
Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

6

An investigation into susceptibility to learn computational thinking in post-

compulsory education

Ana C. CALDERON1*, Tom CRICK1 and Catherine TRYFONA1

1 Department of Computing & Information Systems, Cardiff Metropolitan University, Cardiff CF5 2YB, UK

{acalderon,tcrick,ctryfona}@cardiffmet.ac.uk

ABSTRACT
This paper presents the results of a preliminary investigation

into how the teaching of computational thinking --

particularly algorithmic thinking and programming -- to

university undergraduate students varies depending on

aptitude and perceived enjoyment of STEM subjects during

their secondary-level (pre-university) education. We

investigated a specific component of computational

thinking, algorithmic thinking, comparing against a

student's ability to develop knowledge and understanding of

introductory programming.

KEYWORDS
Perceptions, Algorithmic thinking, Computational

thinking, STEM

1. INTRODUCTION
Computational thinking [Papert 1996; Guzdial 2008; Wing,

J. (2008)] is increasingly being integrated into various

national curricula, being regarded as a key skills, with wide

potential utility, for school-age children. It is recognised

both for its important role in developing knowledge and

understanding of foundational computer science concepts,

but also for its potential in developing more general-purpose

problem-solving skills across the curriculum. This paper

investigates whether algorithmic thinking (an integral part

of computational thinking) can be as easily taught to those

with a natural interest in computational science and those

who do not process such an interest, and whether this

changes with aptitude to more technical subjects in school.

Aptitude and interest are restricted as to what students

preferred subjects subjects were at the time of secondary

school graduation.

There are many views of computational thinking, for

instance a recent report of a workshop shows the range of

definitions, and opinions on the subject (NRC 2010) Some

researchers adopt the original notions of procedural

thinking, as developed by (Papert 1981) to define what

Computational Thinking is. This view sees it as a step-by-

step list of detailed and unambiguous instructions such that

can be interpreted and executed by an automated agent.

Others view it as an effort to expand the human capacity for

problem solving, by providing abstract tools able to aid in

the management of tackling complex tasks. A lot of

researchers also dismiss the notions of linking

computational to the processing of numbers, whereas some

argue it is a way of enabling humans to solve problems by

means of providing precise methods for doing so. Whatever

viewpoint adopted, most researchers seem to agree that

computational thinking is an integral part of computer

science [Tedre 2016]. The skill set learn by studying

Computational Thinking is complementary to more

established areas taught at HE computing degrees. This

investigation looks at students’ aptitudes to STEM and

Humanities in the final two years of school, in an attempt to

see whether there are negative or positive correlations to

leaning elements of Computational Thinking and of a core

element of Computing degrees, programming. Focusing

particularly on algorithmically thinking and on object-

oriented programming, we found that an aptitude in STEM

favoured performance in learning object-oriented

programming notions, but found no difference between

aptitudes in humanities and in sciences when learning

Algorithmically Thinking (Futschek 2006) with a

methodology highlighted in later sections.

2. Methodology
2.1 The Research Question

Our interest is on whether particular preferences in

secondary school have a positive correlation with ability to

learn algorithmically thinking in Higher Education. Using

the methodology above we measured data gathered from

students about attitudes and aptitudes of STEM-based and

other subjects and how well they performed on the

particular algorithm course.

2.2 Pedagogical Investigation

The investigation took part over two semesters in one

academic year; one semester the students participated in an

algorithm class, and the second semester different students

participated in an object-oriented programming class. The

choice for using different groups of students was due to the

transfer of knowledge, performance in a latter module, for

instance object-oriented programming could have been

enhanced by attending an earlier, for instance, algorithmic

thinking module.

We designed a one semester course such focusing on

teaching algorithmic thinking to first-year, first-semester

students enrolled in three undergraduate degree

programmes: Computer Science, Software Engineering and

Business Information Systems. Students participated in a

total of 11 weekly sessions, where each session consists of

three components, distributed during the week.

Algorithmic Thinking

The sessions consisted of:

 Part A consists of a one hour session (workshop) of a

hands-on puzzle solving activity.

 Part B consists of a formative learning session (a one

hour lecture)

7

 Part C consists of a one hour session (workshop) of a

puzzle that includes writing pseudocode.

For the workshops (Parts A and B) students were required

to work in groups. The fist session was purposely kept

simple, and we now use it as an example of the

methodology, it consisted of:

 Part A (workshop): present students with physical

copies of Tower of Hanoi puzzles with a large number

of even and of odd disks.

 Part B (lecture): lecture on recursion

 Part C: (workshop) Tower of Hanoi puzzles handed out

to students again, and asked them to write pseudocode

to solve a Tower of Hanoi with either an even or an

odd number of disks (students who do not immediately

recognize recursion are given extra support until they

are able to connect the concept from the lecture to the

example from the workshop).

For another illustrative example, we detail the second

session. The main aim behind this session was to develop

understand of sorting algorithms. Students were given

cardboard pieces with numbers written on it, ranging 1-100,

and asked to find the maximum. Following the same pattern

as all other sessions, students were placed in groups.

Differently from other sessions, they were asked (in their

groups) to first think about attempting to find the maximum

value of the numbers (sorting the cards) if they could only

work by themselves, then if they could only work within the

group, and finally to think about how they would solve if

the groups could talk to each other and divide the cards. The

idea behind this is to aid participants in teaching themselves

what an algorithm is as well as to bring their awareness to

the existence of parallelism as a means to efficiency. This

session is based on ideas developed in (Adams 2005).

For the formative learning portion of the session students

were taught the concept of a sorting algorithm and presented

with some standard examples of sorting algorithms, namely

insertion sort, selection sort, merge sort, heapsort, quicksort,

bubble sort and variants. For the final workshop (Part B)

of this particular session, students were given Rubik's cubes

and given 3 sequences of moves, then asked to use these

sequences to solve the cube, and write a pseudocode for

their solution (an algorithm that would sort all sides to the

desired configuration).

Programming

Teaching introductory programming within Higher

Education can be particularly challenging due to the

diversity of educational background of incoming

undergraduate students, as a single annual intake of students

is likely to include a broad range of prior learning

experiences. As a consequence of school-level computer

science education reform (Brown et al, 2014), an increasing

number of first year students are likely to have had some

exposure to programming in schools or colleges. Some

students, perhaps through their own extracurricular efforts,

may have developed considerable technical skills. This

variance in ability seemingly increases the risk of

disengagement because the teaching material may either be

viewed as too difficult (Mohd et al, 2013) or too simplistic.

It could be argued, however, that software development and

programming is an art as much as it is a science and that

undergraduate students can best develop their programming

skills through apprentice-style learning (Kolling and

Barnes, 2008; Bennedsen and Caspersen, 2008). Recently,

there has been more emphasis placed on the importance of

“software carpentry” skills, so that student can develop a

sense of “craftsmanship” towards the design and

development of software solutions to real world problems.

Seminars and tutorials can particularly lend themselves to

this style of delivery, where experienced teaching staff are

not only able to demonstrate the technical skills, but also

explain the thinking behind the decisions that they make

(Kolling and Barnes, 2008).

Given that sound computational thinking skills aids in most

stages of the software development process, there is an

increasing and explicit emphasis on developing these skills

in modern undergraduate computing curricula. By focusing

on key skills such as algorithmic thinking from early on in

a programmer’s career, students can more readily

contextualise programming as a tool to be used for

expression of creativity and for problem solving. Students

are able to analyse problems and formulate a solution

computationally (Cesar et al, 2017). An emphasis on

computational thinking within the context of apprentice-

style learning, may reduce the risk of disengagement as

more technically-able skills will have the opportunity to

refine their skills under the guidance of a more experienced

academic member of staff.

Similarly to algorithmic thinking, the sessions were broken

down into formative and practical learning, namely they

consisted of:

 Part A consists of a formative learning session (a one

hour lecture)

 Part B consists of a two hour practical session

(coding the concepts learnt in the lecture).

In particular, during the term each week (note that each

week contained Part A together with Part B), was given by:

 Week 1: Introduction to programming, including

varying programming paradigms.

 Week 2: Introduction to integrated development

environments.

 Week 3: Understanding how to perform operations,

and their implications to varying paradigms.

 Weeks 4 and 5:Understading statements and directing

values.

 Week 5: Manipulating Data.

 Weeks 6, 7 and 8: Object Oriented concepts.

3. Results
We compared students’ aptitude to STEM subjects and

humanities at both A-levels and GSCE with their ability to

learn algorithmic thinking, with the methodology

highlighted above. More specifically, we focused on

students who had grade C and above at a combination of

mathematics, computing and physics at A-level, and those

who had a grade C and above at a combination of history,

literature and drama. The performance of both groups was

similar; the first group had an average grade of 62.4%, with

8

a standard deviation of 13.4, whereas the humanities group

had an average grade of 61.3% with a standard deviation of

9.4 (see Figure 1 for more details). Of the 92 students used

for the first study (algorithmic thinking), 23 had taken the

requirements of aptitude in the three stem subjects:

mathematics, computing and a science subject, and 17

satisfied the requirements of having taken the humanities

English literature, history and drama. For the second study

(programming) 21 had taken the requirements of aptitude in

the three stem subjects: mathematics, computing and a

science subject, and 18 satisfied the requirements of having

taken the humanities English literature, history and drama.

Although the difference between STEM and humanities for

the algorithmic group was significantly small, the difference

for a more traditional approach to teaching object-oriented

programming was more significantly different, the average

programming grade for students with a STEM aptitude was

17.9%, with a standard deviation of 67.1, and those with an

aptitude in humanities was 16.7% with a standard deviation

of 47.5, more details can be found on Figure 1. This suggests

that Computational Thinking approaches are more readily

taught to varied skilled students, as compared to the core

elements of Computer Science. This suggests that along side

standard computer science subjects, HE students might

benefit from having a dedicated module of "Computational

Thinking" as that would "even the playfield" and thus allow

educators to keep the levels of motivation similar to students

regardless of their background. We also analysed their

ability to write pseudocode.

Figure 1. Distribution of grades for algorithmic thinking

against humanities and STEM preferences at A-levels

Figure 2. Distribution of grades for programming against

humanities and STEM preferences at A-levels

4. CONCLUSION
We presented the beginnings of an on-going investigation

into how susceptible students, of varying aptitudes and

attitudes, are to learning computational thinking skills.

5. REFERENCES
Adams, R., Bell, T., McKenzie, J., Witten, I. H., & Fellows,

M. (2005). Computer Science Unplugged: An enrichment

and extension programme for primary-aged children.

Bennedsen, J., & Caspersen, M. (2008). Exposing the

Programming Process. In J. Bennedsen, M. Caspersen, &

M. Kolling (Eds.), Reflections on the Teaching of

Programming: Methods and Implementation. New York:

Springer.

Brown, N., Sentance, S., Crick, T., & Humphreys, S.

(2014). Restart: The Resurgence of Computer Science in

UK Schools. ACM Transactions on Computing Education,

14(2), 9:1–9:22.

Cesar, E., Cortés, A., Espinosa, A., Margalef, T., Moure, J.

C., … Suppi, R. (2017). Introducing computational thinking

, parallel programming and performance engineering in

interdisciplinary studies ✩. J. Parallel Distrib. Comput.

http://doi.org/10.1016/j.jpdc.2016.12.027

Futschek, G. (2006, November). Algorithmic thinking: the

key for understanding computer science. In International

Conference on Informatics in Secondary Schools-Evolution

and Perspectives (pp. 159-168). Springer Berlin Heidelberg.

Guzdial, M. (2008). "Education: Paving the way for

computational thinking". Communications of the ACM 51

(8): 25.

Kolling, M., & Barnes, D. (2008). Apprentice-based

Learning Via Integrated Lectures and Assignments. In J.

Bennedsen, M. Caspersen, & M. Kolling (Eds.), Reflections

on the Teaching of Programming: Methods and

Implementation (p. -). New York: Springer.

Matti Tedre and Peter J. Denning. 2016. The long quest for

computational thinking. In Proceedings of the 16th Koli

Calling International Conference on Computing Education

Research (Koli Calling '16). ACM, New York, NY, USA,

120-129. DOI: https://doi.org/10.1145/2999541.2999542

Mohd, S., Shukur, Z., & Mohamad, H. (2013). Analysis of

Research in Programming Teaching Tools : An Initial

Review. Procedia - Social and Behavioral Sciences, 103,

127–135.

National Research Council. (2010) Report of a Workshop

on the Scope and Nature of Computational Thinking.

Washington, DC: The National Academies Press.

doi:10.17226/12840.. Chapter 2, page 4.

Papert, S. (1980). Mindstorms: Children, computers, and

powerful ideas. Basic Books, Inc..]

https://doi.org/10.1145/2999541.2999542

9

Seymour Papert, 1981, Mindstorms: Children, Computers,

and Powerful Ideas. New York: Basic Books)

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wing, J. (2008) Computational thinking and thinking about

computing. Philosophical Transactions of the Royal Society

A, 366(1881), 3717-3725

