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ABSTRACT In medical imaging, the application of retinal images demands a lot of retinal photos to analyze
and requires efficient compression techniques for retinal image storage. Retinal images must meet stringent
quality requirements for clinical data to be accurate and dependable. This paper proposes a compressive
sampling (CS) framework for color retinal image (CRI) compression, which relies on spread spectrum
Fourier sampling (SSFS) and total variant (TV)-based reconstruction method with three loops of RGB color
space, referred to as RGB-TV. In CS, two procedures are performed, i.e., compression and CS reconstruction.
In compression steps, SFFS is performed to get a compressed signal from the original CRI with a high
compression ratio (CR). While in CS reconstruction, TV-norm and TV proximal operator are exploited for
problem optimization to recover original CRI from a compressed signal. In addition, signal-to-noise ratio
(SNR), structural similarity (SSIM), and reconstruction time are investigated for the performance metrics of
the proposed RGB-TV. The computer simulation result shows that the proposed RGB-TV with a set of CRI
of size 512 by 512 pixels can compress until CR = 10 which obtains mean SNR of 22 dB, SSIM 0.84, and
reconstruction time of 2.2 seconds.

INDEX TERMS Color retinal image, compressive sampling, RGB, spread spectrum, total variant.

I. INTRODUCTION
For many years, the application of retinal image in medical
imaging was studied by researchers, i.e., automatic cataract
classification [1], diabetic retinopathy [2], cholesterol level
detection [3]–[5], automatic vessel segmentation [6], and
retinal prosthesis [7]. These applications demand a lot of
retinal images to analyze and require efficient compression
techniques for retinal image storage. In addition, because
monitoring such retinal images is a complex undertaking,
retinal images must meet stringent quality requirements in
order for clinical data to be accurate and dependable. This
challenge can be mitigated with the use of effective retinal
image compression algorithms [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Wang .

In medical image compression (MIC), various lossy and
lossless compression framework were developed. The loss-
less MICs were proposed, such as a segmentation-based
lossless image coding [9], wavelet-based compression
scheme [10], adaptive predictive multiplicative autoregres-
sive [11], advanced video coding scheme (H.264/AVC) [12],
symmetry-based technique for scalable lossless com-
pression [13], minimum rate predictors [14], and end-
to-end optimized learning framework with intra-slice and
inter-slice redundancy [15]. In addition, the lossy MICs
were developed, i.e., a wavelet-based compression using
distortion-constrained adaptive vector quantization [16],
optimized volume of interest coding [17], high efficiency
video coding [18], and lossy-to-lossless data compression
scheme [19]. Moreover, this paper considers a compression
framework based on compressive sensing formedical images.
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FIGURE 1. An example of medical imaging.

Compressive sampling (CS) was proposed as an approach
to sampling a sparse signal with number of sample is less
than the Nyquist theorem and the sampled signal can be
recovered using a reconstruction method [20]–[22]. Many
CS applications in different fields were developed, such as
geoscience and remote sensing [23], antennas and wireless
propagation [24], signal processing [25], intelligent trans-
portation systems [26], wireless communications [27], and
watermarking systems [28], [29]. However, in medical imag-
ing, CS is exploited to speedup the medical investigation time
[30].

Recently, an application of CS for MIC using multiple
dictionaries of sparse basis was proposed, called compressed
medical imaging (CMI) using multi-basis reweighted analy-
sis (M-BRA) [31]. CMI reduces the operational time of med-
ical devices with a sparse acquisition process and stores the
samples in the CS domain. This benefit gives less processing
time to a patient frommedical devices [32]. The transmission,
storage, and representation issues in a smaller size with a high
perceived quality can also be improved. In [31], four types of
medical imaging are considered, i.e., computed tomography,
wireless capsule endoscopy images, colonoscopy images, and
magnetic resonance imaging. Reference [31] only consid-
ers the grayscale format as the input of the proposed CMI.
However, color medical images are quite sensitive, need a
good quality medical analysis in color feature, and require
a CMI in color space (RGB format). Fig. 1 shows an exam-
ple of medical imaging where colonoscopy, endoscopy, and
iris/retinal images are color medical imaging. An initial CMI
framework in color medical images considering RGB format
was proposed using sparsity averaging (SA) reweighted anal-
ysis (RA) and referred to as RGB-SARA [33]. In addition,
the CMI of color iris/retinal images using basis pursuit (BP)
with SA (RGB-BPSA) [34] was proposed. The previous
RGB-based CMI was mostly based on BP where `1 normal-
ization is exploited for CS reconstruction. To the best of the
author’s knowledge, total variant (TV)-based CMI for a color
medical image is not proposed and investigated yet.

Throughout this paper, a novel TV-based reconstruction
method for RGB color retinal images (RGB-TV) is proposed.
Different from RGB-SARA [33] and M-BRA [31], RA is not
considered in this paper because RA process requires long
processing time. This paper aims to reduce the time process
and improve the visual quality of CMI. Furthermore, this
article presents the CMI contributions as follows
• Novel MIC for a color retinal image is proposed by
exploiting CMI to achieve high CR in MIC.

• Novel RGB-based CMI using spread spectrum (SS)
Fourier sampling and TV regularization.

• Performance improvement using TV-based CMI and
comparison of TV and BP regularization for CS
reconstruction.

The rest of this paper is organized as follows.
Section II briefly describes the related works. Section III
presents CS for compression. In Section IV, the proposed
RGB-TV is introduced in detail. Section V presents reti-
nal images, performance metrics, and experiment scenarios.
Experiment results are shown in Section VI. Last, Section VII
describes the conclusion of this paper.

II. RELATED WORKS
The previous CS framework was proposed using a
wavelet-based sparsity basis [20]. Then, a new sparsity basis
approach was proposed using the average of multiple spar-
sity basis prior for radio astronomy images and referred to
as sparsity averaging reweighted analysis (SARA) [35]. In
addition, an enhanced SARA was proposed by exploiting
double concatenated of SARA basis and BP regularization
in CS reconstruction of medical imaging, called DC-SARA
[36]. Next, a generalized version of DC-SARA was proposed
and referred to asM-BRA [31]. However, SARA, DC-SARA,
andM-BRA exploit BP for CS reconstruction, while a SARA
based on TVwas proposed to speedup the reconstruction time
of SARA [37]. Last, MIC for the retinal images was proposed
by using CS framework based on BP and average sparsity
model [34].

III. CS FOR COMPRESSION
In this article, the sparse signal and the compressed signal are
denoted by x and y, respectively. Fig. 2 shows the illustration
of CS, i.e., compression and CS reconstruction for color
retinal image (CRI).

A. COMPRESSION
In compression, a signal x ∈ Cn×1 is sampled by a sensing
matrix 8 ∈ Cm×n to get a compressed signal y ∈ Cm×1 with
less m-number of samples. The compression process in CS is
defined as

y = 8x. (1)

Suppose an CRI is represented by two-dimensional signal I ,
then I is reshaped to one-dimensional signal s ∈ Rn×1. The
requirement of CS as follows, first, if s is sparse, then x = s,
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FIGURE 2. An illustration of MIC framework that exploit CS for CRI.

while if s is not sparse, then s is transformed by sparsity basis
9 to a sparse signal x or x = 9s. The compression becomes

y = 89s, (2)

where 9 ∈ Cn×n represents the sparsity basis, s ∈ Cn×1 rep-
resent the signal, and 8 represents the compression matrix.

B. CS RECONSTRUCTION
In CS reconstruction, a signal reconstructed signal x̂ is recov-
ered from y and known 8 and the reconstruction process can
be modeled by a convex problem as

min
x̂

∥∥x̂∥∥1 s. t. ‖y−8x̂‖2 ≤ ε, (3)

where x̂, ‖ · ‖2, `2 norm, ε, and ‖ · ‖1 represent the recon-
structed sparse signal, `2 norm upper bound, and `1 norm.
From Eq. (1), suppose 8, 9, and y are known, then the
optimization problem becomes

ŝ = min
s
‖s‖1 s. t. ‖y−89 ŝ‖2 ≤ ε. (4)

Furthermore, Î denotes the reconstructed CRI.

C. CS PERFORMANCE METRICS
In CS, compression ratio (CR) is the ratio of x and y as shown
in Fig. 2 and defined as

CR =
n
m
, (5)

with n and m are the dimension size of 8.
The signal to noise ratio (SNR) is calculated from an

original image s and a result image ŝ and determined as

SNR =
1
3

3∑
l=1

10 log10

(
‖sl‖2∥∥sl − ŝl∥∥2

)2

, (6)

where l is each color layer of RGB.
The structural similarity (SSIM) is a perceptual metric that

represents the loss of quality in data compression based on
contrast, luminance, and structure of the image which are
defined as follows

con(s, ŝ) =
2σsσŝ + C2

σ 2
s + σ

2
ŝ + C2

,

lum(s, ŝ) =
2µsµŝ + C1

µ2
s + µ

2
ŝ + C1

,

struc(s, ŝ) =
σsŝ + C3

σsσŝ + C3
, (7)

where σs and µs denote local standard deviation and mean
of the pixel in original CRI. σŝ and µŝ denote local standard
deviation and mean of the pixel in result image. σsŝ denotes
cross-covariance between s and ŝ. Next, SSIM defined as

SSIM(s, ŝ)= [con(s, ŝ)]β · [lum(s, ŝ)]α · [struc(s, ŝ)]γ . (8)

Let C3, C3 =
C2
2 , and α = β = γ = 1 are assumed as

default, SSIM becomes

SSIM(s, ŝ) =
(2µsµŝ + C1)

(
2σsÎ + C2

)(
µ2
s + µ

2
ŝ + C1

) (
σ 2
s + σ

2
ŝ + C2

) . (9)

IV. PROPOSED RGB-TV
Suppose an N × N × 3 pixels of CRI with RGB format,
this paper proposes RGB-TV which is consist of CS and
reconstruction as shown in Fig. 3. In CS steps as shown in
Fig. 3(a), first, an original CRI is represented by an unsigned
integer matrices I ∈ ZN×N×3, then the original CRI is
separated to RGB layer Il ∈ RN×N . Second, RGB loops are
performed. For each loop, in SS Fourier sampling, Il ∈ ZN×N
image is reshaped to a signal x ∈ Rn×1 with n = N × N
as k-sparse input signal and m sample is measured to obtain
measured vector where k < m < n as the CS rule or
0 < m

n < 1. The RGB loops are finished when all R,
G, and B layers are sampled. In reconstruction as shown
in Fig. 3(b), a compressed image is reconstructed from the
measured vector. Then, RGB loops are performed on each
measured vector. TV-based reconstruction is performed for
each loop to recover the image from the compressed image.
Then, check the condition of the end loop. If the loop is a B
layer, the process is finished with the result of RGB images,
and the reconstructed image is obtained. While, if the loop
is not B layer, then continue to the next loop. Algorithm 1
describes the step of reconstruction.
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FIGURE 3. The illustration of proposed RGB-TV for CRI compression.

Algorithm 1: RGB-TV

Input: Compressed vector y ∈ Rm×1×3, sampling
matrix 8 ∈ Rm×n, and ε

Output: The reconstructed CRI ŝ ∈ ZN×N×3
for l ← 1 to 3 do

Initialization t = 1;
while t < tmax and α > ε do

Compute the projection onto the L2-ball
minx̂

∥∥x− x̂∥∥22 s.t. ‖y−8x̂‖2 ≤ ε;
Compute TV norm

∥∥x̂∥∥TV;
Compute the TV proximal operator
minx̂

∥∥x− x̂∥∥22 + λ ∥∥x̂∥∥TV;
Update α =

∥∥∥x̂(t)−x̂(t−1)∥∥∥
TV∥∥∥x̂(t−1)∥∥∥

TV

;

t ← t + 1;
end
ŝl = x̂;

end

A. SSFS
SSFS is a process to sample a CRI to get compressed signal
using a masking matrix (denoted as M) and spectrum matrix
(denoted as A) in a domain of discrete Fourier transform
matrix (denoted as F). The SSFS is a CS using 8 = MFA,
where M ∈ Rm×n is a rectangular binary matrix, F ∈ Cn×n

is a complex matrix, and A ∈ Rn×n is a diagonal matrix.
In addition, MFA can be the inverse transformed that con-
siders 1M ∈ RM and defined as

FTMT1M , (10)

In SSFS [38], a noise with input signal-to-noise
ratio (ISNR) is considered and the CS process becomes

y = 8x+ w, (11)

where w represents the noise and the ISNR is determined as

ISNR = 10 log10

(
‖8x‖2
‖w‖2

)2

. (12)

B. TV RECONSTRUCTION
In reconstruction process, to reconstruct x according to8, the
problem of TV proximal operator [39] is defined as

min
x̂

∥∥x− x̂∥∥22 + λ ∥∥x̂∥∥TV , (13)

where x̂ is a reconstructed signal from the TV.

V. EXPERIMENT
This section presents the experiment to investigate the per-
formance of the proposed RGB-TV. First, retinal images are
presented. Second, the experiment scenario is presented. Last,
hardware and software specifications are elaborated.

A. CRI
In this paper, real CRI data is considered from a patient
at TelkomMedika hospital, Bandung, Indonesia. The acqui-
sition was acquired by one expert operator from the high
cholesterol patients. The CRI data consists of 90 images with
*.bmp format, RGB colored channel, 660 × 603 pixels, and
8-bit pixel depth. Furthermore, to make a fair compar-
ison of different CMI methods, N × N with N =

64, 128, 256, 512 are investigated in this paper.
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FIGURE 4. The effect of CR to SNR.

B. EXPERIMENT SCENARIO
This section presents the experiment scenario, first, an N×N
pixels of CRI is considered as the original image. Second,
CS is performed according to CR for CRI compression to
get a compressed vector. Third, reconstruction is performed
by using RGB-TV as presented in Algorithm 1 to recover
the reconstructed image from a compressed vector. Last,
performance metrics are calculated to investigate the original
and reconstructed CRI. Furthermore, the effect of parameters
are presented as follows
• Performance metrics with regards to CR, where N =
64 is considered as fixed resolution and the different CRs
are investigated.

• Performance metrics with regards to ISNR, where N =
64 is considered as fixed resolution, CR = 0.5 is con-
sidered, and ISNR is investigated.

• Performancemetrics with regards toN , where 128×128,
256× 256, and 512× 512 pixels are investigated.

This paper compares RGB-TV, RGB-BPSA [34], RGB BP
with state-of-the-arts with Haar basis [20], Daubechies 8
(Db8) basis, and curvelet basis. The RGB-TV for CRI is
implemented using MATLAB R2020b in a personal com-
puter with a processor 3.20GHz Intel(R) Core(TM) i-8700
CPU and 16GBmemory. These specifications are required to
validate the processing time results to make a fair comparison
with other CMI methods.

VI. EXPERIMENT RESULTS
This section presents the experimental results to vali-
date the scenario and performance metrics presented in
Section V-B. The comparison of proposed RGB-TV, RGB-
BPSA [34], RGB-BP with state-of-the-arts with Haar basis
[20], Daubechies 8 (Db8) basis, and curvelet basis are pre-
sented.

A. COMPRESSION RATIO (CR)
Fig. 4 shows the effect of CR to SNR results of pro-
posed RGB-TV, RGB-BPSA [34], RGB-BP-Haar [20],
RGB-BP-Db8, and RGB-BP-Curvelet. X and Y-value refer

FIGURE 5. The effect of CR to SSIM.

to CR = 2, 4, 6, 8, 10 and SNR in dB, respectively. The
results show that the proposed RGB-TV outperforms all CS
benchmarks. Targeting SNR > 20 dB, RGB-TV achieves
at all CR conditions while RGB-BPSA achieves CR ≤ 9.
In addition, the result of RGB-TV and RGB-BPSA at CR =
2 are obtained as similar SNR results, then detailed results
of SNR are presented in Table 1 and Fig. 6. The box-
plot results of SNR with CR = 2, 4, and 6 are shown in
Fig. 6(a), (b), and (c), respectively. The SNR results in box-
plot graphs show that the proposed RGB-TV outperforms all
CMIs at CR= 4 and 6 with the highest median value of SNR
as shown in solid red lines. The median value of RGB-TV at
CR = 2 is lower than RGB-BPSA but the minimum value
of RGB-TV is higher than RGB-BPSA. From Fig. 6, it is
validated that RGB-TV outperforms RGB-BPSA at higher
CR andmore convergence than RGB-BPSA. The same trends
are also presented in Table 1 where the mean SNR of the
proposed RGB-TV is the best result at all CR conditions.

Next, Fig. 5 shows the results to investigate the SSIM of
RGB-TV with regards to CR = 2, 4, 6, 8, 10. X-value corre-
sponds to CR and Y-value corresponds to SSIM. The results
show that the proposed RGB-TV outperforms all benchmark
CMIs. Suppose to aim SSIM> 0.8, the proposed RGBV-TV
achieves at CR ≤ 10 while RGB-BPSA achieves at CR ≤ 9.
A detailed results of SSIM at CR ≤ 6 are presented in Table 2
and Fig. 7 to show the difference of the proposed and BPSA
results at CR ≤ 6. The boxplot results os SSIM with CR= 2,
4, and 6 are shown in Fig. 7(a), (b), and (c), respectively.
The SSIM results in boxplot graphs show that the proposed
RGB-TV outperforms all CMIs at CR = 4 and 6 with the
highest median value of SSIM as shown in solid red lines.
The median value of RGB-TV at CR = 2 is lower than
RGB-BPSA but the maximum value of RGB-TV is higher
than RGB-BPSA. From Fig. 7, it is validated that RGB-TV
achieved better visual than RGB-BPSA at higher CR and
more convergence than RGB-BPSA. In addition, Table 1
shows that the proposed RGB-TV is the best SSIM results

42202 VOLUME 10, 2022



L. Novamizanti et al.: CS of CRI Using SSFS and TV

FIGURE 6. Boxplot of ASNR results at CR ≤ 6.

FIGURE 7. Boxplot of SSIM results at CR ≤ 6 for proposed and BPSA.

FIGURE 8. The effect of CR to processing time.

at CR > 4 with a higher mean SSIM and lower standard
deviation.

Last, Fig. 8 shows processing results to analyze the
performance of the proposed RGB-TV, RGB-BPSA,
RGB-BP-Haar, RGB-BP-DB8, and RGB-BP-Curvelet.
The fastest processing time result is RGB-BP-Haar but

TABLE 1. Mean and standard deviation of Fig. 4 at CR ≤ 6.

RGB-BP-Haar obtains the second worts SNR and SSIM
results. The longest processing time is RGB-BPSA which is
achieved ∼ 3.4 seconds at CR = 10. The processing time of
RGB-TV is half times of RGB-BPSA and it is validated that
RGB-TV outperforms all CMIs in the view of SNR, SSIM,
and processing time.

B. EFFECT OF ISNR
The effect of ISNR on SNR results is shown in Fig. 9(a).
Targeting SNR ≥ 30 dB, both RGB-TV and RGB-BPSA are
achieved at ISNR ≥ 23 dB. It is shown that RGB-TV and
RGB-BPSA are obtained similar SNR results, then detailed
results of SNR are presented in Fig. 10. The boxplot results of
SNR at ISNR= 10, 30, and 50 dB are shown in Fig. 10(a), (b),
and (c), respectively. For all ISNR conditions, the proposed
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FIGURE 9. Effect of ISNR to performance metrics.

FIGURE 10. Boxplot of ASNR results at ISNR = 10, 30, 50 for proposed and BPSA.

FIGURE 11. Boxplot of SSIM results at ISNR = 10, 30, 50 for proposed and BPSA.

RGB-TV outperforms RGB-BPSA with higher median, min-
imum, and maximum values in the boxplot results.

The effect of ISNR on SSIM results is shown in
Fig. 9(b). Targeting SSIM ≥ 0.98 dB, both RGB-TV and
RGB-BPSA are achieved at ISNR ≥ 30. The SSIM of RGB-
TV and RGB-BPSA are converged around 0.98 at ISNR ≥
40. The SSIM of RGB-BP-Db8 is converged around 0.97 at

ISNR ≥ 30 dB. The SSIM of RGB-BP-Haar is converged
around 0.958 at ISNR ≥ 30 dB, and the SSIM of RGB-BP-
Curvelet is converged around 0.937 at ISNR ≥ 30 dB. It is
shown that RGB-TV and RGB-BPSA are obtained similar
SSIM results, then detailed results of SSIM are presented in
Fig. 11. The boxplot results are presented to show the detailed
SSIM results of RGB-TV and RGB-BPSA. The results show
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FIGURE 12. Effect of resolutions to performance metrics.

TABLE 2. Mean and standard deviation of Fig. 5 at CR ≤ 6.

TABLE 3. The detailed SSIM results of Fig. 9.

that the median value of RGB-TV outperforms RGB-BPSA
at ISNR = 10 dB, while RGB-BPSA outperforms RGB-TV
at ISNR = 30 and 50 dB. The maximum value of RGB-TV
outperforms RGB-BPSA at all ISNR conditions and it is val-
idated that the visual quality result of RGB-TV outperforms
RGB-BPSA.

In addition, Table 3 presents the mean and standard devia-
tion results of SSIM concerning ISNR. The results show that
RGB-TV outperforms RGB-BPSA at all ISNR conditions
with higher mean and lower standard deviation.

Last, Fig. 9(c) shows processing results to analyze the
performance of RGB-TV. At all ISNR conditions, RGB-TV
and RGB-BPSA are compared, where RGB-TV outperforms
RGB-BPSA with less processing time.

C. THE EFFECT OF RESOLUTIONS
Fig. 12(a) shows the effect of resolutions to ASNR. The
highest ASNR = 42.53 dB is achieved by 256 × 256 at
CR = 2 while the lowest ASNR = 24.96 dB is achieved by
64×64 at CR = 10. Aiming ASNR > 30 dB, 64×64 attains
ASNR ≥ 31.40 dB at CR ≤ 8, ASNR ≥ 32.22 dB is
achieved by 128 × 128 at CR ≤ 10, and 256 × 256 attains
ASNR ≥ 37.24 dB at CR ≤ 10.

Fig. 12(b) shows the effect of resolutions to SSIM. The
highest SSIM = 0.9941 is achieved by 245 × 256 at CR =
2 while the lowest SSIM = 0.8961 is achieved by 64× 64 at
CR = 10. Aiming SSIM > 0.950, 64 × 64 attains SSIM ≥
0.9612 at CR ≤ 8, SSIM ≥ 0.9612 is attained by 128×128 at
CR ≤ 10, and 256×256 attains SSIM ≥ 0.9846 at CR ≤ 10.

Fig. 12(c) shows the effect of resolutions to processing
time results. The fastest processing time = 4.04 seconds is
achieved by 64×64 at CR = 10 while the longest processing
time = 44.33 seconds is achieved by 128× 128 at CR = 8.

VII. CONCLUSION
This paper proposed a CS framework for compression of
a color retinal image using spread spectrum (SS) Fourier
sampling and three loops of RGB layers based on TV recon-
struction. The proposed CS is referred to as RGB-TV and
compared to the recent RGB-BPSA [34]. RGB-TV outper-
forms the state-the-arts CS using BP (i.e., curvelet, haar, and
db8 sparsity basis) and RGB-BPSA. Computer simulation
results demonstrated that the proposed RGB-TV achieved
better visual quality and faster processing time for CS recon-
struction of CRI with a resolution of 64× 64 pixels.
For future works, sparse Bayesian learning (SBL) [40] can

be considered as a new framework for CMI and an investiga-
tion of efficientmultitask structure-aware SBL to color retinal
images.
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