  
 10% level  -1.615270  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD)   
Method: Least Squares   
Date: 08/09/22   Time: 04:02   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FD(-1) -0.001655 0.002680 -0.617442 0.5379 

D(FD(-1)) 0.788393 0.047463 16.61083 0.0000 
     
     R-squared 0.655254     Mean dependent var 0.015179 

Adjusted R-squared 0.652877     S.D. dependent var 0.536491 
S.E. of regression 0.316085     Akaike info criterion 0.547901 
Sum squared resid 14.48692     Schwarz criterion 0.588588 
Log likelihood -38.27076     Hannan-Quinn criter. 0.564433 
Durbin-Watson stat 1.847966    

     
      

 
Null Hypothesis: D(FD) has a unit root  
Exogenous: None   
Lag Length: 0 (Automatic - based on SIC, maxlag=13) 
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        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.500678  0.0000 

Test critical values: 1% level  -2.580788  
 5% level  -1.943012  
 10% level  -1.615270  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:03   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FD(-1)) -0.212940 0.047313 -4.500678 0.0000 
     
     R-squared 0.121344     Mean dependent var 0.007940 

Adjusted R-squared 0.121344     S.D. dependent var 0.336490 
S.E. of regression 0.315415     Akaike info criterion 0.536922 
Sum squared resid 14.52501     Schwarz criterion 0.557265 
Log likelihood -38.46375     Hannan-Quinn criter. 0.545187 
Durbin-Watson stat 1.844148    

     
      

 
Null Hypothesis: FDI has a unit root  
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.659352  0.0916 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI)   
Method: Least Squares   
Date: 08/09/22   Time: 04:03   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FDI(-1) -0.015837 0.009544 -1.659352 0.0993 

D(FDI(-1)) 0.805625 0.078369 10.27984 0.0000 
D(FDI(-2)) 0.007821 0.091588 0.085389 0.9321 
D(FDI(-3)) 0.007821 0.091588 0.085389 0.9321 
D(FDI(-4)) -0.556578 0.091650 -6.072879 0.0000 
D(FDI(-5)) 0.384007 0.078202 4.910427 0.0000 

     
     R-squared 0.623964     Mean dependent var 0.004263 
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Adjusted R-squared 0.610241     S.D. dependent var 0.342755 
S.E. of regression 0.213984     Akaike info criterion -0.204776 
Sum squared resid 6.273128     Schwarz criterion -0.080461 
Log likelihood 20.64151     Hannan-Quinn criter. -0.154261 
Durbin-Watson stat 1.901012    

     
      

 
Null Hypothesis: D(FDI) has a unit root  
Exogenous: None   
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.456272  0.0000 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:04   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FDI(-1)) -0.391560 0.087867 -4.456272 0.0000 

D(FDI(-1),2) 0.193361 0.078224 2.471880 0.0147 
D(FDI(-2),2) 0.193361 0.078224 2.471880 0.0147 
D(FDI(-3),2) 0.193361 0.078224 2.471880 0.0147 
D(FDI(-4),2) -0.371251 0.078316 -4.740392 0.0000 

     
     R-squared 0.407697     Mean dependent var -0.000243 

Adjusted R-squared 0.390529     S.D. dependent var 0.275833 
S.E. of regression 0.215339     Akaike info criterion -0.198863 
Sum squared resid 6.399207     Schwarz criterion -0.095268 
Log likelihood 19.21874     Hannan-Quinn criter. -0.156767 
Durbin-Watson stat 1.890669    

     
      

 
Null Hypothesis: FOS has a unit root  
Exogenous: None   
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.675033  0.8605 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS)   
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Method: Least Squares   
Date: 08/09/22   Time: 04:04   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FOS(-1) 0.001121 0.001660 0.675033 0.5009 

D(FOS(-1)) 0.898586 0.077111 11.65317 0.0000 
D(FOS(-2)) -0.000738 0.096576 -0.007639 0.9939 
D(FOS(-3)) -0.000738 0.096576 -0.007639 0.9939 
D(FOS(-4)) -0.762718 0.096674 -7.889611 0.0000 
D(FOS(-5)) 0.665180 0.102734 6.474806 0.0000 
D(FOS(-6)) -0.000374 0.096509 -0.003878 0.9969 
D(FOS(-7)) -0.000374 0.096509 -0.003878 0.9969 
D(FOS(-8)) -0.594432 0.097354 -6.105851 0.0000 
D(FOS(-9)) 0.493893 0.078746 6.272009 0.0000 

     
     R-squared 0.724272     Mean dependent var 0.003005 

Adjusted R-squared 0.705036     S.D. dependent var 0.018383 
S.E. of regression 0.009984     Akaike info criterion -6.306499 
Sum squared resid 0.012858     Schwarz criterion -6.095386 
Log likelihood 448.3017     Hannan-Quinn criter. -6.220709 
Durbin-Watson stat 1.928507    

     
      

 
Null Hypothesis: D(FOS) has a unit root  
Exogenous: None   
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.801147  0.0053 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:04   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FOS(-1)) -0.268288 0.095778 -2.801147 0.0059 

D(FOS(-1),2) 0.176584 0.092830 1.902230 0.0594 
D(FOS(-2),2) 0.176584 0.092830 1.902230 0.0594 
D(FOS(-3),2) 0.176584 0.092830 1.902230 0.0594 
D(FOS(-4),2) -0.585896 0.093080 -6.294560 0.0000 
D(FOS(-5),2) 0.089575 0.075233 1.190643 0.2360 
D(FOS(-6),2) 0.089575 0.075233 1.190643 0.2360 
D(FOS(-7),2) 0.089575 0.075233 1.190643 0.2360 
D(FOS(-8),2) -0.505906 0.076548 -6.609033 0.0000 

     
     R-squared 0.529921     Mean dependent var 6.13E-05 

Adjusted R-squared 0.500994     S.D. dependent var 0.014104 
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S.E. of regression 0.009963     Akaike info criterion -6.317362 
Sum squared resid 0.012903     Schwarz criterion -6.127360 
Log likelihood 448.0567     Hannan-Quinn criter. -6.240150 
Durbin-Watson stat 1.937293    

     
      

 
Null Hypothesis: GDPG has a unit root  
Exogenous: None   
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.364187  0.0180 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG)   
Method: Least Squares   
Date: 08/09/22   Time: 04:05   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GDPG(-1) -0.034351 0.014530 -2.364187 0.0196 

D(GDPG(-1)) 0.688044 0.076696 8.971021 0.0000 
D(GDPG(-2)) 0.141583 0.077009 1.838519 0.0683 
D(GDPG(-3)) 0.061611 0.076281 0.807689 0.4208 
D(GDPG(-4)) -1.099641 0.075816 -14.50399 0.0000 
D(GDPG(-5)) 0.758681 0.097006 7.820930 0.0000 
D(GDPG(-6)) 0.099362 0.076272 1.302724 0.1950 
D(GDPG(-7)) 0.038117 0.075785 0.502959 0.6159 
D(GDPG(-8)) -0.434078 0.074810 -5.802372 0.0000 
D(GDPG(-9)) 0.299330 0.061403 4.874849 0.0000 

     
     R-squared 0.764647     Mean dependent var 0.053386 

Adjusted R-squared 0.748227     S.D. dependent var 1.903953 
S.E. of regression 0.955346     Akaike info criterion 2.815736 
Sum squared resid 117.7364     Schwarz criterion 3.026850 
Log likelihood -185.6937     Hannan-Quinn criter. 2.901527 
Durbin-Watson stat 2.063429    

     
      

 
Null Hypothesis: D(GDPG) has a unit root  
Exogenous: None   
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.249455  0.0000 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  



208 
 

     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:05   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(GDPG(-1)) -0.573664 0.134997 -4.249455 0.0000 

D(GDPG(-1),2) 0.254639 0.128623 1.979724 0.0498 
D(GDPG(-2),2) 0.377620 0.110947 3.403593 0.0009 
D(GDPG(-3),2) 0.417849 0.103012 4.056325 0.0001 
D(GDPG(-4),2) -0.707820 0.099260 -7.130992 0.0000 
D(GDPG(-5),2) 0.039975 0.081180 0.492431 0.6232 
D(GDPG(-6),2) 0.135859 0.069879 1.944208 0.0540 
D(GDPG(-7),2) 0.167812 0.064603 2.597598 0.0105 
D(GDPG(-8),2) -0.278748 0.061846 -4.507115 0.0000 

     
     R-squared 0.797456     Mean dependent var 0.011738 

Adjusted R-squared 0.784992     S.D. dependent var 2.096364 
S.E. of regression 0.972063     Akaike info criterion 2.843764 
Sum squared resid 122.8378     Schwarz criterion 3.033766 
Log likelihood -188.6416     Hannan-Quinn criter. 2.920976 
Durbin-Watson stat 2.033381    

     
      

 
Null Hypothesis: IP has a unit root  
Exogenous: None   
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.119803  0.2379 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP)   
Method: Least Squares   
Date: 08/09/22   Time: 04:06   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     IP(-1) -0.001312 0.001172 -1.119803 0.2650 

D(IP(-1)) 0.881542 0.080920 10.89394 0.0000 
D(IP(-2)) 0.000966 0.103279 0.009351 0.9926 
D(IP(-3)) 0.000966 0.103279 0.009351 0.9926 
D(IP(-4)) -0.618518 0.105167 -5.881299 0.0000 
D(IP(-5)) 0.516138 0.109018 4.734425 0.0000 
D(IP(-6)) 0.000664 0.101785 0.006520 0.9948 
D(IP(-7)) 0.000664 0.101785 0.006520 0.9948 
D(IP(-8)) -0.761341 0.102534 -7.425270 0.0000 
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D(IP(-9)) 0.651817 0.108582 6.003023 0.0000 
D(IP(-10)) 0.000349 0.103586 0.003367 0.9973 
D(IP(-11)) 0.000349 0.103586 0.003367 0.9973 
D(IP(-12)) -0.479587 0.103620 -4.628313 0.0000 
D(IP(-13)) 0.361578 0.081194 4.453260 0.0000 

     
     R-squared 0.772175     Mean dependent var -0.080446 

Adjusted R-squared 0.747697     S.D. dependent var 0.763109 
S.E. of regression 0.383307     Akaike info criterion 1.017964 
Sum squared resid 17.77787     Schwarz criterion 1.319252 
Log likelihood -54.71256     Hannan-Quinn criter. 1.140399 
Durbin-Watson stat 1.950216    

     
      

 
Null Hypothesis: D(IP) has a unit root  
Exogenous: None   
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.206762  0.0015 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:06   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(IP(-1)) -0.395914 0.123462 -3.206762 0.0017 

D(IP(-1),2) 0.291460 0.116640 2.498804 0.0138 
D(IP(-2),2) 0.291460 0.116640 2.498804 0.0138 
D(IP(-3),2) 0.291460 0.116640 2.498804 0.0138 
D(IP(-4),2) -0.327140 0.119259 -2.743103 0.0070 
D(IP(-5),2) 0.200271 0.095347 2.100445 0.0377 
D(IP(-6),2) 0.200271 0.095347 2.100445 0.0377 
D(IP(-7),2) 0.200271 0.095347 2.100445 0.0377 
D(IP(-8),2) -0.561182 0.096644 -5.806666 0.0000 
D(IP(-9),2) 0.105246 0.080333 1.310131 0.1926 

D(IP(-10),2) 0.105246 0.080333 1.310131 0.1926 
D(IP(-11),2) 0.105246 0.080333 1.310131 0.1926 
D(IP(-12),2) -0.374571 0.080444 -4.656275 0.0000 

     
     R-squared 0.528831     Mean dependent var 0.014656 

Adjusted R-squared 0.482487     S.D. dependent var 0.533381 
S.E. of regression 0.383706     Akaike info criterion 1.013459 
Sum squared resid 17.96210     Schwarz criterion 1.293226 
Log likelihood -55.40848     Hannan-Quinn criter. 1.127149 
Durbin-Watson stat 1.958743    
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Nigeria  

Intercept and trend 

 
Null Hypothesis: CO2 has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.170557  0.5019 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:22   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -0.016339 0.007528 -2.170557 0.0317 

D(CO2(-1)) 0.874912 0.072262 12.10753 0.0000 
D(CO2(-2)) 0.008602 0.088263 0.097454 0.9225 
D(CO2(-3)) 0.008602 0.088263 0.097454 0.9225 
D(CO2(-4)) -0.683770 0.091390 -7.481897 0.0000 
D(CO2(-5)) 0.566425 0.077400 7.318146 0.0000 

C 0.008361 0.005632 1.484418 0.1400 
@TREND("1980Q1") 1.63E-05 3.01E-05 0.541435 0.5891 

     
     R-squared 0.711978     Mean dependent var -0.001045 

Adjusted R-squared 0.697044     S.D. dependent var 0.025640 
S.E. of regression 0.014112     Akaike info criterion -5.629208 
Sum squared resid 0.026887     Schwarz criterion -5.463455 
Log likelihood 410.4884     Hannan-Quinn criter. -5.561854 
F-statistic 47.67355     Durbin-Watson stat 1.942594 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(CO2) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.275768  0.0745 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
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Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:23   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) -0.254780 0.077777 -3.275768 0.0013 

D(CO2(-1),2) 0.132815 0.075291 1.764035 0.0800 
D(CO2(-2),2) 0.132775 0.075287 1.763591 0.0800 
D(CO2(-3),2) 0.132735 0.075283 1.763146 0.0801 
D(CO2(-4),2) -0.556375 0.078309 -7.104906 0.0000 

C -0.002498 0.002623 -0.952342 0.3426 
@TREND("1980Q1") 3.01E-05 2.98E-05 1.011159 0.3137 

     
     R-squared 0.456147     Mean dependent var 0.000432 

Adjusted R-squared 0.432153     S.D. dependent var 0.018982 
S.E. of regression 0.014304     Akaike info criterion -5.608891 
Sum squared resid 0.027825     Schwarz criterion -5.463857 
Log likelihood 408.0357     Hannan-Quinn criter. -5.549956 
F-statistic 19.01124     Durbin-Watson stat 1.916527 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: FD has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.095785  0.0080 

Test critical values: 1% level  -4.021691  
 5% level  -3.440681  
 10% level  -3.144830  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD)   
Method: Least Squares   
Date: 08/09/22   Time: 04:24   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FD(-1) -0.045667 0.011150 -4.095785 0.0001 

D(FD(-1)) 0.780546 0.045813 17.03782 0.0000 
C 0.220067 0.070507 3.121200 0.0022 

@TREND("1980Q1") 0.002732 0.000919 2.972753 0.0035 
     
     R-squared 0.691034     Mean dependent var 0.015179 

Adjusted R-squared 0.684553     S.D. dependent var 0.536491 
S.E. of regression 0.301318     Akaike info criterion 0.465535 
Sum squared resid 12.98336     Schwarz criterion 0.546907 
Log likelihood -30.21681     Hannan-Quinn criter. 0.498597 
F-statistic 106.6116     Durbin-Watson stat 1.951333 
Prob(F-statistic) 0.000000    
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Null Hypothesis: D(FD) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.385233  0.0031 

Test critical values: 1% level  -4.021691  
 5% level  -3.440681  
 10% level  -3.144830  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:24   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FD(-1)) -0.211423 0.048213 -4.385233 0.0000 

C 0.020257 0.053621 0.377775 0.7062 
@TREND("1980Q1") -0.000144 0.000625 -0.230224 0.8182 

     
     R-squared 0.122467     Mean dependent var 0.007940 

Adjusted R-squared 0.110279     S.D. dependent var 0.336490 
S.E. of regression 0.317394     Akaike info criterion 0.562854 
Sum squared resid 14.50645     Schwarz criterion 0.623883 
Log likelihood -38.36979     Hannan-Quinn criter. 0.587651 
F-statistic 10.04819     Durbin-Watson stat 1.849237 
Prob(F-statistic) 0.000082    

     
      

 
Null Hypothesis: FDI has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.522156  0.0408 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI)   
Method: Least Squares   
Date: 08/09/22   Time: 04:24   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     FDI(-1) -0.065370 0.018560 -3.522156 0.0006 

D(FDI(-1)) 0.810620 0.076507 10.59543 0.0000 
D(FDI(-2)) 0.032285 0.089422 0.361044 0.7186 
D(FDI(-3)) 0.032285 0.089422 0.361044 0.7186 
D(FDI(-4)) -0.533139 0.089446 -5.960460 0.0000 
D(FDI(-5)) 0.411215 0.077203 5.326433 0.0000 

C 0.099476 0.043335 2.295540 0.0232 
@TREND("1980Q1") 0.000108 0.000439 0.245334 0.8066 

     
     R-squared 0.649566     Mean dependent var 0.004263 

Adjusted R-squared 0.631396     S.D. dependent var 0.342755 
S.E. of regression 0.208096     Akaike info criterion -0.247316 
Sum squared resid 5.846033     Schwarz criterion -0.081563 
Log likelihood 25.68310     Hannan-Quinn criter. -0.179962 
F-statistic 35.74811     Durbin-Watson stat 1.941870 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FDI) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.465025  0.0024 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:25   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FDI(-1)) -0.400101 0.089608 -4.465025 0.0000 

D(FDI(-1),2) 0.198198 0.079138 2.504442 0.0134 
D(FDI(-2),2) 0.198188 0.079137 2.504375 0.0134 
D(FDI(-3),2) 0.198179 0.079135 2.504307 0.0135 
D(FDI(-4),2) -0.366207 0.079266 -4.619968 0.0000 

C 0.022008 0.038872 0.566160 0.5722 
@TREND("1980Q1") -0.000252 0.000445 -0.565987 0.5723 

     
     R-squared 0.409174     Mean dependent var -0.000243 

Adjusted R-squared 0.383108     S.D. dependent var 0.275833 
S.E. of regression 0.216646     Akaike info criterion -0.173389 
Sum squared resid 6.383244     Schwarz criterion -0.028355 
Log likelihood 19.39731     Hannan-Quinn criter. -0.114454 
F-statistic 15.69772     Durbin-Watson stat 1.889438 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: FOS has a unit root  
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Exogenous: Constant, Linear Trend  
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.561242  0.2988 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS)   
Method: Least Squares   
Date: 08/09/22   Time: 04:25   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FOS(-1) -0.032724 0.012776 -2.561242 0.0116 

D(FOS(-1)) 0.914019 0.076149 12.00302 0.0000 
D(FOS(-2)) 0.021572 0.095044 0.226966 0.8208 
D(FOS(-3)) 0.021572 0.095044 0.226966 0.8208 
D(FOS(-4)) -0.742807 0.095061 -7.814021 0.0000 
D(FOS(-5)) 0.693813 0.101572 6.830719 0.0000 
D(FOS(-6)) 0.010965 0.094706 0.115775 0.9080 
D(FOS(-7)) 0.010965 0.094706 0.115775 0.9080 
D(FOS(-8)) -0.589932 0.095469 -6.179290 0.0000 
D(FOS(-9)) 0.537012 0.079271 6.774414 0.0000 

C 0.012943 0.005331 2.427904 0.0166 
@TREND("1980Q1") 7.24E-05 3.24E-05 2.236898 0.0270 

     
     R-squared 0.739123     Mean dependent var 0.003005 

Adjusted R-squared 0.716528     S.D. dependent var 0.018383 
S.E. of regression 0.009787     Akaike info criterion -6.333088 
Sum squared resid 0.012165     Schwarz criterion -6.079752 
Log likelihood 452.1496     Hannan-Quinn criter. -6.230139 
F-statistic 32.71091     Durbin-Watson stat 1.997228 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FOS) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.972151  0.1439 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS,2)   
Method: Least Squares   
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Date: 08/09/22   Time: 04:26   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FOS(-1)) -0.313751 0.105563 -2.972151 0.0035 

D(FOS(-1),2) 0.206578 0.097483 2.119111 0.0360 
D(FOS(-2),2) 0.206583 0.097485 2.119126 0.0360 
D(FOS(-3),2) 0.206587 0.097486 2.119140 0.0360 
D(FOS(-4),2) -0.555073 0.097970 -5.665746 0.0000 
D(FOS(-5),2) 0.104702 0.076866 1.362140 0.1755 
D(FOS(-6),2) 0.104708 0.076867 1.362191 0.1755 
D(FOS(-7),2) 0.104713 0.076868 1.362242 0.1755 
D(FOS(-8),2) -0.488440 0.078623 -6.212461 0.0000 

C 0.000123 0.001874 0.065633 0.9478 
@TREND("1980Q1") 9.74E-06 2.17E-05 0.449960 0.6535 

     
     R-squared 0.533913     Mean dependent var 6.13E-05 

Adjusted R-squared 0.497500     S.D. dependent var 0.014104 
S.E. of regression 0.009998     Akaike info criterion -6.297113 
Sum squared resid 0.012794     Schwarz criterion -6.064889 
Log likelihood 448.6494     Hannan-Quinn criter. -6.202743 
F-statistic 14.66270     Durbin-Watson stat 1.925200 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: GDPG has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.405811  0.0547 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG)   
Method: Least Squares   
Date: 08/09/22   Time: 04:26   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GDPG(-1) -0.082086 0.024102 -3.405811 0.0009 

D(GDPG(-1)) 0.700250 0.075284 9.301439 0.0000 
D(GDPG(-2)) 0.159718 0.076788 2.079989 0.0395 
D(GDPG(-3)) 0.087564 0.075677 1.157082 0.2494 
D(GDPG(-4)) -1.063323 0.075501 -14.08354 0.0000 
D(GDPG(-5)) 0.776351 0.094707 8.197427 0.0000 
D(GDPG(-6)) 0.096937 0.074701 1.297679 0.1967 
D(GDPG(-7)) 0.042872 0.073965 0.579628 0.5632 
D(GDPG(-8)) -0.416523 0.073172 -5.692396 0.0000 
D(GDPG(-9)) 0.330912 0.060643 5.456750 0.0000 

C 0.209581 0.188859 1.109719 0.2692 
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@TREND("1980Q1") 0.001822 0.002648 0.687966 0.4927 
     
     R-squared 0.781099     Mean dependent var 0.053386 

Adjusted R-squared 0.762139     S.D. dependent var 1.903953 
S.E. of regression 0.928576     Akaike info criterion 2.772047 
Sum squared resid 109.5063     Schwarz criterion 3.025383 
Log likelihood -180.6573     Hannan-Quinn criter. 2.874996 
F-statistic 41.19740     Durbin-Watson stat 2.147279 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(GDPG) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.616669  0.0014 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG,2)   
Method: Least Squares   
Date: 08/09/22   Time: 04:26   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(GDPG(-1)) -0.641221 0.138893 -4.616669 0.0000 

D(GDPG(-1),2) 0.310609 0.131247 2.366601 0.0195 
D(GDPG(-2),2) 0.415073 0.112058 3.704100 0.0003 
D(GDPG(-3),2) 0.445457 0.103440 4.306439 0.0000 
D(GDPG(-4),2) -0.684262 0.099454 -6.880159 0.0000 
D(GDPG(-5),2) 0.059175 0.081333 0.727561 0.4682 
D(GDPG(-6),2) 0.139540 0.069489 2.008093 0.0467 
D(GDPG(-7),2) 0.162986 0.064269 2.536005 0.0124 
D(GDPG(-8),2) -0.286095 0.061600 -4.644389 0.0000 

C 0.359015 0.191146 1.878222 0.0626 
@TREND("1980Q1") -0.003824 0.002149 -1.779448 0.0775 

     
     R-squared 0.802946     Mean dependent var 0.011738 

Adjusted R-squared 0.787551     S.D. dependent var 2.096364 
S.E. of regression 0.966259     Akaike info criterion 2.845060 
Sum squared resid 119.5080     Schwarz criterion 3.077285 
Log likelihood -186.7317     Hannan-Quinn criter. 2.939430 
F-statistic 52.15689     Durbin-Watson stat 2.068745 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: IP has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
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     Augmented Dickey-Fuller test statistic -2.611844  0.2759 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP)   
Method: Least Squares   
Date: 08/09/22   Time: 04:27   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     IP(-1) -0.044109 0.016888 -2.611844 0.0102 

D(IP(-1)) 0.891376 0.079535 11.20736 0.0000 
D(IP(-2)) 0.032580 0.101701 0.320347 0.7493 
D(IP(-3)) 0.032580 0.101701 0.320347 0.7493 
D(IP(-4)) -0.587730 0.103708 -5.667140 0.0000 
D(IP(-5)) 0.540796 0.107384 5.036120 0.0000 
D(IP(-6)) 0.022370 0.099844 0.224053 0.8231 
D(IP(-7)) 0.022370 0.099844 0.224053 0.8231 
D(IP(-8)) -0.740149 0.100648 -7.353824 0.0000 
D(IP(-9)) 0.667860 0.106431 6.275051 0.0000 

D(IP(-10)) 0.011554 0.101335 0.114014 0.9094 
D(IP(-11)) 0.011554 0.101335 0.114014 0.9094 
D(IP(-12)) -0.468494 0.101375 -4.621388 0.0000 
D(IP(-13)) 0.387345 0.080502 4.811615 0.0000 

C 1.712884 0.650801 2.631965 0.0096 
@TREND("1980Q1") -0.005203 0.001880 -2.767960 0.0065 

     
     R-squared 0.785983     Mean dependent var -0.080446 

Adjusted R-squared 0.759006     S.D. dependent var 0.763109 
S.E. of regression 0.374618     Akaike info criterion 0.985068 
Sum squared resid 16.70033     Schwarz criterion 1.329397 
Log likelihood -50.49207     Hannan-Quinn criter. 1.124993 
F-statistic 29.13543     Durbin-Watson stat 2.003368 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(IP) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.469635  0.0468 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP,2)   
Method: Least Squares   
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Date: 08/09/22   Time: 04:27   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(IP(-1)) -0.472182 0.136090 -3.469635 0.0007 

D(IP(-1),2) 0.349272 0.124353 2.808712 0.0058 
D(IP(-2),2) 0.349289 0.124355 2.808801 0.0058 
D(IP(-3),2) 0.349306 0.124357 2.808889 0.0058 
D(IP(-4),2) -0.273544 0.126100 -2.169264 0.0320 
D(IP(-5),2) 0.237334 0.099574 2.383497 0.0187 
D(IP(-6),2) 0.237343 0.099575 2.383570 0.0187 
D(IP(-7),2) 0.237352 0.099575 2.383644 0.0187 
D(IP(-8),2) -0.526752 0.100482 -5.242279 0.0000 
D(IP(-9),2) 0.123595 0.081503 1.516437 0.1320 

D(IP(-10),2) 0.123568 0.081502 1.516136 0.1321 
D(IP(-11),2) 0.123541 0.081500 1.515834 0.1322 
D(IP(-12),2) -0.356877 0.081562 -4.375546 0.0000 

C 0.024351 0.076564 0.318040 0.7510 
@TREND("1980Q1") -0.000809 0.000858 -0.942096 0.3480 

     
     R-squared 0.536816     Mean dependent var 0.014656 

Adjusted R-squared 0.482778     S.D. dependent var 0.533381 
S.E. of regression 0.383598     Akaike info criterion 1.025995 
Sum squared resid 17.65768     Schwarz criterion 1.348804 
Log likelihood -54.25469     Hannan-Quinn criter. 1.157176 
F-statistic 9.934039     Durbin-Watson stat 1.958130 
Prob(F-statistic) 0.000000    

     
      

Ghana 

Without intercept and trend 

 
Null Hypothesis: CO2 has a unit root  
Exogenous: None   
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  1.303851  0.9510 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:20   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) 0.124529 0.095508 1.303851 0.1948 

D(CO2(-1)) 0.718186 0.135539 5.298737 0.0000 
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D(CO2(-2)) -0.123355 0.131341 -0.939193 0.3495 
D(CO2(-3)) -0.123355 0.131341 -0.939193 0.3495 
D(CO2(-4)) 6.237998 0.301177 20.71203 0.0000 
D(CO2(-5)) -5.774786 0.677139 -8.528212 0.0000 
D(CO2(-6)) -0.128268 0.799057 -0.160524 0.8727 
D(CO2(-7)) -0.128268 0.799057 -0.160524 0.8727 
D(CO2(-8)) -47.99254 0.911074 -52.67689 0.0000 
D(CO2(-9)) 40.25864 4.067005 9.898843 0.0000 

D(CO2(-10)) -0.071903 4.730990 -0.015198 0.9879 
D(CO2(-11)) -0.071903 4.730990 -0.015198 0.9879 
D(CO2(-12)) -35.91328 4.806656 -7.471574 0.0000 
D(CO2(-13)) 26.32899 4.373002 6.020805 0.0000 

     
     R-squared 0.999244     Mean dependent var 1.988131 

Adjusted R-squared 0.999162     S.D. dependent var 11.43223 
S.E. of regression 0.330879     Akaike info criterion 0.723798 
Sum squared resid 13.24723     Schwarz criterion 1.025086 
Log likelihood -34.85636     Hannan-Quinn criter. 0.846233 
Durbin-Watson stat 1.877338    

     
      

 
Null Hypothesis: D(CO2) has a unit root  
Exogenous: None   
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.028587  0.0027 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2,2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:21   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) -14.64997 4.837228 -3.028587 0.0030 

D(CO2(-1),2) 14.51190 4.792075 3.028312 0.0030 
D(CO2(-2),2) 14.51190 4.792075 3.028312 0.0030 
D(CO2(-3),2) 14.51190 4.792075 3.028312 0.0030 
D(CO2(-4),2) 20.85642 4.725855 4.413258 0.0000 
D(CO2(-5),2) 15.08987 5.014109 3.009481 0.0032 
D(CO2(-6),2) 15.08987 5.014109 3.009481 0.0032 
D(CO2(-7),2) 15.08987 5.014109 3.009481 0.0032 
D(CO2(-8),2) -32.80143 4.915105 -6.673597 0.0000 
D(CO2(-9),2) 8.458880 4.365173 1.937811 0.0550 

D(CO2(-10),2) 8.458880 4.365173 1.937811 0.0550 
D(CO2(-11),2) 8.458880 4.365173 1.937811 0.0550 
D(CO2(-12),2) -27.43457 4.302297 -6.376726 0.0000 

     
     R-squared 0.996898     Mean dependent var 0.497588 

Adjusted R-squared 0.996593     S.D. dependent var 5.684697 
S.E. of regression 0.331827     Akaike info criterion 0.722935 
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Sum squared resid 13.43335     Schwarz criterion 1.002702 
Log likelihood -35.79813     Hannan-Quinn criter. 0.836625 
Durbin-Watson stat 1.885549    

     
      

 
Null Hypothesis: FD has a unit root  
Exogenous: None   
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.725246  0.8704 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD)   
Method: Least Squares   
Date: 08/09/22   Time: 05:21   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FD(-1) 0.001472 0.002029 0.725246 0.4696 

D(FD(-1)) 0.893505 0.081939 10.90454 0.0000 
D(FD(-2)) -0.001003 0.104960 -0.009551 0.9924 
D(FD(-3)) -0.001003 0.104960 -0.009551 0.9924 
D(FD(-4)) -0.813231 0.105708 -7.693183 0.0000 
D(FD(-5)) 0.692257 0.112651 6.145174 0.0000 
D(FD(-6)) -0.000483 0.105258 -0.004590 0.9963 
D(FD(-7)) -0.000483 0.105258 -0.004590 0.9963 
D(FD(-8)) -0.498687 0.106145 -4.698151 0.0000 
D(FD(-9)) 0.385481 0.083951 4.591719 0.0000 

     
     R-squared 0.689757     Mean dependent var 0.087196 

Adjusted R-squared 0.668112     S.D. dependent var 0.397030 
S.E. of regression 0.228728     Akaike info criterion -0.043346 
Sum squared resid 6.748810     Schwarz criterion 0.167767 
Log likelihood 13.01253     Hannan-Quinn criter. 0.042445 
Durbin-Watson stat 1.939481    

     
      

 
Null Hypothesis: D(FD) has a unit root  
Exogenous: None   
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.016074  0.0028 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  
     



221 
 

     
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD,2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:21   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FD(-1)) -0.304829 0.101068 -3.016074 0.0031 

D(FD(-1),2) 0.207630 0.101125 2.053196 0.0421 
D(FD(-2),2) 0.207630 0.101125 2.053196 0.0421 
D(FD(-3),2) 0.207630 0.101125 2.053196 0.0421 
D(FD(-4),2) -0.603373 0.101665 -5.934886 0.0000 
D(FD(-5),2) 0.100057 0.081362 1.229772 0.2210 
D(FD(-6),2) 0.100057 0.081362 1.229772 0.2210 
D(FD(-7),2) 0.100057 0.081362 1.229772 0.2210 
D(FD(-8),2) -0.396799 0.082338 -4.819172 0.0000 

     
     R-squared 0.492351     Mean dependent var -0.002248 

Adjusted R-squared 0.461111     S.D. dependent var 0.311011 
S.E. of regression 0.228310     Akaike info criterion -0.053665 
Sum squared resid 6.776327     Schwarz criterion 0.136337 
Log likelihood 12.72973     Hannan-Quinn criter. 0.023547 
Durbin-Watson stat 1.945554    

     
      

 
Null Hypothesis: FDI has a unit root  
Exogenous: None   
Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.111075  0.2412 

Test critical values: 1% level  -2.580788  
 5% level  -1.943012  
 10% level  -1.615270  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI)   
Method: Least Squares   
Date: 08/09/22   Time: 05:23   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FDI(-1) -0.004323 0.003891 -1.111075 0.2684 

D(FDI(-1)) 0.797362 0.051261 15.55490 0.0000 
     
     R-squared 0.621181     Mean dependent var 0.035087 

Adjusted R-squared 0.618569     S.D. dependent var 0.312203 
S.E. of regression 0.192817     Akaike info criterion -0.440642 
Sum squared resid 5.390850     Schwarz criterion -0.399955 
Log likelihood 34.38715     Hannan-Quinn criter. -0.424110 
Durbin-Watson stat 1.832775    
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Null Hypothesis: D(FDI) has a unit root  
Exogenous: None   
Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.119484  0.0001 

Test critical values: 1% level  -2.580788  
 5% level  -1.943012  
 10% level  -1.615270  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI,2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:23   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FDI(-1)) -0.209706 0.050906 -4.119484 0.0001 
     
     R-squared 0.104085     Mean dependent var -0.001450 

Adjusted R-squared 0.104085     S.D. dependent var 0.203873 
S.E. of regression 0.192971     Akaike info criterion -0.445769 
Sum squared resid 5.436746     Schwarz criterion -0.425426 
Log likelihood 33.76404     Hannan-Quinn criter. -0.437504 
Durbin-Watson stat 1.813395    

     
      

 
Null Hypothesis: FOS has a unit root  
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  2.820025  0.9988 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS)   
Method: Least Squares   
Date: 08/09/22   Time: 05:24   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FOS(-1) 0.004009 0.001422 2.820025 0.0055 

D(FOS(-1)) 0.851680 0.079550 10.70628 0.0000 
D(FOS(-2)) -0.001992 0.097025 -0.020530 0.9837 
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D(FOS(-3)) -0.001992 0.097025 -0.020530 0.9837 
D(FOS(-4)) -0.546008 0.099495 -5.487813 0.0000 
D(FOS(-5)) 0.383129 0.083491 4.588839 0.0000 

     
     R-squared 0.679604     Mean dependent var 0.001021 

Adjusted R-squared 0.667911     S.D. dependent var 0.001528 
S.E. of regression 0.000880     Akaike info criterion -11.19121 
Sum squared resid 0.000106     Schwarz criterion -11.06689 
Log likelihood 806.1715     Hannan-Quinn criter. -11.14069 
Durbin-Watson stat 1.912616    

     
      

 
Null Hypothesis: D(FOS) has a unit root  
Exogenous: None   
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.314895  0.0204 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS,2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:24   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FOS(-1)) -0.117513 0.050764 -2.314895 0.0221 

D(FOS(-1),2) 0.058390 0.074700 0.781668 0.4357 
D(FOS(-2),2) 0.058390 0.074700 0.781668 0.4357 
D(FOS(-3),2) 0.058390 0.074700 0.781668 0.4357 
D(FOS(-4),2) -0.476146 0.078608 -6.057227 0.0000 

     
     R-squared 0.299158     Mean dependent var -9.29E-06 

Adjusted R-squared 0.278844     S.D. dependent var 0.001063 
S.E. of regression 0.000902     Akaike info criterion -11.14877 
Sum squared resid 0.000112     Schwarz criterion -11.04517 
Log likelihood 802.1370     Hannan-Quinn criter. -11.10667 
Durbin-Watson stat 1.959803    

     
      

 
Null Hypothesis: GDPG has a unit root  
Exogenous: None   
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.476344  0.5077 

Test critical values: 1% level  -2.582076  
 5% level  -1.943193  
 10% level  -1.615157  
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*MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG)   
Method: Least Squares   
Date: 08/09/22   Time: 05:26   
Sample (adjusted): 1983Q2 2017Q1  
Included observations: 136 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GDPG(-1) -0.005373 0.011280 -0.476344 0.6347 

D(GDPG(-1)) 0.641253 0.088053 7.282579 0.0000 
D(GDPG(-2)) 0.246807 0.105306 2.343716 0.0207 
D(GDPG(-3)) 0.097409 0.107007 0.910306 0.3644 
D(GDPG(-4)) -1.225551 0.103075 -11.88988 0.0000 
D(GDPG(-5)) 0.658183 0.126570 5.200150 0.0000 
D(GDPG(-6)) 0.254160 0.139189 1.826004 0.0703 
D(GDPG(-7)) 0.109643 0.139269 0.787276 0.4326 
D(GDPG(-8)) -0.888629 0.127067 -6.993399 0.0000 
D(GDPG(-9)) 0.346595 0.101460 3.416076 0.0009 

D(GDPG(-10)) 0.139612 0.105683 1.321045 0.1889 
D(GDPG(-11)) 0.072595 0.104154 0.696994 0.4871 
D(GDPG(-12)) -0.337630 0.087203 -3.871750 0.0002 

     
     R-squared 0.686536     Mean dependent var 0.112302 

Adjusted R-squared 0.655954     S.D. dependent var 1.195703 
S.E. of regression 0.701344     Akaike info criterion 2.219071 
Sum squared resid 60.50174     Schwarz criterion 2.497486 
Log likelihood -137.8968     Hannan-Quinn criter. 2.332212 
Durbin-Watson stat 1.685952    

     
      

 
Null Hypothesis: D(GDPG) has a unit root  
Exogenous: None   
Lag Length: 11 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -5.627340  0.0000 

Test critical values: 1% level  -2.582076  
 5% level  -1.943193  
 10% level  -1.615157  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG,2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:26   
Sample (adjusted): 1983Q2 2017Q1  
Included observations: 136 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(GDPG(-1)) -0.916898 0.162936 -5.627340 0.0000 

D(GDPG(-1),2) 0.556896 0.155113 3.590264 0.0005 
D(GDPG(-2),2) 0.800542 0.150259 5.327731 0.0000 
D(GDPG(-3),2) 0.893615 0.148169 6.031043 0.0000 
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D(GDPG(-4),2) -0.337944 0.131945 -2.561244 0.0116 
D(GDPG(-5),2) 0.320748 0.134752 2.380276 0.0188 
D(GDPG(-6),2) 0.573388 0.133023 4.310444 0.0000 
D(GDPG(-7),2) 0.679874 0.130104 5.225633 0.0000 
D(GDPG(-8),2) -0.214955 0.087837 -2.447192 0.0158 
D(GDPG(-9),2) 0.132404 0.090487 1.463234 0.1459 

D(GDPG(-10),2) 0.271568 0.090141 3.012693 0.0031 
D(GDPG(-11),2) 0.342365 0.086364 3.964190 0.0001 

     
     R-squared 0.681108     Mean dependent var 0.027366 

Adjusted R-squared 0.652819     S.D. dependent var 1.186576 
S.E. of regression 0.699155     Akaike info criterion 2.206208 
Sum squared resid 60.61335     Schwarz criterion 2.463207 
Log likelihood -138.0221     Hannan-Quinn criter. 2.310646 
Durbin-Watson stat 1.688901    

     
      

 
Null Hypothesis: IP has a unit root  
Exogenous: None   
Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.277354  0.7650 

Test critical values: 1% level  -2.580788  
 5% level  -1.943012  
 10% level  -1.615270  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP)   
Method: Least Squares   
Date: 08/09/22   Time: 05:27   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     IP(-1) 0.000420 0.001514 0.277354 0.7819 

D(IP(-1)) 0.818670 0.048143 17.00503 0.0000 
     
     R-squared 0.662702     Mean dependent var 0.133282 

Adjusted R-squared 0.660376     S.D. dependent var 0.692457 
S.E. of regression 0.403545     Akaike info criterion 1.036456 
Sum squared resid 23.61307     Schwarz criterion 1.077142 
Log likelihood -74.17950     Hannan-Quinn criter. 1.052987 
Durbin-Watson stat 1.836453    

     
      

 
Null Hypothesis: D(IP) has a unit root  
Exogenous: None   
Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.791103  0.0002 

Test critical values: 1% level  -2.580788  
 5% level  -1.943012  
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 10% level  -1.615270  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP,2)   
Method: Least Squares   
Date: 08/09/22   Time: 05:27   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(IP(-1)) -0.178901 0.047190 -3.791103 0.0002 
     
     R-squared 0.089206     Mean dependent var 0.008953 

Adjusted R-squared 0.089206     S.D. dependent var 0.421507 
S.E. of regression 0.402268     Akaike info criterion 1.023381 
Sum squared resid 23.62560     Schwarz criterion 1.043724 
Log likelihood -74.21848     Hannan-Quinn criter. 1.031646 
Durbin-Watson stat 1.839015    

     
      

Intercept and trend 

 
Null Hypothesis: CO2 has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.025628  0.1292 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:00   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -3.994446 1.320204 -3.025628 0.0030 

D(CO2(-1)) 4.786456 1.310606 3.652095 0.0004 
D(CO2(-2)) 3.956364 1.310589 3.018767 0.0031 
D(CO2(-3)) 3.956364 1.310589 3.018767 0.0031 
D(CO2(-4)) 10.14608 1.274212 7.962627 0.0000 
D(CO2(-5)) -1.331628 1.544360 -0.862253 0.3903 
D(CO2(-6)) 4.122229 1.562066 2.638959 0.0094 
D(CO2(-7)) 4.122229 1.562066 2.638959 0.0094 
D(CO2(-8)) -44.01761 1.533329 -28.70721 0.0000 
D(CO2(-9)) 41.75698 3.997422 10.44598 0.0000 

D(CO2(-10)) 2.301644 4.625620 0.497586 0.6197 
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D(CO2(-11)) 2.301644 4.625620 0.497586 0.6197 
D(CO2(-12)) -34.07061 4.670347 -7.295091 0.0000 
D(CO2(-13)) 29.19367 4.341676 6.724055 0.0000 

C 0.766700 0.275670 2.781221 0.0063 
@TREND("1980Q1") 0.006946 0.002088 3.326805 0.0012 

     
     R-squared 0.999308     Mean dependent var 1.988131 

Adjusted R-squared 0.999221     S.D. dependent var 11.43223 
S.E. of regression 0.319124     Akaike info criterion 0.664412 
Sum squared resid 12.11897     Schwarz criterion 1.008740 
Log likelihood -28.84778     Hannan-Quinn criter. 0.804337 
F-statistic 11456.60     Durbin-Watson stat 1.948759 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(CO2) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.436811  0.0508 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2,2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:01   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) -17.25575 5.020861 -3.436811 0.0008 

D(CO2(-1),2) 17.08384 4.972761 3.435483 0.0008 
D(CO2(-2),2) 17.08377 4.972754 3.435475 0.0008 
D(CO2(-3),2) 17.08370 4.972747 3.435466 0.0008 
D(CO2(-4),2) 23.46928 4.914617 4.775404 0.0000 
D(CO2(-5),2) 17.91653 5.221176 3.431512 0.0008 
D(CO2(-6),2) 17.91777 5.221319 3.431655 0.0008 
D(CO2(-7),2) 17.91900 5.221462 3.431798 0.0008 
D(CO2(-8),2) -29.90502 5.136363 -5.822217 0.0000 
D(CO2(-9),2) 9.773406 4.405131 2.218642 0.0284 

D(CO2(-10),2) 9.772658 4.405094 2.218490 0.0284 
D(CO2(-11),2) 9.771909 4.405057 2.218339 0.0284 
D(CO2(-12),2) -25.99507 4.351728 -5.973506 0.0000 

C -0.042976 0.068402 -0.628294 0.5310 
@TREND("1980Q1") 0.001096 0.000814 1.345966 0.1809 

     
     R-squared 0.996986     Mean dependent var 0.497588 

Adjusted R-squared 0.996634     S.D. dependent var 5.684697 
S.E. of regression 0.329789     Akaike info criterion 0.723709 
Sum squared resid 13.05126     Schwarz criterion 1.046518 
Log likelihood -33.85037     Hannan-Quinn criter. 0.854889 
F-statistic 2835.367     Durbin-Watson stat 1.876531 
Prob(F-statistic) 0.000000    
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Null Hypothesis: FD has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.564021  0.8022 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD)   
Method: Least Squares   
Date: 08/09/22   Time: 06:01   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FD(-1) -0.022398 0.014321 -1.564021 0.1203 

D(FD(-1)) 0.881714 0.082370 10.70433 0.0000 
D(FD(-2)) 0.015343 0.104040 0.147473 0.8830 
D(FD(-3)) 0.015343 0.104040 0.147473 0.8830 
D(FD(-4)) -0.799742 0.104581 -7.647072 0.0000 
D(FD(-5)) 0.685936 0.112530 6.095594 0.0000 
D(FD(-6)) 0.007399 0.103985 0.071157 0.9434 
D(FD(-7)) 0.007399 0.103985 0.071157 0.9434 
D(FD(-8)) -0.493946 0.104778 -4.714225 0.0000 
D(FD(-9)) 0.387634 0.084596 4.582190 0.0000 

C 0.064198 0.045110 1.423127 0.1572 
@TREND("1980Q1") 0.002245 0.001782 1.260114 0.2099 

     
     R-squared 0.702517     Mean dependent var 0.087196 

Adjusted R-squared 0.676751     S.D. dependent var 0.397030 
S.E. of regression 0.225731     Akaike info criterion -0.056569 
Sum squared resid 6.471232     Schwarz criterion 0.196767 
Log likelihood 15.93151     Hannan-Quinn criter. 0.046380 
F-statistic 27.26501     Durbin-Watson stat 1.949563 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FD) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.520867  0.0410 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
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Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD,2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:02   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FD(-1)) -0.408626 0.116058 -3.520867 0.0006 

D(FD(-1),2) 0.277302 0.108188 2.563138 0.0115 
D(FD(-2),2) 0.277285 0.108188 2.563004 0.0115 
D(FD(-3),2) 0.277268 0.108187 2.562869 0.0115 
D(FD(-4),2) -0.534456 0.108296 -4.935159 0.0000 
D(FD(-5),2) 0.132730 0.083140 1.596464 0.1129 
D(FD(-6),2) 0.132721 0.083140 1.596357 0.1129 
D(FD(-7),2) 0.132711 0.083139 1.596249 0.1129 
D(FD(-8),2) -0.364928 0.083810 -4.354217 0.0000 

C 0.071832 0.045098 1.592794 0.1137 
@TREND("1980Q1") -0.000438 0.000484 -0.905997 0.3666 

     
     R-squared 0.505869     Mean dependent var -0.002248 

Adjusted R-squared 0.467265     S.D. dependent var 0.311011 
S.E. of regression 0.227003     Akaike info criterion -0.051879 
Sum squared resid 6.595875     Schwarz criterion 0.180346 
Log likelihood 14.60559     Hannan-Quinn criter. 0.042491 
F-statistic 13.10407     Durbin-Watson stat 1.934757 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: FDI has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.417297  0.0530 

Test critical values: 1% level  -4.021691  
 5% level  -3.440681  
 10% level  -3.144830  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI)   
Method: Least Squares   
Date: 08/09/22   Time: 06:03   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FDI(-1) -0.033107 0.009688 -3.417297 0.0008 

D(FDI(-1)) 0.803592 0.049979 16.07866 0.0000 
C -0.035451 0.034193 -1.036820 0.3016 

@TREND("1980Q1") 0.001836 0.000663 2.768512 0.0064 
     
     R-squared 0.647231     Mean dependent var 0.035087 

Adjusted R-squared 0.639830     S.D. dependent var 0.312203 
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S.E. of regression 0.187366     Akaike info criterion -0.484675 
Sum squared resid 5.020142     Schwarz criterion -0.403303 
Log likelihood 39.62365     Hannan-Quinn criter. -0.451613 
F-statistic 87.45485     Durbin-Watson stat 1.920511 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FDI) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.109410  0.0076 

Test critical values: 1% level  -4.021691  
 5% level  -3.440681  
 10% level  -3.144830  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI,2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:03   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FDI(-1)) -0.211976 0.051583 -4.109410 0.0001 

C 0.010644 0.032564 0.326864 0.7442 
@TREND("1980Q1") -5.80E-05 0.000377 -0.153633 0.8781 

     
     R-squared 0.105179     Mean dependent var -0.001450 

Adjusted R-squared 0.092751     S.D. dependent var 0.203873 
S.E. of regression 0.194188     Akaike info criterion -0.419781 
Sum squared resid 5.430106     Schwarz criterion -0.358751 
Log likelihood 33.85387     Hannan-Quinn criter. -0.394984 
F-statistic 8.463020     Durbin-Watson stat 1.811607 
Prob(F-statistic) 0.000335    

     
      

 
Null Hypothesis: FOS has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.096471  0.9253 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS)   
Method: Least Squares   
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Date: 08/09/22   Time: 06:04   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FOS(-1) -0.006027 0.005497 -1.096471 0.2748 

D(FOS(-1)) 0.841371 0.079273 10.61352 0.0000 
D(FOS(-2)) 0.002946 0.096471 0.030541 0.9757 
D(FOS(-3)) 0.002946 0.096471 0.030541 0.9757 
D(FOS(-4)) -0.535763 0.099077 -5.407557 0.0000 
D(FOS(-5)) 0.380111 0.083219 4.567614 0.0000 

C -1.97E-05 0.000157 -0.125136 0.9006 
@TREND("1980Q1") 1.05E-05 5.55E-06 1.898780 0.0597 

     
     R-squared 0.688108     Mean dependent var 0.001021 

Adjusted R-squared 0.671936     S.D. dependent var 0.001528 
S.E. of regression 0.000875     Akaike info criterion -11.19014 
Sum squared resid 0.000103     Schwarz criterion -11.02438 
Log likelihood 808.0949     Hannan-Quinn criter. -11.12278 
F-statistic 42.54893     Durbin-Watson stat 1.924138 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FOS) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.019982  0.0101 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS,2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:04   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FOS(-1)) -0.333911 0.083063 -4.019982 0.0001 

D(FOS(-1),2) 0.171661 0.080607 2.129605 0.0350 
D(FOS(-2),2) 0.171639 0.080604 2.129413 0.0350 
D(FOS(-3),2) 0.171616 0.080600 2.129221 0.0350 
D(FOS(-4),2) -0.371397 0.082900 -4.480064 0.0000 

C -3.79E-05 0.000156 -0.242503 0.8088 
@TREND("1980Q1") 4.96E-06 2.21E-06 2.244936 0.0264 

     
     R-squared 0.349447     Mean dependent var -9.29E-06 

Adjusted R-squared 0.320746     S.D. dependent var 0.001063 
S.E. of regression 0.000876     Akaike info criterion -11.19526 
Sum squared resid 0.000104     Schwarz criterion -11.05022 
Log likelihood 807.4609     Hannan-Quinn criter. -11.13632 
F-statistic 12.17550     Durbin-Watson stat 1.913882 
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Prob(F-statistic) 0.000000    
     
      

 
Null Hypothesis: GDPG has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 9 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.711700  0.0010 

Test critical values: 1% level  -4.025426  
 5% level  -3.442474  
 10% level  -3.145882  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG)   
Method: Least Squares   
Date: 08/09/22   Time: 06:05   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GDPG(-1) -0.135973 0.028859 -4.711700 0.0000 

D(GDPG(-1)) 0.697750 0.083657 8.340604 0.0000 
D(GDPG(-2)) 0.251782 0.088413 2.847788 0.0051 
D(GDPG(-3)) 0.149993 0.090914 1.649826 0.1014 
D(GDPG(-4)) -0.906415 0.091734 -9.880895 0.0000 
D(GDPG(-5)) 0.695298 0.113354 6.133861 0.0000 
D(GDPG(-6)) 0.142325 0.088382 1.610335 0.1098 
D(GDPG(-7)) 0.076531 0.089220 0.857772 0.3926 
D(GDPG(-8)) -0.466489 0.088756 -5.255840 0.0000 
D(GDPG(-9)) 0.383163 0.083806 4.572010 0.0000 

C 0.315371 0.139052 2.268011 0.0250 
@TREND("1980Q1") 0.004865 0.001977 2.461025 0.0152 

     
     R-squared 0.683442     Mean dependent var 0.109114 

Adjusted R-squared 0.656024     S.D. dependent var 1.183159 
S.E. of regression 0.693916     Akaike info criterion 2.189445 
Sum squared resid 61.15305     Schwarz criterion 2.442781 
Log likelihood -140.1664     Hannan-Quinn criter. 2.292394 
F-statistic 24.92643     Durbin-Watson stat 2.003685 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(GDPG) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 11 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -6.049611  0.0000 

Test critical values: 1% level  -4.026942  
 5% level  -3.443201  
 10% level  -3.146309  
     
     *MacKinnon (1996) one-sided p-values.  
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Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG,2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:05   
Sample (adjusted): 1983Q2 2017Q1  
Included observations: 136 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(GDPG(-1)) -1.044643 0.172679 -6.049611 0.0000 

D(GDPG(-1),2) 0.656696 0.161046 4.077702 0.0001 
D(GDPG(-2),2) 0.891513 0.155165 5.745560 0.0000 
D(GDPG(-3),2) 0.980497 0.152558 6.427059 0.0000 
D(GDPG(-4),2) -0.259056 0.136059 -1.903994 0.0593 
D(GDPG(-5),2) 0.375813 0.136034 2.762631 0.0066 
D(GDPG(-6),2) 0.621892 0.133701 4.651371 0.0000 
D(GDPG(-7),2) 0.724096 0.130446 5.550914 0.0000 
D(GDPG(-8),2) -0.183277 0.088242 -2.076995 0.0399 
D(GDPG(-9),2) 0.152348 0.090024 1.692297 0.0931 

D(GDPG(-10),2) 0.287923 0.089486 3.217528 0.0017 
D(GDPG(-11),2) 0.354593 0.085591 4.142889 0.0001 

C 0.308178 0.145648 2.115910 0.0364 
@TREND("1980Q1") -0.002714 0.001613 -1.682953 0.0949 

     
     R-squared 0.693268     Mean dependent var 0.027366 

Adjusted R-squared 0.660583     S.D. dependent var 1.186576 
S.E. of regression 0.691293     Akaike info criterion 2.196744 
Sum squared resid 58.30215     Schwarz criterion 2.496576 
Log likelihood -135.3786     Hannan-Quinn criter. 2.318588 
F-statistic 21.21084     Durbin-Watson stat 1.704436 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: IP has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 1 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.293379  0.0714 

Test critical values: 1% level  -4.021691  
 5% level  -3.440681  
 10% level  -3.144830  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP)   
Method: Least Squares   
Date: 08/09/22   Time: 06:06   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     IP(-1) -0.025803 0.007835 -3.293379 0.0012 

D(IP(-1)) 0.825848 0.046724 17.67515 0.0000 
C 0.347778 0.114170 3.046134 0.0028 
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@TREND("1980Q1") 0.003107 0.001237 2.512224 0.0131 
     
     R-squared 0.688317     Mean dependent var 0.133282 

Adjusted R-squared 0.681779     S.D. dependent var 0.692457 
S.E. of regression 0.390623     Akaike info criterion 0.984685 
Sum squared resid 21.81982     Schwarz criterion 1.066057 
Log likelihood -68.37434     Hannan-Quinn criter. 1.017747 
F-statistic 105.2667     Durbin-Watson stat 1.946531 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(IP) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.886949  0.0149 

Test critical values: 1% level  -4.021691  
 5% level  -3.440681  
 10% level  -3.144830  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP,2)   
Method: Least Squares   
Date: 08/09/22   Time: 06:06   
Sample (adjusted): 1980Q3 2017Q1  
Included observations: 147 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(IP(-1)) -0.187058 0.048125 -3.886949 0.0002 

C 0.040330 0.067937 0.593642 0.5537 
@TREND("1980Q1") -0.000108 0.000785 -0.137954 0.8905 

     
     R-squared 0.095018     Mean dependent var 0.008953 

Adjusted R-squared 0.082449     S.D. dependent var 0.421507 
S.E. of regression 0.403757     Akaike info criterion 1.044189 
Sum squared resid 23.47482     Schwarz criterion 1.105218 
Log likelihood -73.74790     Hannan-Quinn criter. 1.068986 
F-statistic 7.559627     Durbin-Watson stat 1.836095 
Prob(F-statistic) 0.000755    

     
      

South Africa 

Without intercept and trend 

 
Null Hypothesis: CO2 has a unit root  
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.637396  0.4396 

Test critical values: 1% level  -2.581233  
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 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:04   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -0.000502 0.000788 -0.637396 0.5249 

D(CO2(-1)) 0.869155 0.072199 12.03825 0.0000 
D(CO2(-2)) 0.000288 0.087670 0.003290 0.9974 
D(CO2(-3)) 0.000288 0.087670 0.003290 0.9974 
D(CO2(-4)) -0.849203 0.101152 -8.395359 0.0000 
D(CO2(-5)) 0.677513 0.091748 7.384514 0.0000 

     
     R-squared 0.709593     Mean dependent var -0.010820 

Adjusted R-squared 0.698994     S.D. dependent var 0.153795 
S.E. of regression 0.084378     Akaike info criterion -2.065964 
Sum squared resid 0.975395     Schwarz criterion -1.941649 
Log likelihood 153.7165     Hannan-Quinn criter. -2.015449 
Durbin-Watson stat 1.920828    

     
      

 
Null Hypothesis: D(CO2) has a unit root  
Exogenous: None   
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.521637  0.0005 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:05   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) -0.305087 0.086632 -3.521637 0.0006 

D(CO2(-1),2) 0.175116 0.079366 2.206425 0.0290 
D(CO2(-2),2) 0.175116 0.079366 2.206425 0.0290 
D(CO2(-3),2) 0.175116 0.079366 2.206425 0.0290 
D(CO2(-4),2) -0.676484 0.091536 -7.390359 0.0000 

     
     R-squared 0.470002     Mean dependent var -0.004843 

Adjusted R-squared 0.454640     S.D. dependent var 0.114012 
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S.E. of regression 0.084196     Akaike info criterion -2.076989 
Sum squared resid 0.978287     Schwarz criterion -1.973393 
Log likelihood 153.5047     Hannan-Quinn criter. -2.034893 
Durbin-Watson stat 1.918086    

     
      

 
Null Hypothesis: FD has a unit root  
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.988514  0.9143 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD)   
Method: Least Squares   
Date: 08/09/22   Time: 07:06   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FD(-1) 0.001016 0.001027 0.988514 0.3246 

D(FD(-1)) 0.862025 0.080985 10.64424 0.0000 
D(FD(-2)) -0.000507 0.101881 -0.004976 0.9960 
D(FD(-3)) -0.000507 0.101881 -0.004976 0.9960 
D(FD(-4)) -0.465545 0.102124 -4.558628 0.0000 
D(FD(-5)) 0.326253 0.081572 3.999580 0.0001 

     
     R-squared 0.627394     Mean dependent var 0.617137 

Adjusted R-squared 0.613795     S.D. dependent var 2.185457 
S.E. of regression 1.358161     Akaike info criterion 3.491193 
Sum squared resid 252.7106     Schwarz criterion 3.615508 
Log likelihood -243.6203     Hannan-Quinn criter. 3.541709 
Durbin-Watson stat 1.930734    

     
      

 
Null Hypothesis: D(FD) has a unit root  
Exogenous: None   
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.604552  0.0004 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD,2)   
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Method: Least Squares   
Date: 08/09/22   Time: 07:06   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FD(-1)) -0.251558 0.069789 -3.604552 0.0004 

D(FD(-1),2) 0.125564 0.080014 1.569263 0.1189 
D(FD(-2),2) 0.125564 0.080014 1.569263 0.1189 
D(FD(-3),2) 0.125564 0.080014 1.569263 0.1189 
D(FD(-4),2) -0.340256 0.080326 -4.235959 0.0000 

     
     R-squared 0.282794     Mean dependent var 0.003251 

Adjusted R-squared 0.262005     S.D. dependent var 1.580844 
S.E. of regression 1.358049     Akaike info criterion 3.484315 
Sum squared resid 254.5130     Schwarz criterion 3.587911 
Log likelihood -244.1285     Hannan-Quinn criter. 3.526411 
Durbin-Watson stat 1.936145    

     
      

 
Null Hypothesis: FDI has a unit root  
Exogenous: None   
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.181481  0.2162 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI)   
Method: Least Squares   
Date: 08/09/22   Time: 07:07   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FDI(-1) -0.014208 0.012025 -1.181481 0.2397 

D(FDI(-1)) 0.866486 0.076565 11.31697 0.0000 
D(FDI(-2)) 0.010898 0.088904 0.122584 0.9026 
D(FDI(-3)) 0.010898 0.088904 0.122584 0.9026 
D(FDI(-4)) -1.043032 0.088949 -11.72614 0.0000 
D(FDI(-5)) 0.898081 0.113543 7.909641 0.0000 
D(FDI(-6)) 0.007119 0.113572 0.062681 0.9501 
D(FDI(-7)) 0.007119 0.113572 0.062681 0.9501 
D(FDI(-8)) -0.875656 0.113859 -7.690733 0.0000 
D(FDI(-9)) 0.727315 0.114196 6.368984 0.0000 

D(FDI(-10)) 0.003343 0.088836 0.037634 0.9700 
D(FDI(-11)) 0.003343 0.088836 0.037634 0.9700 
D(FDI(-12)) -0.690423 0.088879 -7.768101 0.0000 
D(FDI(-13)) 0.555433 0.077008 7.212704 0.0000 

     
     R-squared 0.822879     Mean dependent var 0.002907 

Adjusted R-squared 0.803849     S.D. dependent var 0.397344 
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S.E. of regression 0.175980     Akaike info criterion -0.538975 
Sum squared resid 3.747223     Schwarz criterion -0.237687 
Log likelihood 50.38083     Hannan-Quinn criter. -0.416540 
Durbin-Watson stat 1.907443    

     
      

 
Null Hypothesis: D(FDI) has a unit root  
Exogenous: None   
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.326365  0.0010 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:07   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FDI(-1)) -0.618828 0.186037 -3.326365 0.0012 

D(FDI(-1),2) 0.474681 0.155840 3.045950 0.0028 
D(FDI(-2),2) 0.474681 0.155840 3.045950 0.0028 
D(FDI(-3),2) 0.474681 0.155840 3.045950 0.0028 
D(FDI(-4),2) -0.578952 0.156240 -3.705530 0.0003 
D(FDI(-5),2) 0.310068 0.123049 2.519868 0.0130 
D(FDI(-6),2) 0.310068 0.123049 2.519868 0.0130 
D(FDI(-7),2) 0.310068 0.123049 2.519868 0.0130 
D(FDI(-8),2) -0.571997 0.124046 -4.611155 0.0000 
D(FDI(-9),2) 0.145617 0.076623 1.900435 0.0597 

D(FDI(-10),2) 0.145617 0.076623 1.900435 0.0597 
D(FDI(-11),2) 0.145617 0.076623 1.900435 0.0597 
D(FDI(-12),2) -0.547900 0.076868 -7.127842 0.0000 

     
     R-squared 0.753207     Mean dependent var -0.001148 

Adjusted R-squared 0.728932     S.D. dependent var 0.338553 
S.E. of regression 0.176265     Akaike info criterion -0.542320 
Sum squared resid 3.790452     Schwarz criterion -0.262553 
Log likelihood 49.60658     Hannan-Quinn criter. -0.428630 
Durbin-Watson stat 1.894111    

     
      

 
Null Hypothesis: FOS has a unit root  
Exogenous: None   
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  0.780853  0.8807 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
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 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS)   
Method: Least Squares   
Date: 08/09/22   Time: 07:08   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FOS(-1) 0.000617 0.000791 0.780853 0.4364 

D(FOS(-1)) 0.951640 0.075258 12.64500 0.0000 
D(FOS(-2)) -0.000476 0.098607 -0.004832 0.9962 
D(FOS(-3)) -0.000476 0.098607 -0.004832 0.9962 
D(FOS(-4)) -1.040611 0.098918 -10.51996 0.0000 
D(FOS(-5)) 0.982084 0.115987 8.467199 0.0000 
D(FOS(-6)) -0.000307 0.120610 -0.002544 0.9980 
D(FOS(-7)) -0.000307 0.120610 -0.002544 0.9980 
D(FOS(-8)) -0.860508 0.120854 -7.120245 0.0000 
D(FOS(-9)) 0.800436 0.117851 6.791913 0.0000 

D(FOS(-10)) -0.000144 0.103399 -0.001389 0.9989 
D(FOS(-11)) -0.000144 0.103399 -0.001389 0.9989 
D(FOS(-12)) -0.664383 0.104321 -6.368665 0.0000 
D(FOS(-13)) 0.612541 0.081714 7.496125 0.0000 

     
     R-squared 0.788217     Mean dependent var 0.004117 

Adjusted R-squared 0.765464     S.D. dependent var 0.012709 
S.E. of regression 0.006155     Akaike info criterion -7.245209 
Sum squared resid 0.004584     Schwarz criterion -6.943921 
Log likelihood 503.0516     Hannan-Quinn criter. -7.122774 
Durbin-Watson stat 1.959271    

     
      

 
Null Hypothesis: D(FOS) has a unit root  
Exogenous: None   
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.634606  0.0962 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:08   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FOS(-1)) -0.143473 0.087772 -1.634606 0.1047 
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D(FOS(-1),2) 0.110720 0.097129 1.139929 0.2565 
D(FOS(-2),2) 0.110720 0.097129 1.139929 0.2565 
D(FOS(-3),2) 0.110720 0.097129 1.139929 0.2565 
D(FOS(-4),2) -0.930761 0.097722 -9.524572 0.0000 
D(FOS(-5),2) 0.071298 0.095669 0.745258 0.4575 
D(FOS(-6),2) 0.071298 0.095669 0.745258 0.4575 
D(FOS(-7),2) 0.071298 0.095669 0.745258 0.4575 
D(FOS(-8),2) -0.787621 0.095777 -8.223471 0.0000 
D(FOS(-9),2) 0.033373 0.075799 0.440290 0.6605 

D(FOS(-10),2) 0.033373 0.075799 0.440290 0.6605 
D(FOS(-11),2) 0.033373 0.075799 0.440290 0.6605 
D(FOS(-12),2) -0.633211 0.077184 -8.203899 0.0000 

     
     R-squared 0.661675     Mean dependent var -4.22E-05 

Adjusted R-squared 0.628397     S.D. dependent var 0.010081 
S.E. of regression 0.006145     Akaike info criterion -7.254997 
Sum squared resid 0.004607     Schwarz criterion -6.975230 
Log likelihood 502.7123     Hannan-Quinn criter. -7.141308 
Durbin-Watson stat 1.978210    

     
      

 
Null Hypothesis: GDPG has a unit root  
Exogenous: None   
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.239474  0.1969 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG)   
Method: Least Squares   
Date: 08/09/22   Time: 07:09   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GDPG(-1) -0.018371 0.014822 -1.239474 0.2176 

D(GDPG(-1)) 0.736811 0.083677 8.805383 0.0000 
D(GDPG(-2)) 0.153924 0.083417 1.845240 0.0674 
D(GDPG(-3)) 0.054607 0.084045 0.649733 0.5171 
D(GDPG(-4)) -1.275737 0.083777 -15.22783 0.0000 
D(GDPG(-5)) 0.928200 0.127328 7.289837 0.0000 
D(GDPG(-6)) 0.130189 0.101584 1.281584 0.2024 
D(GDPG(-7)) 0.039320 0.101374 0.387866 0.6988 
D(GDPG(-8)) -1.035997 0.100491 -10.30936 0.0000 
D(GDPG(-9)) 0.722514 0.118809 6.081330 0.0000 

D(GDPG(-10)) 0.073462 0.080439 0.913259 0.3629 
D(GDPG(-11)) 0.019032 0.080262 0.237126 0.8130 
D(GDPG(-12)) -0.473123 0.078974 -5.990833 0.0000 
D(GDPG(-13)) 0.300826 0.072722 4.136650 0.0001 

     
     R-squared 0.770159     Mean dependent var 0.023725 

Adjusted R-squared 0.745465     S.D. dependent var 0.896564 
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S.E. of regression 0.452330     Akaike info criterion 1.349114 
Sum squared resid 24.75689     Schwarz criterion 1.650401 
Log likelihood -77.06517     Hannan-Quinn criter. 1.471548 
Durbin-Watson stat 2.041780    

     
      

 
Null Hypothesis: D(GDPG) has a unit root  
Exogenous: None   
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.970476  0.0001 

Test critical values: 1% level  -2.582204  
 5% level  -1.943210  
 10% level  -1.615145  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:10   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(GDPG(-1)) -0.731015 0.184113 -3.970476 0.0001 

D(GDPG(-1),2) 0.456376 0.154312 2.957487 0.0037 
D(GDPG(-2),2) 0.599564 0.154739 3.874679 0.0002 
D(GDPG(-3),2) 0.640553 0.157687 4.062181 0.0001 
D(GDPG(-4),2) -0.650674 0.158892 -4.095081 0.0001 
D(GDPG(-5),2) 0.267685 0.115108 2.325500 0.0217 
D(GDPG(-6),2) 0.393435 0.115618 3.402879 0.0009 
D(GDPG(-7),2) 0.425193 0.118907 3.575860 0.0005 
D(GDPG(-8),2) -0.620794 0.119500 -5.194932 0.0000 
D(GDPG(-9),2) 0.094172 0.073911 1.274120 0.2050 

D(GDPG(-10),2) 0.166961 0.073490 2.271890 0.0248 
D(GDPG(-11),2) 0.183284 0.074494 2.460404 0.0153 
D(GDPG(-12),2) -0.294632 0.072709 -4.052180 0.0001 

     
     R-squared 0.781406     Mean dependent var 0.000697 

Adjusted R-squared 0.759905     S.D. dependent var 0.925158 
S.E. of regression 0.453323     Akaike info criterion 1.346916 
Sum squared resid 25.07122     Schwarz criterion 1.626683 
Log likelihood -77.91680     Hannan-Quinn criter. 1.460605 
Durbin-Watson stat 2.029943    

     
      

 
Null Hypothesis: IP has a unit root  
Exogenous: None   
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.543712  0.0111 

Test critical values: 1% level  -2.581233  
 5% level  -1.943074  
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 10% level  -1.615231  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP)   
Method: Least Squares   
Date: 08/09/22   Time: 07:10   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     IP(-1) -0.001085 0.000426 -2.543712 0.0121 

D(IP(-1)) 0.834371 0.080935 10.30919 0.0000 
D(IP(-2)) 0.000459 0.100668 0.004561 0.9964 
D(IP(-3)) 0.000459 0.100668 0.004561 0.9964 
D(IP(-4)) -0.445121 0.100685 -4.420910 0.0000 
D(IP(-5)) 0.307641 0.078455 3.921247 0.0001 

     
     R-squared 0.637991     Mean dependent var -0.111374 

Adjusted R-squared 0.624779     S.D. dependent var 0.192441 
S.E. of regression 0.117880     Akaike info criterion -1.397239 
Sum squared resid 1.903726     Schwarz criterion -1.272924 
Log likelihood 105.9026     Hannan-Quinn criter. -1.346723 
Durbin-Watson stat 1.929827    

     
      

 
Null Hypothesis: D(IP) has a unit root  
Exogenous: None   
Lag Length: 8 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.921759  0.0525 

Test critical values: 1% level  -2.581705  
 5% level  -1.943140  
 10% level  -1.615189  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:11   
Sample (adjusted): 1982Q3 2017Q1  
Included observations: 139 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(IP(-1)) -0.101104 0.052610 -1.921759 0.0568 

D(IP(-1),2) 0.057043 0.074400 0.766707 0.4446 
D(IP(-2),2) 0.057043 0.074400 0.766707 0.4446 
D(IP(-3),2) 0.057043 0.074400 0.766707 0.4446 
D(IP(-4),2) -0.611001 0.074424 -8.209687 0.0000 
D(IP(-5),2) 0.023177 0.068872 0.336527 0.7370 
D(IP(-6),2) 0.023177 0.068872 0.336527 0.7370 
D(IP(-7),2) 0.023177 0.068872 0.336527 0.7370 
D(IP(-8),2) -0.363169 0.069292 -5.241117 0.0000 
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     R-squared 0.438485     Mean dependent var -0.001019 

Adjusted R-squared 0.403931     S.D. dependent var 0.129921 
S.E. of regression 0.100306     Akaike info criterion -1.698623 
Sum squared resid 1.307971     Schwarz criterion -1.508622 
Log likelihood 127.0543     Hannan-Quinn criter. -1.621412 
Durbin-Watson stat 1.968259    

     
      

Intercept and trend 

 
Null Hypothesis: CO2 has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.645093  0.2613 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:14   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -0.033821 0.012786 -2.645093 0.0091 

D(CO2(-1)) 0.874276 0.071344 12.25441 0.0000 
D(CO2(-2)) 0.019351 0.086402 0.223960 0.8231 
D(CO2(-3)) 0.019351 0.086402 0.223960 0.8231 
D(CO2(-4)) -0.839733 0.099608 -8.430400 0.0000 
D(CO2(-5)) 0.699669 0.091391 7.655779 0.0000 

C 0.311657 0.117593 2.650315 0.0090 
@TREND("1980Q1") -0.000153 0.000172 -0.889509 0.3753 

     
     R-squared 0.724043     Mean dependent var -0.010820 

Adjusted R-squared 0.709734     S.D. dependent var 0.153795 
S.E. of regression 0.082859     Akaike info criterion -2.089030 
Sum squared resid 0.926862     Schwarz criterion -1.923276 
Log likelihood 157.3656     Hannan-Quinn criter. -2.021676 
F-statistic 50.60095     Durbin-Watson stat 1.961745 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(CO2) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.518072  0.0412 
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Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CO2,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:16   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) -0.309352 0.087932 -3.518072 0.0006 

D(CO2(-1),2) 0.174993 0.080052 2.186005 0.0305 
D(CO2(-2),2) 0.174959 0.080048 2.185676 0.0306 
D(CO2(-3),2) 0.174924 0.080044 2.185345 0.0306 
D(CO2(-4),2) -0.671375 0.092742 -7.239158 0.0000 

C 0.003094 0.015142 0.204315 0.8384 
@TREND("1980Q1") -8.49E-05 0.000174 -0.488592 0.6259 

     
     R-squared 0.471839     Mean dependent var -0.004843 

Adjusted R-squared 0.448537     S.D. dependent var 0.114012 
S.E. of regression 0.084666     Akaike info criterion -2.052488 
Sum squared resid 0.974898     Schwarz criterion -1.907454 
Log likelihood 153.7529     Hannan-Quinn criter. -1.993553 
F-statistic 20.24951     Durbin-Watson stat 1.916426 
Prob(F-statistic) 0.000000    
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Null Hypothesis: D(FD) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.979902  0.0114 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FD,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:18   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FD(-1)) -0.305500 0.076761 -3.979902 0.0001 

D(FD(-1),2) 0.153034 0.081476 1.878266 0.0625 
D(FD(-2),2) 0.153032 0.081476 1.878249 0.0625 
D(FD(-3),2) 0.153030 0.081476 1.878233 0.0625 
D(FD(-4),2) -0.312639 0.081807 -3.821669 0.0002 

C 0.357177 0.255634 1.397220 0.1646 
@TREND("1980Q1") -0.002209 0.002795 -0.790504 0.4306 

     
     R-squared 0.297141     Mean dependent var 0.003251 

Adjusted R-squared 0.266132     S.D. dependent var 1.580844 
S.E. of regression 1.354247     Akaike info criterion 3.492080 
Sum squared resid 249.4219     Schwarz criterion 3.637115 
Log likelihood -242.6837     Hannan-Quinn criter. 3.551015 
F-statistic 9.582555     Durbin-Watson stat 1.927997 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: FDI has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.281254  0.4409 
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Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI)   
Method: Least Squares   
Date: 08/09/22   Time: 07:18   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FDI(-1) -0.071293 0.031252 -2.281254 0.0243 

D(FDI(-1)) 0.909835 0.079794 11.40231 0.0000 
D(FDI(-2)) 0.054694 0.090847 0.602042 0.5483 
D(FDI(-3)) 0.054694 0.090847 0.602042 0.5483 
D(FDI(-4)) -0.997707 0.091098 -10.95207 0.0000 
D(FDI(-5)) 0.932939 0.114427 8.153136 0.0000 
D(FDI(-6)) 0.035753 0.113477 0.315073 0.7533 
D(FDI(-7)) 0.035753 0.113477 0.315073 0.7533 
D(FDI(-8)) -0.843383 0.114029 -7.396232 0.0000 
D(FDI(-9)) 0.760186 0.114898 6.616199 0.0000 

D(FDI(-10)) 0.016815 0.088298 0.190431 0.8493 
D(FDI(-11)) 0.016815 0.088298 0.190431 0.8493 
D(FDI(-12)) -0.675676 0.088397 -7.643620 0.0000 
D(FDI(-13)) 0.578281 0.077700 7.442474 0.0000 

C -0.008743 0.037385 -0.233862 0.8155 
@TREND("1980Q1") 0.000957 0.000658 1.454119 0.1485 

     
     R-squared 0.828936     Mean dependent var 0.002907 

Adjusted R-squared 0.807373     S.D. dependent var 0.397344 
S.E. of regression 0.174391     Akaike info criterion -0.544144 
Sum squared resid 3.619067     Schwarz criterion -0.199816 
Log likelihood 52.72975     Hannan-Quinn criter. -0.404219 
F-statistic 38.44311     Durbin-Watson stat 1.944354 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FDI) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.353512  0.0623 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FDI,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:18   
Sample (adjusted): 1983Q3 2017Q1  



247 
 

Included observations: 135 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FDI(-1)) -0.635067 0.189374 -3.353512 0.0011 

D(FDI(-1),2) 0.486951 0.158323 3.075678 0.0026 
D(FDI(-2),2) 0.486949 0.158323 3.075672 0.0026 
D(FDI(-3),2) 0.486947 0.158322 3.075666 0.0026 
D(FDI(-4),2) -0.566995 0.158688 -3.573026 0.0005 
D(FDI(-5),2) 0.317980 0.124655 2.550890 0.0120 
D(FDI(-6),2) 0.317972 0.124653 2.550848 0.0120 
D(FDI(-7),2) 0.317964 0.124652 2.550806 0.0120 
D(FDI(-8),2) -0.564842 0.125593 -4.497388 0.0000 
D(FDI(-9),2) 0.149031 0.077393 1.925641 0.0565 

D(FDI(-10),2) 0.149021 0.077392 1.925534 0.0565 
D(FDI(-11),2) 0.149011 0.077391 1.925427 0.0565 
D(FDI(-12),2) -0.544773 0.077624 -7.018085 0.0000 

C 0.021136 0.035623 0.593321 0.5541 
@TREND("1980Q1") -0.000255 0.000395 -0.644998 0.5202 

     
     R-squared 0.754061     Mean dependent var -0.001148 

Adjusted R-squared 0.725368     S.D. dependent var 0.338553 
S.E. of regression 0.177420     Akaike info criterion -0.516156 
Sum squared resid 3.777336     Schwarz criterion -0.193348 
Log likelihood 49.84056     Hannan-Quinn criter. -0.384976 
F-statistic 26.28041     Durbin-Watson stat 1.893326 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: FOS has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.847114  0.1834 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS)   
Method: Least Squares   
Date: 08/09/22   Time: 07:20   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     FOS(-1) -0.035603 0.012505 -2.847114 0.0052 

D(FOS(-1)) 0.949579 0.073342 12.94722 0.0000 
D(FOS(-2)) 0.027727 0.096457 0.287458 0.7743 
D(FOS(-3)) 0.027727 0.096457 0.287458 0.7743 
D(FOS(-4)) -1.011092 0.096828 -10.44216 0.0000 
D(FOS(-5)) 0.978827 0.112898 8.670013 0.0000 
D(FOS(-6)) 0.018417 0.117558 0.156666 0.8758 
D(FOS(-7)) 0.018417 0.117558 0.156666 0.8758 
D(FOS(-8)) -0.843035 0.117765 -7.158607 0.0000 
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D(FOS(-9)) 0.807070 0.114738 7.034029 0.0000 
D(FOS(-10)) 0.008513 0.100674 0.084555 0.9328 
D(FOS(-11)) 0.008513 0.100674 0.084555 0.9328 
D(FOS(-12)) -0.653437 0.101621 -6.430122 0.0000 
D(FOS(-13)) 0.627430 0.079705 7.871860 0.0000 

C 0.020702 0.007000 2.957436 0.0037 
@TREND("1980Q1") 0.000178 6.52E-05 2.732323 0.0072 

     
     R-squared 0.802726     Mean dependent var 0.004117 

Adjusted R-squared 0.777860     S.D. dependent var 0.012709 
S.E. of regression 0.005990     Akaike info criterion -7.286548 
Sum squared resid 0.004270     Schwarz criterion -6.942219 
Log likelihood 507.8420     Hannan-Quinn criter. -7.146623 
F-statistic 32.28148     Durbin-Watson stat 2.023873 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(FOS) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -1.845578  0.6769 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(FOS,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:20   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(FOS(-1)) -0.239353 0.129690 -1.845578 0.0674 

D(FOS(-1),2) 0.185387 0.122929 1.508075 0.1342 
D(FOS(-2),2) 0.185382 0.122932 1.508004 0.1342 
D(FOS(-3),2) 0.185377 0.122934 1.507933 0.1342 
D(FOS(-4),2) -0.854952 0.124440 -6.870409 0.0000 
D(FOS(-5),2) 0.121657 0.108663 1.119585 0.2651 
D(FOS(-6),2) 0.121643 0.108669 1.119392 0.2652 
D(FOS(-7),2) 0.121628 0.108675 1.119199 0.2653 
D(FOS(-8),2) -0.738407 0.108033 -6.835013 0.0000 
D(FOS(-9),2) 0.056699 0.079496 0.713226 0.4771 

D(FOS(-10),2) 0.056694 0.079497 0.713160 0.4771 
D(FOS(-11),2) 0.056690 0.079498 0.713094 0.4772 
D(FOS(-12),2) -0.607885 0.081727 -7.438028 0.0000 

C 0.001097 0.001295 0.847085 0.3986 
@TREND("1980Q1") -3.52E-06 1.38E-05 -0.254928 0.7992 

     
     R-squared 0.665074     Mean dependent var -4.22E-05 

Adjusted R-squared 0.625999     S.D. dependent var 0.010081 
S.E. of regression 0.006165     Akaike info criterion -7.235465 
Sum squared resid 0.004561     Schwarz criterion -6.912656 
Log likelihood 503.3939     Hannan-Quinn criter. -7.104284 
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F-statistic 17.02056     Durbin-Watson stat 1.957050 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: GDPG has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 13 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.471541  0.3417 

Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG)   
Method: Least Squares   
Date: 08/09/22   Time: 07:21   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     GDPG(-1) -0.083623 0.033834 -2.471541 0.0149 

D(GDPG(-1)) 0.772726 0.085444 9.043704 0.0000 
D(GDPG(-2)) 0.197924 0.084639 2.338450 0.0210 
D(GDPG(-3)) 0.106291 0.086231 1.232630 0.2201 
D(GDPG(-4)) -1.217532 0.086943 -14.00386 0.0000 
D(GDPG(-5)) 0.958448 0.127259 7.531448 0.0000 
D(GDPG(-6)) 0.154189 0.100742 1.530531 0.1285 
D(GDPG(-7)) 0.071198 0.100992 0.704990 0.4822 
D(GDPG(-8)) -0.995075 0.100842 -9.867646 0.0000 
D(GDPG(-9)) 0.750377 0.118314 6.342225 0.0000 

D(GDPG(-10)) 0.080986 0.079427 1.019628 0.3100 
D(GDPG(-11)) 0.032369 0.079385 0.407750 0.6842 
D(GDPG(-12)) -0.450790 0.078528 -5.740490 0.0000 
D(GDPG(-13)) 0.328783 0.072920 4.508798 0.0000 

C 0.162216 0.096595 1.679348 0.0957 
@TREND("1980Q1") 0.000380 0.001124 0.338156 0.7358 

     
     R-squared 0.780048     Mean dependent var 0.023725 

Adjusted R-squared 0.752323     S.D. dependent var 0.896564 
S.E. of regression 0.446194     Akaike info criterion 1.334762 
Sum squared resid 23.69164     Schwarz criterion 1.679091 
Log likelihood -74.09642     Hannan-Quinn criter. 1.474687 
F-statistic 28.13519     Durbin-Watson stat 2.073517 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(GDPG) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 12 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -3.981771  0.0115 
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Test critical values: 1% level  -4.027463  
 5% level  -3.443450  
 10% level  -3.146455  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(GDPG,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:21   
Sample (adjusted): 1983Q3 2017Q1  
Included observations: 135 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(GDPG(-1)) -0.738201 0.185395 -3.981771 0.0001 

D(GDPG(-1),2) 0.455868 0.155389 2.933723 0.0040 
D(GDPG(-2),2) 0.600734 0.155746 3.857136 0.0002 
D(GDPG(-3),2) 0.642648 0.158680 4.049975 0.0001 
D(GDPG(-4),2) -0.648244 0.159864 -4.054976 0.0001 
D(GDPG(-5),2) 0.261504 0.116206 2.250353 0.0262 
D(GDPG(-6),2) 0.390608 0.116429 3.354910 0.0011 
D(GDPG(-7),2) 0.424345 0.119631 3.547123 0.0006 
D(GDPG(-8),2) -0.620319 0.120176 -5.161768 0.0000 
D(GDPG(-9),2) 0.089591 0.074590 1.201115 0.2321 

D(GDPG(-10),2) 0.164500 0.073979 2.223597 0.0280 
D(GDPG(-11),2) 0.182230 0.074913 2.432548 0.0165 
D(GDPG(-12),2) -0.294340 0.073084 -4.027423 0.0001 

C 0.074136 0.091671 0.808718 0.4203 
@TREND("1980Q1") -0.000903 0.001018 -0.887186 0.3768 

     
     R-squared 0.782831     Mean dependent var 0.000697 

Adjusted R-squared 0.757494     S.D. dependent var 0.925158 
S.E. of regression 0.455593     Akaike info criterion 1.370005 
Sum squared resid 24.90779     Schwarz criterion 1.692813 
Log likelihood -77.47533     Hannan-Quinn criter. 1.501185 
F-statistic 30.89748     Durbin-Watson stat 2.026655 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: IP has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 5 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -0.782128  0.9641 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP)   
Method: Least Squares   
Date: 08/09/22   Time: 07:22   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  
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     Variable Coefficient Std. Error t-Statistic Prob.   
     
     IP(-1) -0.004585 0.005862 -0.782128 0.4355 

D(IP(-1)) 0.811470 0.082224 9.869075 0.0000 
D(IP(-2)) 0.001937 0.100396 0.019297 0.9846 
D(IP(-3)) 0.001937 0.100396 0.019297 0.9846 
D(IP(-4)) -0.443876 0.100422 -4.420091 0.0000 
D(IP(-5)) 0.282771 0.080164 3.527395 0.0006 

C 0.106472 0.242375 0.439288 0.6612 
@TREND("1980Q1") 1.27E-05 0.000759 0.016681 0.9867 

     
     R-squared 0.645441     Mean dependent var -0.111374 

Adjusted R-squared 0.627057     S.D. dependent var 0.192441 
S.E. of regression 0.117522     Akaike info criterion -1.390062 
Sum squared resid 1.864546     Schwarz criterion -1.224308 
Log likelihood 107.3894     Hannan-Quinn criter. -1.322707 
F-statistic 35.10786     Durbin-Watson stat 1.922596 
Prob(F-statistic) 0.000000    

     
      

 
Null Hypothesis: D(IP) has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 4 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.520428  0.0020 

Test critical values: 1% level  -4.023506  
 5% level  -3.441552  
 10% level  -3.145341  
     
     *MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(IP,2)   
Method: Least Squares   
Date: 08/09/22   Time: 07:22   
Sample (adjusted): 1981Q3 2017Q1  
Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(IP(-1)) -0.354369 0.078393 -4.520428 0.0000 

D(IP(-1),2) 0.165118 0.080054 2.062575 0.0411 
D(IP(-2),2) 0.164982 0.080036 2.061352 0.0412 
D(IP(-3),2) 0.164846 0.080017 2.060128 0.0413 
D(IP(-4),2) -0.281331 0.080029 -3.515375 0.0006 

C -0.081661 0.029720 -2.747715 0.0068 
@TREND("1980Q1") 0.000564 0.000281 2.006295 0.0468 

     
     R-squared 0.307770     Mean dependent var 0.003308 

Adjusted R-squared 0.277230     S.D. dependent var 0.138038 
S.E. of regression 0.117354     Akaike info criterion -1.399527 
Sum squared resid 1.872995     Schwarz criterion -1.254492 
Log likelihood 107.0662     Hannan-Quinn criter. -1.340592 
F-statistic 10.07774     Durbin-Watson stat 1.922155 
Prob(F-statistic) 0.000000    
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Bound test  

South Africa 

 
ARDL Bounds Test   
Date: 08/10/22   Time: 03:16   
Sample: 1982Q2 2017Q1   
Included observations: 140   
Null Hypothesis: No long-run relationships exist 

     
     Test Statistic Value k   
     
     F-statistic  4.830366 5   
     
          

Critical Value Bounds   
     
     Significance I0 Bound I1 Bound   
     
     10% 2.26 3.35   

5% 2.62 3.79   
2.5% 2.96 4.18   
1% 3.41 4.68   

     
          

Test Equation:    
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/10/22   Time: 03:16   
Sample: 1982Q2 2017Q1   
Included observations: 140   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) 0.762650 0.071069 10.73113 0.0000 

D(CO2(-2)) 0.048819 0.078689 0.620409 0.5363 
D(CO2(-3)) 0.041640 0.078645 0.529469 0.5975 
D(CO2(-4)) -0.679361 0.100958 -6.729120 0.0000 
D(CO2(-5)) 0.486475 0.094816 5.130741 0.0000 

D(FD) -0.012079 0.006616 -1.825749 0.0706 
D(FD(-1)) 0.013064 0.006399 2.041385 0.0436 

D(FDI) 0.001030 0.031675 0.032512 0.9741 
D(FDI(-1)) -0.038053 0.037070 -1.026529 0.3069 
D(FDI(-2)) -0.028093 0.036775 -0.763932 0.4465 
D(FDI(-3)) -0.032503 0.036610 -0.887813 0.3766 
D(FDI(-4)) -0.188952 0.046283 -4.082539 0.0001 
D(FDI(-5)) 0.074020 0.042440 1.744114 0.0839 
D(FDI(-6)) -0.011868 0.036188 -0.327949 0.7436 
D(FDI(-7)) -0.015573 0.036091 -0.431496 0.6670 
D(FDI(-8)) -0.101007 0.032752 -3.084008 0.0026 

D(FOS) -4.085356 0.941426 -4.339541 0.0000 
D(FOS(-1)) 3.085904 0.896261 3.443085 0.0008 
D(GDPG) 0.003727 0.009469 0.393640 0.6946 

D(GDPG(-1)) 0.006672 0.009132 0.730666 0.4665 
D(GDPG(-2)) -0.012412 0.009166 -1.354056 0.1785 
D(GDPG(-3)) -0.013923 0.009051 -1.538328 0.1268 

D(IP) -0.116000 0.053375 -2.173299 0.0319 
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C -1.068623 0.363363 -2.940921 0.0040 
FD(-1) 0.004413 0.001451 3.040745 0.0030 
FDI(-1) 0.029799 0.013661 2.181330 0.0313 
FOS(-1) 0.005818 0.102829 0.056581 0.9550 

GDPG(-1) 0.021396 0.006039 3.542849 0.0006 
IP(-1) 0.035901 0.008961 4.006378 0.0001 

CO2(-1) -0.073457 0.017969 -4.087926 0.0001 
     
     R-squared 0.821167     Mean dependent var -0.013932 

Adjusted R-squared 0.774020     S.D. dependent var 0.153943 
S.E. of regression 0.073180     Akaike info criterion -2.204367 
Sum squared resid 0.589092     Schwarz criterion -1.574015 
Log likelihood 184.3057     Hannan-Quinn criter. -1.948211 
F-statistic 17.41723     Durbin-Watson stat 1.834449 
Prob(F-statistic) 0.000000    

     
          
     

Long and short run 

South Africa 

 
ARDL Cointegrating And Long Run Form  
Dependent Variable: CO2   
Selected Model: ARDL(6, 2, 9, 2, 4, 1)  
Date: 08/10/22   Time: 03:18   
Sample: 1980Q1 2017Q1   
Included observations: 140   

     
     Cointegrating Form 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     D(CO2(-1)) 0.762650 0.071069 10.731134 0.0000 

D(CO2(-2)) 0.048819 0.078689 0.620409 0.5363 
D(CO2(-3)) 0.041640 0.078645 0.529469 0.5975 
D(CO2(-4)) -0.679361 0.100958 -6.729120 0.0000 
D(CO2(-5)) 0.486475 0.094816 5.130741 0.0000 

D(FD) -0.012079 0.006616 -1.825749 0.0706 
D(FD(-1)) 0.013064 0.006399 2.041385 0.0436 

D(FDI) 0.001030 0.031675 0.032512 0.9741 
D(FDI(-1)) -0.009960 0.061544 -0.161835 0.8717 
D(FDI(-2)) 0.004409 0.061256 0.071985 0.9427 
D(FDI(-3)) 0.156449 0.067667 2.312028 0.0226 
D(FDI(-4)) -0.262971 0.076141 -3.453739 0.0008 
D(FDI(-5)) 0.085887 0.066112 1.299112 0.1966 
D(FDI(-6)) 0.003705 0.062151 0.059614 0.9526 
D(FDI(-7)) 0.085434 0.059536 1.434991 0.1541 
D(FDI(-8)) -0.101007 0.032752 -3.084008 0.0026 

D(FOS) -4.085356 0.941426 -4.339541 0.0000 
D(FOS(-1)) 3.085904 0.896261 3.443085 0.0008 
D(GDPG) 0.003727 0.009469 0.393640 0.6946 

D(GDPG(-1)) 0.019084 0.014242 1.340008 0.1830 
D(GDPG(-2)) 0.001511 0.013996 0.107969 0.9142 
D(GDPG(-3)) -0.013923 0.009051 -1.538328 0.1268 

D(IP) -0.116000 0.053375 -2.173299 0.0319 
CointEq(-1) -0.073457 0.017969 -4.087926 0.0001 

     
         Cointeq = CO2 - (0.0601*FD + 0.4057*FDI + 0.0792*FOS + 0.2913*GDPG + 

        0.4887*IP  -14.5477 )   
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Long Run Coefficients 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     FD 0.060070 0.020735 2.896973 0.0045 

FDI 0.405665 0.202671 2.001595 0.0478 
FOS 0.079205 1.391243 0.056931 0.9547 

GDPG 0.291280 0.078252 3.722314 0.0003 
IP 0.488740 0.103490 4.722585 0.0000 
C -1.457675 5.040447 -2.886188 0.0047 
     
          

Post estimation 

South Africa 

 
Heteroskedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.518143     Prob. F(31,108) 0.1606 

Obs*R-squared 42.49088     Prob. Chi-Square(31) 0.0819 
Scaled explained SS 73.77636     Prob. Chi-Square(31) 0.0000 

     
          

Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 08/10/22   Time: 04:01   
Sample: 1982Q2 2017Q1   
Included observations: 140   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.093899 0.048837 1.922708 0.0572 

CO2(-1) 0.026299 0.010058 2.614642 0.0102 
CO2(-2) -0.024897 0.017228 -1.445153 0.1513 
CO2(-3) 0.000635 0.017295 0.036688 0.9708 
CO2(-4) 0.007595 0.019370 0.392081 0.6958 
CO2(-5) -0.001785 0.023199 -0.076947 0.9388 
CO2(-6) -0.003752 0.012209 -0.307339 0.7592 

FD 0.001422 0.000854 1.665834 0.0986 
FD(-1) -0.002692 0.001518 -1.774013 0.0789 
FD(-2) 0.000818 0.000833 0.981858 0.3284 

FDI 0.007839 0.004114 1.905236 0.0594 
FDI(-1) -0.016064 0.007603 -2.112670 0.0369 
FDI(-2) 0.009134 0.007885 1.158328 0.2493 
FDI(-3) -0.000132 0.007864 -0.016815 0.9866 
FDI(-4) 0.014598 0.008803 1.658240 0.1002 
FDI(-5) -0.026736 0.009794 -2.729815 0.0074 
FDI(-6) 0.011749 0.008534 1.376767 0.1714 
FDI(-7) 2.14E-05 0.007976 0.002680 0.9979 
FDI(-8) 0.002150 0.007735 0.277934 0.7816 
FDI(-9) -0.002763 0.004270 -0.646973 0.5190 

FOS 0.249604 0.121913 2.047399 0.0430 
FOS(-1) -0.445736 0.220708 -2.019569 0.0459 
FOS(-2) 0.167728 0.127798 1.312449 0.1922 
GDPG 0.000103 0.001350 0.076581 0.9391 

GDPG(-1) -0.001097 0.002023 -0.542070 0.5889 
GDPG(-2) 0.000461 0.001826 0.252674 0.8010 
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GDPG(-3) -5.22E-05 0.001806 -0.028893 0.9770 
GDPG(-4) 3.14E-05 0.001950 0.016111 0.9872 
GDPG(-5) -0.000593 0.001282 -0.462616 0.6446 

IP 0.012659 0.007025 1.801847 0.0744 
IP(-1) -0.014726 0.007467 -1.972133 0.0512 

@TREND 0.000275 0.000171 1.605846 0.1112 
     
     R-squared 0.303506     Mean dependent var 0.004085 

Adjusted R-squared 0.103587     S.D. dependent var 0.009903 
S.E. of regression 0.009376     Akaike info criterion -6.303696 
Sum squared resid 0.009494     Schwarz criterion -5.631320 
Log likelihood 473.2587     Hannan-Quinn criter. -6.030462 
F-statistic 1.518143     Durbin-Watson stat 2.229999 
Prob(F-statistic) 0.060628    

     
      

 
Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 2.426424     Prob. F(2,106) 0.3932 

Obs*R-squared 6.128834     Prob. Chi-Square(2) 0.0467 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 08/10/22   Time: 04:04   
Sample: 1982Q2 2017Q1   
Included observations: 140   
Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -0.233332 0.133686 -1.745367 0.0838 

CO2(-2) 0.258420 0.201721 1.281078 0.2030 
CO2(-3) 0.026195 0.171499 0.152739 0.8789 
CO2(-4) -0.049639 0.155237 -0.319762 0.7498 
CO2(-5) -0.120295 0.185919 -0.647031 0.5190 
CO2(-6) 0.099445 0.103866 0.957436 0.3405 

FD -0.002933 0.006676 -0.439363 0.6613 
FD(-1) 0.002137 0.011670 0.183082 0.8551 
FD(-2) 0.001832 0.006446 0.284223 0.7768 

FDI 0.004300 0.031637 0.135916 0.8921 
FDI(-1) -0.011468 0.058479 -0.196097 0.8449 
FDI(-2) 0.003564 0.060686 0.058720 0.9533 
FDI(-3) 0.003349 0.060452 0.055398 0.9559 
FDI(-4) -0.018061 0.067935 -0.265865 0.7909 
FDI(-5) -0.010156 0.075175 -0.135104 0.8928 
FDI(-6) 0.030033 0.067421 0.445463 0.6569 
FDI(-7) 0.004128 0.062030 0.066550 0.9471 
FDI(-8) -0.025522 0.060464 -0.422100 0.6738 
FDI(-9) 0.020474 0.034007 0.602044 0.5484 

FOS -0.111725 0.935475 -0.119432 0.9052 
FOS(-1) -0.681347 1.719678 -0.396206 0.6927 
FOS(-2) 0.966312 1.073650 0.900025 0.3701 
GDPG 0.000939 0.010353 0.090654 0.9279 

GDPG(-1) 0.003065 0.015563 0.196910 0.8443 
GDPG(-2) 0.002651 0.014043 0.188748 0.8507 
GDPG(-3) -0.001712 0.013869 -0.123432 0.9020 
GDPG(-4) -0.001495 0.014966 -0.099867 0.9206 
GDPG(-5) 0.005125 0.010096 0.507667 0.6127 

IP -0.032434 0.055796 -0.581297 0.5623 
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IP(-1) 0.035415 0.059419 0.596032 0.5524 
C -0.107281 0.377462 -0.284217 0.7768 

@TREND -0.001524 0.001485 -1.026372 0.3071 
RESID(-1) 0.320204 0.161485 1.982872 0.0500 
RESID(-2) 0.179650 0.142982 1.256450 0.2117 

     
     R-squared 0.043777     Mean dependent var 1.58E-15 

Adjusted R-squared -0.253915     S.D. dependent var 0.064142 
S.E. of regression 0.071826     Akaike info criterion -2.221642 
Sum squared resid 0.546844     Schwarz criterion -1.507243 
Log likelihood 189.5149     Hannan-Quinn criter. -1.931332 
F-statistic 0.147056     Durbin-Watson stat 1.945804 
Prob(F-statistic) 1.000000    

     
      

 

Nigeria 

Bound test 

 
ARDL Bounds Test   
Date: 08/10/22   Time: 03:52   
Sample: 1981Q2 2017Q1   
Included observations: 144   
Null Hypothesis: No long-run relationships exist 

     
     Test Statistic Value k   
     
     F-statistic  4.009444 5   
     
          

Critical Value Bounds   
     
     Significance I0 Bound I1 Bound   
     
     10% 2.26 3.35   

5% 2.62 3.79   
2.5% 2.96 4.18   
1% 3.41 4.68   

     
          

Test Equation:    
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/10/22   Time: 03:52   
Sample: 1981Q2 2017Q1   
Included observations: 144   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) 0.736427 0.077991 9.442480 0.0000 

D(CO2(-2)) 0.006609 0.094508 0.069930 0.9444 
D(CO2(-3)) 0.008635 0.094568 0.091313 0.9274 
D(CO2(-4)) -0.188762 0.083884 -2.250271 0.0262 

D(FDI) -0.023992 0.005906 -4.062147 0.0001 
D(FDI(-1)) 0.026265 0.005505 4.771537 0.0000 

D(IP) 0.003020 0.002763 1.093011 0.2765 
D(IP(-1)) -0.002224 0.003275 -0.678969 0.4984 
D(IP(-2)) 0.000934 0.003277 0.284937 0.7762 



257 
 

D(IP(-3)) 0.000875 0.003276 0.266985 0.7899 
D(IP(-4)) 0.005287 0.002742 1.928143 0.0561 

C 0.130839 0.038580 3.391365 0.0009 
FD(-1) -0.001406 0.000746 -1.885350 0.0617 
FDI(-1) -0.004558 0.001439 -3.167429 0.0019 
FOS(-1) -0.028239 0.016059 -1.758441 0.0811 

GDPG(-1) -0.000423 0.000277 -1.526404 0.1294 
IP(-1) -0.002227 0.000717 -3.106213 0.0023 

CO2(-1) -0.044638 0.011215 -3.980248 0.0001 
     
     R-squared 0.703666     Mean dependent var -0.001084 

Adjusted R-squared 0.663684     S.D. dependent var 0.025554 
S.E. of regression 0.014820     Akaike info criterion -5.469265 
Sum squared resid 0.027672     Schwarz criterion -5.098038 
Log likelihood 411.7871     Hannan-Quinn criter. -5.318419 
F-statistic 17.59972     Durbin-Watson stat 1.829625 
Prob(F-statistic) 0.000000    

     
          
     
     
     
     
     
     
     
     
     
     
     
     
     

Nigeria 

Long and short run 

 
ARDL Cointegrating And Long Run Form  
Dependent Variable: CO2   
Selected Model: ARDL(5, 0, 2, 0, 0, 5)  
Date: 08/10/22   Time: 03:54   
Sample: 1980Q1 2017Q1   
Included observations: 144   

     
     Cointegrating Form 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     D(CO2(-1)) 0.736027 0.078173 9.415320 0.0000 

D(CO2(-2)) 0.007153 0.094693 0.075537 0.9399 
D(CO2(-3)) 0.019778 0.095588 0.206914 0.8364 
D(CO2(-4)) -0.198347 0.083775 -2.367618 0.0194 

D(FD) -0.001378 0.000732 -1.881987 0.0621 
D(FDI) -0.024354 0.005903 -4.125486 0.0001 

D(FDI(-1)) 0.025826 0.005549 4.654279 0.0000 
D(FOS) -0.026152 0.015500 -1.687229 0.0940 

D(GDPG) -0.000377 0.000275 -1.370702 0.1729 
D(IP) 0.002969 0.002781 1.067622 0.2877 

D(IP(-1)) -0.003181 0.005653 -0.562649 0.5747 
D(IP(-2)) 0.000272 0.005663 0.048118 0.9617 
D(IP(-3)) -0.004874 0.005375 -0.906825 0.3662 



258 
 

D(IP(-4)) 0.005438 0.002772 1.961728 0.0520 
CointEq(-1) -0.062948 0.010950 -3.922231 0.0001 

     
         Cointeq = CO2 - (-0.0321*FD  -0.1065*FDI  -0.6089*FOS  -0.0088*GDPG   

        -0.0498*IP + 2.9281 )   
     
          

Long Run Coefficients 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     FD -0.032097 0.015805 -2.030750 0.0444 

FDI -0.106512 0.033837 -3.147787 0.0021 
FOS -0.608931 0.298375 -2.040827 0.0434 

GDPG -0.008783 0.006378 -1.377089 0.1709 
IP -0.049763 0.013521 -3.680437 0.0003 
C 2.928082 0.596063 4.912372 0.0000 
     
          

Nigeria  

Post estimation 

 
Heteroskedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.091698     Prob. F(17,126) 0.3690 

Obs*R-squared 18.48711     Prob. Chi-Square(17) 0.3588 
Scaled explained SS 51.95660     Prob. Chi-Square(17) 0.0000 

     
          

Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 08/10/22   Time: 03:55   
Sample: 1981Q2 2017Q1   
Included observations: 144   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.001152 0.001308 0.880840 0.3801 

CO2(-1) -0.001359 0.002818 -0.482257 0.6305 
CO2(-2) 0.001565 0.005447 0.287306 0.7744 
CO2(-3) 0.000255 0.005748 0.044316 0.9647 
CO2(-4) -0.001982 0.005578 -0.355411 0.7229 
CO2(-5) 0.001416 0.002942 0.481232 0.6312 

FD -2.47E-05 2.57E-05 -0.961292 0.3382 
FDI 0.000645 0.000207 3.112038 0.0023 

FDI(-1) -0.001112 0.000351 -3.167344 0.0019 
FDI(-2) 0.000465 0.000195 2.384311 0.0186 

FOS -0.000138 0.000544 -0.254106 0.7998 
GDPG -7.14E-06 9.67E-06 -0.738248 0.4617 

IP 0.000231 9.77E-05 2.363267 0.0196 
IP(-1) -0.000445 0.000186 -2.388687 0.0184 
IP(-2) 0.000196 0.000199 0.986176 0.3259 
IP(-3) 5.86E-08 0.000199 0.000295 0.9998 
IP(-4) 8.13E-05 0.000189 0.430791 0.6674 
IP(-5) -8.12E-05 9.74E-05 -0.834307 0.4057 

     
     R-squared 0.128383     Mean dependent var 0.000193 

Adjusted R-squared 0.010784     S.D. dependent var 0.000524 
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S.E. of regression 0.000521     Akaike info criterion -12.16410 
Sum squared resid 3.42E-05     Schwarz criterion -11.79288 
Log likelihood 893.8155     Hannan-Quinn criter. -12.01326 
F-statistic 1.091698     Durbin-Watson stat 2.157999 
Prob(F-statistic) 0.368957    

     
      

 
Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 5.895593     Prob. F(2,124) 0.2036 

Obs*R-squared 12.50398     Prob. Chi-Square(2) 0.0019 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 08/10/22   Time: 03:56   
Sample: 1981Q2 2017Q1   
Included observations: 144   
Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) -0.473562 0.180077 -2.629779 0.0096 

CO2(-2) 0.489814 0.321740 1.522388 0.1305 
CO2(-3) 0.204473 0.288982 0.707563 0.4805 
CO2(-4) -0.353094 0.198088 -1.782511 0.0771 
CO2(-5) 0.107457 0.086583 1.241094 0.2169 

FD -0.000645 0.000731 -0.882264 0.3793 
FDI 0.004182 0.005823 0.718178 0.4740 

FDI(-1) -0.014219 0.010511 -1.352727 0.1786 
FDI(-2) 0.007990 0.005866 1.362139 0.1756 

FOS -0.014569 0.015523 -0.938589 0.3498 
GDPG -0.000350 0.000284 -1.231636 0.2204 

IP 0.000953 0.002694 0.353607 0.7242 
IP(-1) 0.000160 0.005118 0.031186 0.9752 
IP(-2) -0.002759 0.005586 -0.493962 0.6222 
IP(-3) -0.000727 0.005596 -0.129834 0.8969 
IP(-4) 0.004765 0.005380 0.885658 0.3775 
IP(-5) -0.003507 0.002859 -1.226599 0.2223 

C 0.067063 0.040858 1.641344 0.1033 
RESID(-1) 0.536868 0.199279 2.694050 0.0080 
RESID(-2) 0.403161 0.179318 2.248302 0.0263 

     
     R-squared 0.086833     Mean dependent var 3.01E-16 

Adjusted R-squared -0.053087     S.D. dependent var 0.013932 
S.E. of regression 0.014297     Akaike info criterion -5.529243 
Sum squared resid 0.025347     Schwarz criterion -5.116769 
Log likelihood 418.1055     Hannan-Quinn criter. -5.361637 
F-statistic 0.620589     Durbin-Watson stat 1.913044 
Prob(F-statistic) 0.884777    

     
      

Ghana 

Bound test 

 
ARDL Bounds Test   
Date: 08/12/22   Time: 05:02   
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Sample: 1982Q3 2017Q1   
Included observations: 139   
Null Hypothesis: No long-run relationships exist 

     
     Test Statistic Value k   
     
     F-statistic  8.966069 5   
     
          

Critical Value Bounds   
     
     Significance I0 Bound I1 Bound   
     
     10% 2.26 3.35   

5% 2.62 3.79   
2.5% 2.96 4.18   
1% 3.41 4.68   

     
          

Test Equation:    
Dependent Variable: D(CO2)   
Method: Least Squares   
Date: 08/12/22   Time: 05:02   
Sample: 1982Q3 2017Q1   
Included observations: 139   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(CO2(-1)) 7.343976 1.267119 5.795808 0.0000 

D(CO2(-2)) 6.697675 1.254330 5.339643 0.0000 
D(CO2(-3)) 6.706986 1.254877 5.344737 0.0000 
D(CO2(-4)) 13.91858 1.195924 11.63835 0.0000 
D(CO2(-5)) 2.791413 1.481780 1.883824 0.0622 
D(CO2(-6)) 7.668392 1.494990 5.129395 0.0000 
D(CO2(-7)) 7.524536 1.483817 5.071069 0.0000 
D(CO2(-8)) -44.89318 1.409906 -31.84126 0.0000 
D(CO2(-9)) 33.33922 3.367412 9.900548 0.0000 

D(FD) 0.280976 0.110264 2.548211 0.0122 
D(FD(-1)) -0.117708 0.132874 -0.885861 0.3776 
D(FD(-2)) -0.031533 0.127681 -0.246964 0.8054 
D(FD(-3)) 0.266827 0.107716 2.477127 0.0147 
D(FOS) -110.2700 33.17185 -3.324206 0.0012 

D(FOS(-1)) 68.73535 33.55319 2.048549 0.0428 
D(GDPG) -0.097112 0.031927 -3.041642 0.0029 

D(GDPG(-1)) 0.186109 0.032162 5.786586 0.0000 
D(GDPG(-2)) 0.025727 0.033449 0.769146 0.4434 
D(GDPG(-3)) 0.065626 0.032487 2.020049 0.0458 

D(IP) -0.159554 0.048696 -3.276516 0.0014 
C 1.185360 0.288480 4.108990 0.0001 

FD(-1) 0.012366 0.017284 0.715435 0.4758 
FDI(-1) 0.025666 0.022313 1.150256 0.2525 
FOS(-1) 10.66856 2.314905 4.608640 0.0000 

GDPG(-1) -0.047565 0.014748 -3.225224 0.0017 
IP(-1) 0.014305 0.007779 1.838865 0.0686 

CO2(-1) -6.839509 1.280474 -5.341387 0.0000 
     
     R-squared 0.999362     Mean dependent var 1.930979 

Adjusted R-squared 0.999214     S.D. dependent var 11.27025 
S.E. of regression 0.315963     Akaike info criterion 0.706129 
Sum squared resid 11.18123     Schwarz criterion 1.276135 
Log likelihood -22.07595     Hannan-Quinn criter. 0.937764 
F-statistic 6748.764     Durbin-Watson stat 2.175225 
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Prob(F-statistic) 0.000000    
     
          
     

 
 
ARDL Cointegrating And Long Run Form  
Dependent Variable: CO2   
Selected Model: ARDL(10, 4, 0, 2, 4, 1)  
Date: 08/12/22   Time: 05:03   
Sample: 1980Q1 2017Q1   
Included observations: 139   

     
     Cointegrating Form 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     D(CO2(-1)) 7.271876 1.257503 5.782791 0.0000 

D(CO2(-2)) 6.626709 1.244256 5.325839 0.0000 
D(CO2(-3)) 6.635965 1.244804 5.330932 0.0000 
D(CO2(-4)) 13.847717 1.188171 11.654653 0.0000 
D(CO2(-5)) 2.721030 1.468832 1.852513 0.0666 
D(CO2(-6)) 7.586719 1.484259 5.111453 0.0000 
D(CO2(-7)) 7.445013 1.473018 5.054257 0.0000 
D(CO2(-8)) -44.970759 1.403156 -32.049726 0.0000 
D(CO2(-9)) 33.281458 3.366656 9.885614 0.0000 

D(FD) 0.273559 0.110136 2.483837 0.0145 
D(FD(-1)) -0.087722 0.223349 -0.392759 0.6952 
D(FD(-2)) -0.295134 0.209333 -1.409881 0.1613 
D(FD(-3)) 0.264181 0.107762 2.451517 0.0158 

D(FDI) 0.026814 0.021667 1.237572 0.2185 
D(FOS) -111.076593 33.169115 -3.348796 0.0011 

D(FOS(-1)) 7.169302 33.425336 2.099285 0.0380 
D(GDPG) -0.097947 0.031946 -3.065988 0.0027 

D(GDPG(-1)) 0.160674 0.052997 3.031731 0.0030 
D(GDPG(-2)) -0.039672 0.050107 -0.791754 0.4302 
D(GDPG(-3)) 0.065379 0.032406 2.017460 0.0460 

D(IP) -0.156815 0.048616 -3.225581 0.0016 
CointEq(-1) -0.676027 1.270203 -5.327515 0.0000 

     
         Cointeq = CO2 - (0.0017*FD + 0.0040*FDI + 1.5612*FOS  -0.0071*GDPG + 

        0.0022*IP + 0.1725 )   
     
          

Long Run Coefficients 
     
     Variable Coefficient Std. Error t-Statistic Prob.    
     
     FD 0.001664 0.002376 0.700408 0.4851 

FDI 0.003962 0.003215 1.232345 0.2204 
FOS 1.561169 0.384761 4.057500 0.0001 

GDPG -0.007054 0.002117 -3.331696 0.0012 
IP 0.002180 0.001195 1.823331 0.0709 
C 0.172468 0.018082 9.538058 0.0000 
     
          

     
Ghana short and long run 

Heteroskedasticity Test: Breusch-Pagan-Godfrey 
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F-statistic 1.669440     Prob. F(26,112) 0.3354 
Obs*R-squared 38.82332     Prob. Chi-Square(26) 0.0507 
Scaled explained SS 91.41484     Prob. Chi-Square(26) 0.0000 

     
          

Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 08/12/22   Time: 05:04   
Sample: 1982Q3 2017Q1   
Included observations: 139   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.576302 0.185258 3.110801 0.0024 

CO2(-1) -0.200314 0.042234 -4.743003 0.0000 
CO2(-2) 0.154518 0.044394 3.480636 0.0007 
CO2(-3) 0.004094 0.018124 0.225862 0.8217 
CO2(-4) -0.021380 0.181346 -0.117897 0.9064 
CO2(-5) 1.405133 0.504136 2.787212 0.0062 
CO2(-6) -1.074457 0.564846 -1.902213 0.0597 
CO2(-7) -0.082375 0.490868 -0.167816 0.8670 
CO2(-8) -0.007282 0.616593 -0.011810 0.9906 
CO2(-9) -10.59867 2.248822 -4.712987 0.0000 

CO2(-10) 8.206777 2.181156 3.762582 0.0003 
FD -0.066441 0.071354 -0.931150 0.3538 

FD(-1) 0.205980 0.141088 1.459935 0.1471 
FD(-2) -0.150811 0.144701 -1.042226 0.2996 
FD(-3) 0.158284 0.135620 1.167114 0.2456 
FD(-4) -0.148561 0.069816 -2.127895 0.0355 

FDI 0.020010 0.014037 1.425468 0.1568 
FOS 25.56230 21.48928 1.189537 0.2367 

FOS(-1) -59.97845 39.11632 -1.533336 0.1280 
FOS(-2) 38.45928 21.65528 1.775977 0.0785 
GDPG -0.020786 0.020697 -1.004317 0.3174 

GDPG(-1) 0.000492 0.032567 0.015100 0.9880 
GDPG(-2) 0.038294 0.034335 1.115304 0.2671 
GDPG(-3) 0.002853 0.032463 0.087892 0.9301 
GDPG(-4) -0.026908 0.020995 -1.281642 0.2026 

IP -0.041876 0.031497 -1.329543 0.1864 
IP(-1) 0.037795 0.031003 1.219076 0.2254 

     
     R-squared 0.279304     Mean dependent var 0.080293 

Adjusted R-squared 0.112000     S.D. dependent var 0.217029 
S.E. of regression 0.204515     Akaike info criterion -0.163839 
Sum squared resid 4.684542     Schwarz criterion 0.406166 
Log likelihood 38.38684     Hannan-Quinn criter. 0.067796 
F-statistic 1.669440     Durbin-Watson stat 1.830339 
Prob(F-statistic) 0.035354    

     
      

 
Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 0.912657     Prob. F(2,110) 0.4045 

Obs*R-squared 2.268883     Prob. Chi-Square(2) 0.3216 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: ARDL    
Date: 08/12/22   Time: 05:06   
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Sample: 1982Q3 2017Q1   
Included observations: 139   
Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CO2(-1) 0.042699 0.099149 0.430660 0.6676 

CO2(-2) -0.046333 0.096764 -0.478824 0.6330 
CO2(-3) 0.002979 0.028134 0.105875 0.9159 
CO2(-4) -0.014901 0.280372 -0.053148 0.9577 
CO2(-5) -0.303326 0.950955 -0.318970 0.7504 
CO2(-6) 0.379053 1.022500 0.370712 0.7116 
CO2(-7) -0.069827 0.760683 -0.091795 0.9270 
CO2(-8) -0.020359 0.953852 -0.021344 0.9830 
CO2(-9) 2.236898 5.211738 0.429204 0.6686 

CO2(-10) -2.268783 4.828335 -0.469889 0.6394 
FD 0.016201 0.111127 0.145787 0.8844 

FD(-1) -0.037887 0.220024 -0.172196 0.8636 
FD(-2) 0.027299 0.224489 0.121607 0.9034 
FD(-3) -0.013451 0.210059 -0.064033 0.9491 
FD(-4) 0.010639 0.110062 0.096662 0.9232 

FDI -0.002338 0.022270 -0.104990 0.9166 
FOS 1.392782 33.38671 0.041717 0.9668 

FOS(-1) 0.179615 60.46150 0.002971 0.9976 
FOS(-2) -1.879444 34.08431 -0.055141 0.9561 
GDPG 0.002108 0.032222 0.065413 0.9480 

GDPG(-1) 0.004307 0.050587 0.085138 0.9323 
GDPG(-2) -0.010722 0.055148 -0.194416 0.8462 
GDPG(-3) 0.000695 0.050169 0.013861 0.9890 
GDPG(-4) 0.006018 0.034702 0.173425 0.8626 

IP 0.004761 0.049299 0.096580 0.9232 
IP(-1) -0.005401 0.048807 -0.110665 0.9121 

C 0.018517 0.296213 0.062513 0.9503 
RESID(-1) -0.126018 0.141108 -0.893063 0.3738 
RESID(-2) 0.062511 0.114620 0.545381 0.5866 

     
     R-squared 0.016323     Mean dependent var -2.37E-15 

Adjusted R-squared -0.234068     S.D. dependent var 0.284385 
S.E. of regression 0.315919     Akaike info criterion 0.716610 
Sum squared resid 10.97852     Schwarz criterion 1.328838 
Log likelihood -20.80440     Hannan-Quinn criter. 0.965403 
F-statistic 0.065190     Durbin-Watson stat 2.001011 
Prob(F-statistic) 1.000000    
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APPENDIX 3: GUIDE FOR MULTIVARIATE MODELS 

 

 

 

 

Unit Root Test

I(0) VAR Model 

I(0) & I(1) Toda-Yamamoto Model 

I(1)

If Cointegrated, VECM 

If not Cointegrated, VAR-in-first  difference 
model 


