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Abstract
Destruction in video games traditionally use pre-fracturing techniques to efficiently swap
out game objects at run-time, which requires artists to create multiple models in various
states of destruction. Real-time methods require less design time and can produce more
realistic results but often come at a cost of performance. If real-time methods can perform
at similar levels as tradition pre-fracturing means, this could increase the current standards
of realistic destruction in video games. This paper explores and implements real-time frac-
turing techniques, comparing these to traditional pre-fracturing methods in terms of visual
realism and performance. The results of the implementation were then distributed in an
online questionnaire, to view how participants perceived the differences of both techniques
and whether the visual or performance aspects affected their preferences of one method over
the other.

Keywords Video game destruction · Real-time mesh fracturing · Voronoi diagrams

1 Introduction

For games with structures and geometry that are, by design, intended to be destroyed
by the player, the destruction system used is very instrumental for successful user expe-
rience. Destruction in games can range from small breakable objects containing useful
pickups inside, to large structures like buildings where users can destroy different sections
to make new entryways. This kind of destruction can be used to create new gameplay
strategies, enhancing the user experience; enabling users to dictate their own diverse and
dynamic gameplay experiences by directly interacting with the environments they immerse
themselves in.
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The most common method to create destruction in video games is through pre-fracturing
three-dimensional (3D) models, which is the act of pre-defining a ’broken’ variant of an
object and switching the undamaged model with its ‘damaged’ variant when called at run-
time [3, 25]. Pre-fracturing techniques are predominantly used in video games as they have
proven to be very efficient and easy to implement. While pre-fracturing meshes is very
efficient, it can have limitations on visual realism. Realism in the video games industry is
becoming increasingly sought after, and this is shown through upcoming releases of game
engines like Unreal Engine 5, a goal of whose is to achieve photorealism on a similar level
to real life [6].

Implementing real-time or procedurally generated destruction can capitalise on the
shortcomings of pre-fracturing when it comes to visual realism, though it is often more com-
putationally expensive and affects performance as a result. However, with the increasingly
advanced technology being used in current consoles and PCs, it is becoming more achiev-
able to use real-time destruction techniques instead of pre-fracturing. This has the potential
to surpass the limits of current destruction techniques and provide future video games a
more realistic and immersive player experience.

1.1 Pre-fracturing andmodel switching

The process of pre-fracturing begins with artists using 3D modelling software such as 3DS
Max, Blender, Maya, etc., to create a 3D model then using various techniques to fracture
it within the editor before implementing it into a game. After the models are exported,
it is within the game that the original ‘undamaged’ 3D model is switched with the pre-
fractured version at runtime, which in combination with the physics engine, can produce
aesthetically pleasing destruction behaviours, with realistic rigid body simulations of the
broken fragments (Fig. 1).

Fig. 1 Preparation of 3D geometry
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However, a limitation to pre-fracturing is how destruction is represented to the player.
When using prefabs or multiple objects of the same kind, they will always fracture or break
apart in the same way, which is not a very realistic approach and may become noticeable to
the player over time. Additionally, no matter where impact occurs on an object, the whole
object will be fractured, and fragments may fall apart synchronously if no constraints are
present. This may not be an issue for relatively small objects such as breakables that get
destroyed in one hit, but for larger objects that you would expect to have more mass and
density, this method may not look very realistic.

Larger in-game structures such as buildings would realistically comprise of several con-
nected components representing different materials that when destroyed by the player,
should break apart and collapse in a realistic manner; a building should not completely
collapse if the player focuses their fire to a small section of the building, therefore it is
also important to consider the placement of constraints to ensure that structures behave
realistically when interacted with.

Pre-fracturing is especially evident in games such as the Battlefield series. In Battlefield
3 [4] for instance, players can destroy parts of buildings to create new entryways, or to cause
entire buildings to collapse, changing the environment in new and interesting ways.

The Battlefield games visualise this destruction by swapping meshes at runtime. A struc-
ture such as a building will comprise of many independent parts (Fig. 2), both destructible
and non-destructible [1]. When a player destroys part of a building, the geometry of that
section of the building will be swapped with its ’damaged’ version. This mesh swap is dis-
guised using particles like smoke and debris, so the player cannot see the swap occurring.

1.2 Real-time destruction

Unlike pre-fracturing, real-time destruction involves the fracturing of geometry at run-time.
Geometry can break apart in unique ways and can produce different results every time,
which is a great way of creating realistic, destructible environments and keeps game-play
fresh and dynamic.

Geometry that has not been pre-fractured undergoes calculations at runtime to determine
unique fracture patterns, which can take the point of impact into account. While this can
achieve more realistic visual results, the time it takes to perform calculations make this

Fig. 2 Battlefield building parts [1]
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a longer process than pre-fracturing. This is a central reason as to why pre-fracturing is
favoured over real-time destruction techniques in video games.

An example of real-time destruction can be seen in the game Tom Clancy’s Rainbow
Six: Siege [24], where interior walls and floors can be damaged using explosive or bullets
to secure tactical advantages against opponents. Figure 3 demonstrates how players use the
game’s core run-time destruction library to full effect by creating a hole in the wall geometry
to see into an adjacent room, where opponents can be shot at through.

Players can specifically choose where damage will occur on the surface of the wall while
the remainder of the wall remains intact. It would be difficult to predict and display this
type of destruction using pre-fracturing methods.

Real-time destruction is not used very often in video games as the current methods of pre-
fracturing are deemed adequate for most games, even with the reduced level of realism that
occurs as a result. Questionnaire data gathered by [25] found that although game developers
considered ’quality of the results’ as one of the five most important aspects of procedural
destruction, realism itself was not deemed as important.

While realism is not considered as important, finding methods of real-time destruction
that can perform just as efficiently as pre-fracturing, with the additional benefit of producing
higher levels of realism would be an overall improvement for destruction in games.

2 Related work

After acknowledging the basic workings of both pre-fracturing and real-time destruction
techniques, the following section focuses specifically on real-time mesh fracturing tech-
niques that currently exist, and solutions researchers have developed to implement this in
real-time. The real-time fracturing research below has been separated into two categories:
Real-Time Fracturing Solutions and Pre-defined Fracture Patterns used in Real-Time. The
first of these is related to general solutions involved in fracturing meshes with little to no
preparation from designers as to how objects will fracture, the second section, pre-defined
fracture patterns, involves the real-time application of fracture patterns that have previously
been defined by artists.

Fig. 3 Rainbow Six: Siege procedural destruction on walls [20]
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2.1 Existing real-time fracturing solutions

A main consideration for real-time mesh fracturing is initially defining how the mesh will
fracture; how its fracture patterns are defined and how the new mesh fragments are created.

Generally, meshes can be prepared for fracturing using many different techniques, [3]
and [16] describe some of these being: Boolean operations, Voronoi Shattering or slicing,
Convex Decomposition, and Tetrahedralization by 3D Delaunay Triangulation. These meth-
ods can be used for pre-fracturing, then triggered at runtime and affected by physics, but
can also be calculated in real-time.

Boolean operations can be performed in real-time, as seen in games like Red Faction
[17], whose Geo-Mod engine allowed players to create tunnels in terrain; altering the initial
geometry by subtracting the approximated volume of an ‘empty’ object representing the
area of damage caused by the weapon used from terrain geometry [21].

Parker and O’Brien [19] described a system developed for the game Star Wars: The Force
Unleashed [11] that could perform mesh fracturing in combination with mesh deforma-
tion. Their system is based around a corotational tetrahedral Finite Element Method (FEM),
which encapsulates a polygonal mesh into a tetrahedral FEM mesh. Manipulation of the
mesh’s matrices when forces are applied to them enables objects to deform and fracture.
This technique measures strain applied to the impact area of the mesh; distributing various
levels of deformation across its surface. The use of a FEM mesh is more suitable for mate-
rials that deform before fracturing, giving materials such as wood and some metals realistic
bends before they fracture.

A method of real-time fracturing involving convex decomposition was proposed by [14].
This novel fracturing method revolves around the decomposition of objects into convex
shapes using Volumetric Approximate Convex Decomposition (VACD), then using Boolean
operations to apply a convex fracture pattern (based on Voronoi) onto meshes. This enables
recursive fracturing and partial fracturing around impact points. VACD is useful as it can be
applied to non-convex objects to generate a set of convex shapes in its stead. Convexity of
objects is important as algorithms and collision systems can run more efficiently on convex
shapes opposed to non-convex shapes [13]. As the fracture pattern being applied consists of
convex polygons, the fragments produced by the fracturing are also convex in shape.

A technique commonly used to define mesh fragments is through Voronoi shatter-
ing/fracturing. Voronoi diagrams can be used to divide 2D planes and 3D meshes into
fragments. Ronnegren 2020 [22] describes computing 2D Voronoi Diagrams and extrud-
ing them into 3D space in real-time, to create dynamic fracture patterns representing glass
fracturing. This method is also able to dynamically calculate the fracture pattern based on
a point of impact on the mesh surface. Due to calculations being performed in 2D space,
this technique is limited to thin planar objects such as flat walls and panes of glass. For
meshes that would represent walls or thicker objects, the planar technique would not pro-
vide realistic fracturing as there would be no mesh vertices within the volume of the object
to provide realistically shaped internal faces. In this case a 3D Voronoi algorithm would be
more suitable.

Grönberg [7] describes how this can be done using 3D Voronoi tessellation on convex
objects. Unlike 2D Voronoi fracturing, 3D Voronoi fracturing works by placing random
points within the volume of a mesh and using these to create tetrahedral convex fragments.
Täht [23] also used a 3D Voronoi technique to create a dynamically changing game envi-
ronment that could be modified in real-time by the player. Their proposed system utilises
Delaunay Triangulation to extract the corresponding Voronoi diagram. As the Voronoi dia-
gram itself needed to be calculated in real-time, an efficient algorithm was required. The



Multimedia Tools and Applications

most suitable algorithm in this case was the Bowyer-Watson algorithm; [23] stated: “. . . this
algorithm is easy to understand and since it is an incremental algorithm, it has the ability
to dynamically change whenever a new point is added without the need to recalculate the
entire diagram every time”.

2.2 Pre-defined fracture patterns used in real-time

Another method of fracturing a mesh is by applying a pre-defined fracture pattern to geom-
etry at runtime when it is needed. This method gives artists more freedom to create many
unique fracture patterns to suit whichever type of material they want. Unique fracture pat-
terns could be designed for wood, concrete, and glass, then be applied to meshes of the
specified material.

Re-visiting the game mentioned in Real-Time Destruction, Rainbow Six: Siege uses frac-
ture patterns for its surface procedural destruction. At the Game Developers Conference in
2016, the Technical Lead / Physics Programmer from Ubisoft, provided details on how frac-
ture patterns were used for bullet and explosive impacts on walls and floors [8]. He stated
that a cut pattern is generated based on game-play input and material parameters that were
set for objects. Figure 4 describes how cuts are made on a 2D projection of the in-game
planar object such as a wall or a floor, after the 2D projection has been clipped via polygon
intersection algorithms and re-triangulated, the new output is extruded back into 3D space.

Many cut patterns used in this game to represent the damage caused by different
weapons, so a variety of uniquely shaped fracture patterns are ready to cut wall geometry in
real-time.

Gestel and Bidarra [25] developed a fracture pattern editor specifically for use in real-
time video games. In a similar way as the fracture pattern technique mentioned above,
this fracture patterns editor intersects the designed pattern with the mesh then cuts it via
Boolean operations. This technique was successful for implementing fracture pattern mesh
destruction on basic objects.

The previously mentioned convex decomposition mesh fracturing method by [14] also
uses fracture patterns as part of their real-time dynamic fracturing system. The pattern used
is based on a Voronoi Diagram, and this pattern is applied to impact areas on the mesh
to fracture it. What makes this method more realistic is its recursive nature, as it can re-
fracture previously fractured meshes from the first fracturing pass. The method used also

Fig. 4 Rainbow Six: Siege Surface Destruction [8]
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maintains the structural integrity of mesh areas that are out of range from the fracturing
impact location, allowing partial fracturing.

2.3 Short summary of reviewed works

The various real-time fracturing methods reviewed in each section contain useful techniques
that could be used to create a prototype for real-time fracturing. Some methods are more
suitable for different video game scenarios than others, and some more applicable to certain
types of materials than others. From the techniques discussed above, many of them were
able to run in real-time, whereas others were not deemed fast enough. It is crucial that the
real-time fracturing techniques used in the proposed experimentations can provide a high
level of fracturing realism without creating noticeable performance issues when used in a
video game scenario. Those proven to be unable to maintain acceptable performance levels
for video games will not be used in the proposed experiments.

Grönberg [7] pointed out that their 3D Voronoi fracturing implementation was deemed
unsuitable for real-time application, as the runtime execution of the 3D Voronoi calcula-
tions resulted in a noticeable drop in frame rate. Täht [23] 3D Voronoi destruction system
showed successful Voronoi calculations in real time, and even though the type of destruc-
tion implemented differs from the topic of this paper, some of the techniques discussed
such as Delaunay Triangulation and the Bowyer-Watson algorithms could be useful in
implementing an efficient Voronoi fracturing system.

A successful use of Voronoi fracturing was [22]’s 2D to 3D Voronoi fracturing imple-
mentation. This was able to fracture an object containing up to 500 Voronoi cells, amounting
to 500 meshes, at 60 frames per second (FPS). At this frame rate, this technique has promise
for use in video games, even fast-paced games. If a game has a target frame rate of 30 FPS,
even more fracturing could occur. To further improve the performance of fracturing calcula-
tions, [15] proposed a system to achieve a fast real-time Voronoi implementation deployed
on the low-level side - by using GPU. Their work provides a direction for possible exten-
sion of the current Voronoi fracturing method to support material-based prorogation and
fracturing.

Based on the reviewed literature, the ideal techniques for fracturing thick concrete-like
materials would be using 3D Voronoi diagrams as this produces chunk-like mesh fragments.
For planar glass-like materials, which will be the subject of testing in this paper, the ideal
technique would be based on [22]’s 2D to 3D Voronoi fracturing techniques. This technique
works in a similar way to Rainbow Six: Siege’s 2D to 3D projection technique, which is
proven efficient enough for video game application, and can also fracture based on impact
location: an important element of achieving realistic fracturing. If the Voronoi Diagram can
be computed using even faster algorithms such as Delaunay Triangulation with Bowyer-
Watson algorithms as mentioned by Täht [23], this could produce realistic fracturing for
glass materials very efficiently.

3 Implementation

The implementation was created in Unity3D using C# scripting language. The charac-
ter controller and framerate counter used were provided by the Unity Standard Assets



Multimedia Tools and Applications

Package1. The implementation consists of several experimentations of pre-fracturing and
real-time fracturing of various shaped objects including standard 3D cube objects, simple
3D cuboid shapes to represent walls and windows, and on a vase-like object representing a
more complex mesh to perform fracturing on.

The implementation is intended to demonstrate pre-fracturing and real-time fractur-
ing behaviours of objects representing different materials: glass, concrete, and wood. This
would involve the use of model-switching behaviour for pre-fractured objects whose dam-
aged variants would be created using 3D model editing software, and then creating unique
real-time fracturing techniques to apply the appropriate fracturing behaviours to the mate-
rial type it represents. The final implementation contains pre-fracturing experiments for the
materials of concrete and glass, and an experimentation of real-time fracturing – glass mate-
rial. The game objects representing glass materials are visually compared and performance
tested.

Based on findings during the review of literature, mesh fragments for pre-fracturing
and real-time fracturing will be defined using Voronoi Diagrams. The sections below
describe the main algorithms involved including: Voronoi Diagrams, its dual – Delaunay
Triangulation, and the Bowyer-Watson algorithm used to compute Delaunay Triangulations.

3.1 Key techniques and algorithms

3.1.1 Voronoi diagram (VD)

The Voronoi diagram was named after Georgy Voronoi who developed a method of spatial
division based on the works of René Descartes in 1644, and later by mathematician [18], as
such, it is sometimes known as Dirichlet Tessellation.

VDs enable a 2D plane to be divided into several polygons, which are formed around
generating points (one generating point per cell). The various shapes of the cells (Voronoi
regions) are determined by the distance from their own generating point in comparison
to others – areas within a cell are always closer to its own generating point than to the
generating points of neighbouring cells.

The figure below (Fig. 5a) by [9] describes the VD as a set of ‘sites’ or ‘points’ in 2D
Euclidean space, where each site (P1, P2, P3, etc.,) represents a polygon or the face of a cell.

Each point in a face is equal distance or closer to its own site than to any other. This
is highlighted in Fig. 5b. All points within the area of face ‘P5’ are closer/equal distance
to its own generator site than any other. The distance calculations from each site are what
determines the edges and cell shape.

A benefit of using VDs for object fracturing is that polygons created are always convex
in shape and when working with geometry, it is more robust and efficient to run algorithms
on convex shapes than on concave shapes [13]. Geometry can be fractured by cutting along
the edges of each Voronoi cell.

Though the descriptions of the VD above all reference the use of it on a 2D plane, this
can be modified and projected into 3D for applications like visual effects for animations
and film, and for video game destruction.

1 https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-for-unity-2018-4-32351
Standard Assets Package (for Unity 2018.4)

https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-for-unity-2018-4-32351
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Fig. 5 Demonstration of Voronoi Diagram [9]

3.1.2 Delaunay triangulation (DT)

Named after the mathematician Boris Delone, Delaunay Triangulation is considered the
dual graph of the Voronoi diagram; A Voronoi diagram can be extracted from a Delau-
nay Triangulation, and a Delaunay Triangulation can be extracted from a Voronoi Diagram
(Fig. 6). For example, a site/generator point of a VD corresponds to a vertex of a DT, pairs
of edges of DT and VD are orthogonal to each other. The boundary of a DT is the convex
hull of a set of points on a plane.

DT is used to subdivide a plane into triangles, and where other triangulation methods
can produce undesirable triangles that are long and thin in shape, Delaunay uses an angle-
optimal solution to reduce this called ‘max-min’, which maximises the minimum interior
angles of triangles for optimal results, and this is achieved by edge flipping.

Fig. 6 Delauney
Triangulation/Voronoi Diagram
dual graph [9]
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De Berg et al. [5] discussed how the validity of edges can be determined using Thales’s
Theorem, by confirming no other vertices reside within the circumcircle of a specified tri-
angle. Taking the Voronoi/Delaunay duality example from above, Fig. 7a shows what an
invalid edge looks like, as the circumcircle of triangle (P6, P10, P4), contains another vertex
(P9), meaning edge (P6 − P10) is invalid, and is sub-optimal triangulation. Figure 7b shows
how this edge can be flipped to create a valid edge (P9 − P4) with optimal angles, as the
circumcircle of triangle P6, P9, P4, contains no other vertices.

Using DT is useful for geometry fracturing as it can be used to access the VD, and its
angle optimisation solution can prevent undesirable fragments when geometry is cut.

The concepts above can be used in pre-fracturing and real-time implementations, which
are discussed in the following sections.

3.1.3 Bowyer-watson algorithm

The Bowyer-Watson algorithm is a method of calculating Delaunay Triangulations devel-
oped by both [2] and [26]. It is an incremental algorithm that can be used to define new
triangles when a new point is added to the overall data structure. This enables the original
DT geometry to be updated with newly defined, valid DT triangles in the surrounding area
of the new point. This algorithm would be appropriate for real-time fracturing as incremen-
tal algorithms are essential for dynamically changing geometry, as unlike other methods,
the changes made due to re-triangulation only affects a local area, preventing the need to
calculate triangulation across the entire structure [10].

3.2 Pre-fracturingmesh implementation

Pre-fracturing was a multistep process and involved preparing the initial meshes in 3DS
Max then using other readily available Voronoi fracturing tools to separate the mesh into
Voronoi fragments. Pieces of software such as Houdini and Blender have built-in Voronoi
fracturing tools and were used to prepare the meshes for the pre-fracturing experiment. All
meshes were then imported into Unity.

Fig. 7 Delaunay Edge
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Fig. 8 Voronoi fracturing of ‘walls’ in Houdini

Figure 8 shows how the user can select the number of ‘scatter points’ relating to the
number of ‘Voronoi sites’ to include in the fracturing process. Figure 9 shows how this is
visualised through colour, and an exploded view to show each individual fragment.

While Houdini was able to create useful visualisations of the Voronoi fragments for
meshes, issues when exporting the meshes at the time prompted the decision to use Blender
for Voronoi fracturing and exporting the meshes. Like Houdini, in Blender the user can
choose how many Voronoi sites to disperse within the volume of the selected mesh, which
can be distributed in 3D space along the x, y, and z axes, or sites limited to only two
axes, e.g. x and y axes, to create an extruded 2D Voronoi fracture pattern with no internal
fragments (Fig. 10).

For the concrete wall object, the following 3D Voronoi cell fracture was applied to the
mesh inside the editor (Fig. 11).

This method created fragments inside the mesh with faces rotated at various angles for a
more natural visual effect. The figure below (Fig. 12) shows the same cell fracture modifier
being used on the vase object to break the mesh into fragments.

3.2.1 Pre-fracturing experiments

Pre-fracturing was simple to implement in Unity. Each object intended for pre-fracturing
has the following ‘DestroyItem’ script attached. Once each fragment of the damaged ver-
sion has a rigid body and convex mesh collider component applied, the original models
can be switched with this upon collision with a projectile. This script instantiates the dam-
aged variant – a prefab assigned in the Unity inspector, to the position and rotation of the
undamaged version (Fig. 13).

Fig. 9 Visualisation of Voronoi fracturing in Houdini
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Fig. 10 100 Voronoi sites scattered along two axes of an extruded plane, cutting straight through the mesh

Fig. 11 3D Voronoi cell fracture modifier in Blender containing internal fragments

Fig. 12 Using Blender’s cell fracture tool on a vase-like model
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Fig. 13 Vase pre-fractured in Unity. Before and after a collision

Fig. 14 Wall pre-fractured in Unity. Before and after collision

Fig. 15 Irregularities using FixedJoint component - floating fragments, unrealistic physics

Fig. 16 Custom building with
glass windows in Unity
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The effect is almost instantaneous and as such, the switch is disguised very effectively.
Although not currently implemented, this action could be hidden completely by activating
particle effects during the switch. The same script was applied to the cuboid wall object
created in Blender with one-hundred fragments (Fig. 14).

An issue with this method is that each fragment of the damaged variant is essentially
‘loose’; fragments all fall due to gravity physics. Adding constraints to keep fragments
together using Unity’s FixedJoint Component was one of the attempted solutions, however,
this created issues with realism where some fragments would unnaturally float in position
(Fig. 15).

Ultimately, the material used in the final comparison prototype is based on the frac-
turing of glass materials, the following section shows how this was implemented using
pre-fracturing.

3.2.2 Pre-fracture example for glass materials

For the main implementation and comparison of pre-fracturing and real-time fracturing, a
simple building was created in 3DS Max with multiple gaps to place the ‘glass’ window
game objects (Fig. 16).

Each window in the pre-fracturing example contains the same ‘DestroyItem’ script used
in the section above, which replaces the original mesh with a damaged variant. Figure 17
shows each step of the fracturing process when the player fires a physical projectile at the
window objects. The first image shows the undamaged window, the middle image displays
the instantiated damaged variant, and the product of the final image is created by firing
another projectile into the fractured pieces, displacing them.

The fracture pattern based on VD remains the same for all windows. This can become
noticeable to the player after repeating the action on multiple windows. One note about this
implementation as can be seen in the middle image, though it appears that fragments are
connected, there are no constraints between them; the fragments remain together only due
to their rigid body components and colliders keeping them within the space of the window.

3.3 Real-time fracturing implementation

3.3.1 Real-time fracturing example for glass materials

The ideal real-time technique for implementing glass fracturing based on the research con-
ducted within the Existing real-time fracturing solutions section, was through calculating
2D Voronoi patterns and extruding them into 3D space. It was also learned that Voronoi

Fig. 17 Pre-fractured example of ‘glass’ window. From left to right: Undamaged, damaged, fragments
displaced after shooting again
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Fig. 18 Real-time fracture applied to impact area on the left side of the window

diagrams can be calculated using Delaunay triangulation in combination with the Bowyer-
Watson algorithm. In this paper, we followed the algorithm proposed in [5], and the Voronoi
and Delaunay Triangulation calculators and mesh clippers developed by OskarSigvardsson
(2019)2.

The implementation uses Delaunay Triangulation and the Bowyer-Watson Algorithm to
generate a Voronoi Diagram, the edges of which are cut to create the new mesh fragments.
The technique is also recursive as additional fractures can be performed on previously
fractured pieces. The number of Voronoi sites can be defined within the source code. It
determines the number of fragments created by each fracturing. The number of fragments
is set to ‘15’ to match the number of fragments in the pre-fracturing glass implementation.

During the implementation, a mesh will only be able to fracture if its geometrical area is
larger than the stated minimum break area variable set in the Unity Inspector or within this
script. This offers more control to which fragments can be re-fractured based on their size.
This is very useful as it prevents the generation of too many meshes or fragments that are
very small in size, which would affect overall performance.

One of the ways this implementation creates realistic fractures is through generating the
Voronoi diagram at the point of where impact occurs. This creates a higher concentration of
Voronoi sites around the impact point, resulting in smaller fragments towards the centre of
impact and larger fragments towards the outer edges of the mesh, this can be seen in Fig. 18,
where impact has occurred on the left-hand side of the mesh.

In a similar way to pre-fracturing, the calculated fragments are instantiated in place of
the original ‘parent’ mesh (which is destroyed), taking the local position and rotation into
account then adding a ‘Rigidbody’ component to the fragments so they can be simulated and
interacted with in the scene. The implementation verifies Delaunay Triangulation by check-
ing points within the circumcircle of triangles, and by checking for valid/legal triangulation
edges and flipping them if they are not valid. After that, the Boywer-Watson algorithm is
then run to return newly created triangles caused by the addition of another point in the dia-
gram. The Voronoi Diagram is then calculated based on the new triangulation of the mesh
and then clipped to create the new fragments.

All the algorithms work together to create very visually realistic fracturing for glass
materials, particularly when reducing the minimum break area of the mesh to allow for
smaller fragments.

2https://github.com/OskarSigvardsson/unity-delaunay

https://github.com/OskarSigvardsson/unity-delaunay
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Table 1 Device specifications used for implementation

Component Low Specification High Specification

OS Windows 10 Windows 10

Intel(R) Core(TM) i5-8250U Intel(R) Core(TM) i5-10400F

CPU CPU @1.60GHz, 1800 Mhz, CPU @2.90Ghz, 2904 Mhz,

4 Core(s), 8 Logical Processor(s) 6 Core(s), 12 Logical Processor(s)

(Integrated) Intel(R) NIVIDIA GeForce RTX

GPU UHD Graphics 620 3060ti 8GB GDDR6

RAM 8GB, DDR4, 2400MHz 32GB, DDR4, 3200MHz

1TB 5400rpm 1TB M.2SSD

HDD read 2400Mb/s, write 1950Mb/s

4 Results

In video games, one of the most important statistics to measure performance is linked to
frame rate or FPS. The FPS value equates to the number of frames that are rendered to the
screen in the span of a second. The higher the FPS, the smoother games appear to run. If
this number is low, the game will noticeably stagger and can become unplayable.

The target frame rate for most video games is usually set at 30 frames per second, for
games that require low latency this target is increased to 60 FPS [12]. There is a framer-
ate counter visible during runtime that shows the current FPS, but to get a broader, more
in-depth view of the performance of fracturing, the ‘Profiler’ tool within the Unity editor
was used. The Unity Profiler tool can measure CPU usage, GPU rendering usage, memory
allocations, physics performance, and other resources on the device while the prototype is
running.

4.1 Implementation performance testing

To test performance of both the pre-fracturing and real-time fracturing implementations, a
development build of the prototype was created and run alongside the Unity profiler. The
experiment is tested on both a basic laptop and a latest high-spec PC (see Table 1 for details)
to investigate the in-game performance of various devices. A simple test was conducted,
consisting of shooting two projectiles at one window of the building model described in last
section, and analysing how it affects components of the system and the overall frame rate.

4.1.1 Pre-fracturing Implementation Performance on Low-Spec Laptop

The following image (Fig. 19) shows the profiler results at the time both projectiles were
fired at one of the window objects:

In Fig. 19, the impacts of both projectiles fired at the window correlate to the distinct
response seen in the Physics module, and the increased Rendering activity in the profiler.

The frame rate can be seen to oscillate between 30 FPS and 60 FPS (Fig. 20). The action
of instantiating the fractured object into the scene and simulating the rigidbodies did not
appear to cause any notable deviations to the average frame rate, or cause frames to drop
lower than 30 FPS.
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Fig. 19 Profiler results for pre-fracturing performance test

After removing the filters of other elements that were executed during fracturing, leaving
only the graphics rendering, scripts, and physics elements (Fig. 21) visible, the speed each
element performed at can be seen. Rendering the graphics took 3.28 milliseconds (ms), the
execution of scripts took 1.06ms, and physics calculations took 6.54ms.

4.1.2 Pre-fracturing implementation performance on high-spec PC

As with the high-end device’s pre-fracturing profiling image, the moments of impact of the
projectile to the window can be seen by the two distinct rises in the physics module of the
profiler (see Fig. 22).

The performance in terms of framerate remained over 60 FPS, at approximately 75 FPS
throughout the experiment with no drops in framerate (Fig. 23). Unlike what was present in
the low-spec experiment, the framerate was consistent throughout.

Isolating the rendering, scripts, and physics components revealed that at the time of
impact, rendering took 0.40ms, scripts took 0.18ms to execute, and the physics took 0.49ms
to calculate (Fig. 24).

Fig. 20 Frame rate for pre-fracturing test
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Fig. 21 CPU usage for Rendering, Scripts, and Physics in the pre-fracturing test

Fig. 22 Profiler results for pre-fracturing performance test

Fig. 23 Frame rate for pre-fracturing test
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Fig. 24 CPU usage for Rendering, Scripts, and Physics in the pre-fracturing test

4.1.3 Real-time implementation performance on low-spec laptop

In the same format as the pre-fracturing test, the image below shows the overall perfor-
mance of firing two projectiles at a single window in the real-time fracturing implementation
(Fig. 25).

While the average overall FPS can be seen to vary between 60 and 30 FPS, there are
three notable spikes in activity when both projectiles were fired at the window – two spikes
during the first collision, one spike at the second. This caused frame rate to temporarily
drop below 30 FPS to approximately 22-23 FPS. Again, removing elements other than the
Rendering, Scripts, and Physics, helps visualise how each of these performed (Fig. 26).

Figure 27 shows how much time each element took in the frame when initial fracturing
occurred: Graphics rendering took 3.08ms, script executions took a 18.59ms, and physics
amounted to 6.05ms.

Fig. 25 Profiler results for real-time fracturing performance test
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Fig. 26 CPU usage for Rendering, Scripts, and Physics in the real-time fracturing test

Fig. 27 CPU usage for Rendering, Scripts, and Physics at the time of the initial fracture (real-time fracturing
test)

Fig. 28 CPU usage for Rendering, Scripts, and Physics in the real-time fracturing test
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4.1.4 Real-time implementation performance on high-spec PC

The real-time fracturing performance on the higher-spec PC achieved a similar FPS baseline
as with the pre-fracturing test, sustaining a stable 75 FPS with minor deviations. The only
notable difference, which can be seen in the graph below (Fig. 28), is the spike during the
first collision signifying a drop in framerate to approximately 65 FPS.

Analysing the spike by isolating the rendering, scripts, and physics modules shows that
0.37ms was spend on rendering, 5.00ms on script execution, and 0.50ms on physics (see
Fig. 29).

4.1.5 Discussion of performance results

For the experiment on the low-spec laptop, the performance tests show that both the pre-
fracturing and real-time fracturing implementations performed very similarly with slight
differences in performance. The pre-fracturing test was able to perform within the ideal
frame rate range of 60 to 30 FPS throughout, whereas the real-time fracturing test had frame
rates that temporarily dropped below 30 FPS to 22-23 FPS whenever fracturing occurred.
This is not ideal as it would be a noticeable to the player in a game. Depending on how often
the player fractures the glass, this drop in FPS will continue to occur.

Both experiments performed on a higher-spec PC were able to perform consistently over
60 FPS. There were no performance issues with the pre-fracturing test, and even with the
spike in performance loss coming from the real-time fracturing test, the overall framer-
ate stayed above 60PFS, without dropping below this. As anticipated, comparing the script
execution times of both the pre-fracturing and real-time fracturing techniques still shows
a significant difference between script execution times with real-time’s 5.00ms to pre-
fracturing’s 0.18ms. However, as previously mentioned, the more powerful hardware was
able to handle this without any significant drops in FPS.

Performing the same experiment on both a low-spec and high-spec PC provided a useful
insight into the limitations of real-time fracturing regarding hardware requirements. Where
the low-end PC suffered performance loss to a standard that would be considered unsuitable
for use in video games with its sub-30 FPS framerate, the high-end PC was able to manage

Fig. 29 CPU usage for Rendering, Scripts, and Physics at the time of the initial fracture (real-time fracturing
test)
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Table 2 comparing performance results of pre-fracturing and real-time fracturing on both a high-spec PC &
a low-spec PC

Performance results on a low-spec PC

Profiler Module Pre-fracturing Real-time Fracturing

Rendering 3.28ms 3.08ms

Scripts 1.06ms 18.59ms

Physics 6.54ms 6.05ms

Performance results on a high-spec PC

Profiler Module Pre-fracturing Real-time Fracturing

Rendering 0.40ms 0.37ms

Scripts 0.18ms 5.00ms

Physics 0.49ms 0.50ms

the additional demands of the real-time fracturing implementation and maintained a fram-
erate above 60 FPS. Table 2 shows performance results comparison between the low-spec
PC and high-spec PC for both pre-fracturing and real-time fracturing experiments.

The question remains of whether this framerate can be maintained on the more pow-
erful hardware when more than a single instance of real-time fracturing takes place. In a
dense environment where multiple real-time fracturing events take place simultaneously, the
accumulation of script executions may prove to impact performance in a significant way.

4.2 Questionnaire

A questionnaire, created using Qualtrics3, was distributed to groups of users familiar with
technology and video games. The primary target group being university students study-
ing technological subjects such as robotics, computer science, and computer games design
and development. The questionnaire was distributed to the target demographic, students
and lecturers alike, and completed anonymously. The questions from the questionnaire and
responses to these questions can be found in the supporting materials (Appendix A and
Appendix B).

The broad structure of questions involved having participants watch short videos of the
fracturing techniques on glass materials described in Implementation, then answering ques-
tions about them. The decision to use pre-recorded videos to demonstrate the fracturing
techniques was made due to difficulties that would arise by distributing build files online in
large numbers, and due to current restrictions involving physical access for participants to
test the implementation on public devices. Using videos however inhibits the collection of
valuable feedback on the performance of the implementation on computers with different
specifications.

The type of fracturing techniques: pre-fracturing and real-time fracturing, were not
mentioned in the questionnaire to received unbiased feedback; they are differentiated as
technique ‘A’ and ‘B’ respectively. Then questions were asked about the visual realism,
accuracy to the material, and the perceived performance of each technique. Finishing with
two questions about its practicality in video games based on their opinions.

3https://www.qualtrics.com/Qualtrics(2021). The Leading Research & Experience Software.

https://www.qualtrics.com/
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In total, 20 participants completed the questionnaire. 19 out of 20 stated they played
video games ‘Very Often’ or ‘Often’, with 1 stating they did not play often. This indicated
that all participants were familiar with video games.

4.2.1 Pre-fracturing questions

The second question was about the pre-fracturing implementation video. 16/20 of respon-
dents thought the visual realism of destruction was ‘Somewhat realistic’, so results were
neither ‘very realistic’ or unrealistic but at a level of realism between these. 4 out of the
7 additional comments left for this question stated they noticed the windows fracturing
with the same pattern, confirming it as one of the main shortcomings for pre-fracturing
and a reason for its reduced realism. As for the fracturing representing glass, again 16/20
of respondents thought it represented glass ‘Somewhat realistic’(ally), however three chose
‘Not very realistic’. Some of the reasons for this, again, was the noticeable fracture pattern.
Another commented on the ‘thickness’ of the glass – a valid observation, as this was not
considered fully at the time of implementation.

The perceived performance of pre-fracturing was an even split between ‘Moderately fast’
and ‘Very fast’. As anticipated, this confirms it is an efficient technique to use with no
significant drops in frame rate. Only one comment suggested they saw some ’slowdown’
when the large ‘ceiling glass’ was broken.

4.2.2 Real-time fracturing questions

The questions for the real-time fracturing demonstration followed the same format as the
pre-fracturing technique.

In terms of visual realism, 12/20 of respondents thought the real-time fracturing demon-
stration was ‘very realistic’, with 7/20 saying it was ‘somewhat realistic’. Only 1 respondent
stated it was not at all realistic. Respondents noticed that the fracture patterns on the glass
appeared to be different each time it was broken, and that the glass could be broken repeat-
edly. A couple of respondents also noticed that fracturing occurred at the point of contact
with the window.

In terms material accuracy, it was a close divide between ‘very accurate’ and ‘somewhat
accurate’ with 9 votes for the former and 10 votes for the latter, with 1 respondent voting
it was not at all accurate. Respondents again pointed out the randomness of shattering, its
ability to fracture again, and how the glass breaking at the point of impact portrayed the
glass accurately.

For performance, the top two choices were split by only one vote: 9 respondents thought
the technique performed ‘very fast’, and 8 chose ‘moderately fast’. However, 3 respondents
noticed some performance issues and selected ‘slow’. Even though most respondents per-
ceived the technique performing quickly overall, based on the comments left, most noticed
small drops in frame rate when actions such as the large ‘skylight’ glass broke and when
increasingly more glass was broken.

4.2.3 Final closing question results

To conclude the questionnaire, participants were asked which technique they preferred over-
all, taking the visual realism and performance aspects into account. This question was asked
to see if users would value performance less for a higher level of realism or would choose
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improved performance over realism. The question was an open question, as such, it was
necessary to collate each respondent’s technique of choice from their answers.

In total 16/20 of respondents chose technique ‘B’, 3/20 chose technique A, and one
respondent did not state a preference as they believed both were relatively similar and the
use of each technique would depend on the intended scenario.

The main reasons given by participants in their preferred choice of Technique B (real-
time fracturing), over Technique A (pre-fracturing), was for its realistic and ‘detailed’
fracturing – ability to break again into smaller fragments, and the randomness of fracture
patterns created from the origin of impact. Several respondents acknowledged a small per-
formance drop yet still chose this technique. Those that chose Technique A stated the faster
performance of this technique over technique B was a primary reason for their choice, and
that the visual realism of glass fracturing was acceptable.

The final question asked of the suitability of using either technique, specifically for
video games. Generally, responses were favourable for both techniques to be used in games,
with many emphasising how technique B would offer more ‘visually pleasing’ and realistic
results.

Some important aspects concerning performance in video games were also mentioned,
such as how technique B may ‘tax system resources’; and that ‘heavy lag’ that may be
caused by techniques. One response pointed out that Technique A would ‘scale better as the
game expanded’ and would be ‘easier to maintain’. Another mentioned that technique A is
able represent glass breaking even though it is not as realistic as technique B.

4.2.4 Discussion of questionnaire results

From the bar charts of the visual realism of both techniques (supporting materials -
Appendix C), technique B is evidently the most popular choice, this was due to its ability to
fracture recursively, fracture with random fracture patterns, and fracturing from an impact
location.

For material accuracy (supporting materials - Appendix D), again Technique B con-
tained the highest number of votes for the best accuracy option in comparison to technique
A, which only had a single vote for this. However, a large portion of respondents chose
‘somewhat accurate’ which is still an acceptable level of accuracy.

Technique A had the best perceived performance results (supporting materials -
Appendix E), with respondents only choosing ‘Very Fast’ and ‘Moderately fast’. Although
most respondents also chose ‘Very Fast’ and ‘Moderately fast’ for Technique B, ‘slow’ was
also chosen by a few. Most noticed some drops in frame rate – correlating with results from
the performance testing, which is not ideal in video games. There was a large response
in favour of Technique B (real-time) when respondents were asked which technique they
preferred. This data is visualised in a pie chart (supporting materials - Appendix F). This
demonstrated that users would like to see this level of realism in video games more than
traditional pre-fracturing techniques.

The overall interpretation of the questionnaire confirms that higher realism comes at
a cost of performance, but in this case the severity of the performance issues, although
noticeable, was very low. With optimisations this could be reduced further to provide high
levels of realistic glass fracturing and improved performance.
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5 Conclusion and future work

Many real-time fracturing techniques were studied from the research conducted in this
paper. In comparison with other techniques, generating Voronoi fractures using Delaunay
Triangulation with the Bowyer-Watson algorithm has the advantages of calculating frac-
ture patterns for game objects representing glass materials and creating fractures based on
impact locations for additional realism.

One of the key contributions of this work is the investigation it carries out to find out
the computational performance of real-time fracturing technique applied in video games.
An implementation comparing pre-fracturing and real-time fracturing of glass materials
was successfully created and performance tested. The experiments found that both pre-
fracturing and real-time fracturing techniques can hold a stable framerate around 75 FPS
on a high-spec PC. Although no significant FPS drops are observed from the real-time
fracturing technique, there is a noticeable difference between script execution times when
comparing it to the pre-fracturing technique. On a low-spec PC, the tests showed that the
pre-fracturing technique ran between 60 and 30 FPS, with the real-time fracturing imple-
mentation suffering some frame drops, dropping to approximately 22-23 FPS at the time of
fracture.

Another contribution of this paper is to observe the viewed visual differences between
used techniques, by gathering feedback via an online questionnaire about the visual realism
and perceived performance of the techniques used in the comparison. Based on qualitative
analysis, most participants noticed the performance issues of the real-time fracturing imple-
mentation yet still selected it as their preference over that of the more efficient pre-fracturing
method. These pointed out the advantages and practicability of its superior accuracy and
realism of the material. This is an indicator that, with optimisations, this real-time fracturing
technique has potential to improve the standards of realism in video games for destruction
of simple planar objects like windows.

The main limitation of real-time fracturing technique is the run-time performance. While
it is relatively fast, the temporary FPS drops are still slightly noticeable and need optimisa-
tions. This could be improved by limiting how many times an object can be fractured and
how many fragments can be produced from a mesh in total. Fragments created could then
be deleted if they are small in size, or if they are inactive after a certain amount of time, to
reduce strain on the physics engine.

In the future, we intend to implement the fracturing of other types of materials such
as concrete and wood. Additional real-time fracturing techniques could be implemented
for these and used alongside the glass fracturing technique to create even more realistic,
destructible environments for video games, which would be a significant improvement for
realism in video games.
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