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Abstract— Tangible User Interfaces (TUI) bring digital 

interfaces to the real world by using specific devices to achieve a 

task. They can be more intuitive, allowing the user to take 

advantage of a computer tool which is associated to the real 

world. One problem is that creating a TUI for each piece of 

software is expensive. For instance, devices such as the mouse, 

keyboard or touchscreen have become more popular. Indeed, it is 

cheaper to adapt the users to the interface than creating an 

adequate interface for each program. We present VirtuaOM, a 

library which allows creating low cost interfaces where the users 

can communicate with an application in a tangible manner. 

Additionally, an application using this library can allow several 

users to communicate collaboratively among them and with the 

system within the interaction space. In order to build our library, 

we combined the Design Thinking and Software Engineering 

methodologies. We tested VirtuaOM creating an interaction 

space inspired in the Sensetable device developed by Patten [9] 

that permits programmers to create applications where the 

system can track users and tangible wireless objects in a tabletop 

surface, but we moved the interaction area from a table to the 

floor to increase it and to give users the freedom to move through 

it. This made it easier for multiple users to interact with each 

other and with the system collaboratively.  

 
Keywords— Application programming interfaces, Augmented 

Reality, Tangible User Interfaces, Tabletop 

 

I. INTRODUCTION 

nterfaces should adapt to the users' multimodal nature in 

order to create different interactions to perform diverse 

tasks. Also, they should be capable to work with multiple 

users collaboratively. Graphical User interfaces (GUIs) only 

display data on a screen based on pixel information [2, 11]. 

However, interaction through screen pixels may be 

inconsistent with the interaction of the user with the physical 

environment. Actually, GUIs do not take advantage of the 

human skills to manipulate different objects and data and are 

limited to the screen. In contrast, Tangible User Interfaces 
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(TUI) take advantage of human's ability to have haptic 

interactions providing physical representations of the digital 

information. These representations become a model and 

controller for the information and allow direct manipulation 

and multi sensorial interaction. TUIs offer the capability to 

work in the real world and to model gestures and actions based 

on the application’s context. Also, they facilitate cooperative 

interaction and profit from the human ability of making better 

associations with tangible elements [2, 6, 7, 8].  

 However, a risk found in the development of tangible 

interfaces is the need of building a specific tangible device for 

every software made. In some cases, it is not even possible to 

represent physical and structural changes in those devices 

[11], as a consequence, the product cost increases. Even if 

mouse and touchscreen interfaces cannot bring digital 

information to the real world, they are very popular because 

they provide a generic way to interact with software without 

performing changes in hardware but creating new gestures 

based in a small set of actions provided by those interfaces 

(e.g. point and click using mouse or multiple contact points in 

touchscreens). Given this fact, a good idea may be creating a 

tangible interface with a set of actions that users can perform 

and the possibility of creating new ways to interact based on 

that set. Nevertheless, the amount and the difficulty of actions 

performed is something important to have in mind at the time 

of designing the interface. We believe that if a user recognizes 

actions in a device it could be simpler for him or her to infer 

new actions [10], so our task was to find or design a tangible 

interface where users could perform a small set of actions; 

these actions must be intuitive and make sense to the user; the 

less he or she has to remember the better. Also, in case that it 

is needed to create new gestures, those gestures should be 

based on that small set of actions.  

II. RELATED WORK 

    Our work is based in the TUI literature, we explore how to 

achieve multimodal and collaborative interaction between 

users and with the system, so we explore several examples of 

TUI to verify if there are any systems capable to fulfil those 

requirements. First, we explore the gestural interface approach 

as a way of natural and multimodal interaction.  

A. Gestural interface 

G-stalt allows interaction using special gloves to detect 

gestures. Those gestures let the user organize and view 

different videos in a 3D space, which implies that the system 

must recognize different gestures to do different actions [8, 
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12]. However, several challenges come when we try to create 

a gesture grammar capable of recognizing actions made by a 

user to interact with a system.  

 

B. TUIs 

TUIs have been long used [1] and their advantages over 

GUIs have been evidenced [20]. Lapides, Sharlin and Sousa 

[21] describe a TUI which follows an intuitive drawing board 

metaphor to map the 3D task to a physical interface. However, 

this method is aimed for controlling a group of robots in three 

dimensional (3D) space only. Costanza et.al. [1] describe a 

low cost TUI, downloadable from the Internet, where the 

physical interactive objects are made by gluing printed labels 

onto existing objects or, are folded out of ordinary paper, with 

visual markers printed on it. The system only requires a 

regular computer, a webcam and a printer. However, it is 

aimed only for musical applications.  

C. Multipurpose TUI toolkits 

Several toolkits support the implementation of functional 

TUI prototypes [22]. These toolkits lower the threshold for 

implementing functional TUI prototypes by handling low-

level events. However, most of them provide support only for 

specific technology. For instance, if different technology is 

used, developers are required to learn and rewrite new code. 

Additionally, toolkits do not provide a comprehensive set of 

abstractions for specifying and discussing tangible interaction. 

Indeed, TUI design and development has conceptual, 

methodological, and technical difficulties [22] due to the lack 

of appropriate interaction abstractions, the shortcomings of 

current software tools and the excessive effort required to 

integrate novel input and output technologies. Shaer et.al. [23] 

introduce the Token and Constraints (TAC) paradigm for 

describing and specifying tangible user interfaces (TUIs). The 

paradigm enables the description of a broad range of TUIs by 

providing a common set of constructs. However, the paradigm 

neither considers TUIs’ interoperability nor TUIs’ 

implementation. Shaer and Jacob [22] extend the previous idea 

proposing a specification paradigm for designing and 

implementing TUIs that uses high-level constructs which 

abstract away implementation details and can be used by TUI 

developers from different disciplines. The system is actually 

being extended to support whole body interaction by 

specifying expressive movement.  Among the main challenges 

observed in TUI design and implementation [22] are: 

1) Deciding which information is best represented digitally 

and which is best represented physically.  

2) Inventing metaphors that give physical form to digital 

information.  

3) Defining a behavior for each possible context of use for 

each interaction object.  

4) Standardizing I/O devices for TUIs.  

5) Using a low-level programming TUI to deal with 

continuous interaction. 

6) Considering issues such as access points, as well as 

spatial and temporal coordination for parallel interaction.  

7) Providing languages and tools to TUI developers from 

different disciplines.  

 

D. Tabletop surfaces 

Among TUIs, there is a set of interfaces called the tabletop 

surfaces. There is some evidence that tabletop surfaces can 

enhance collaboration, exploration of experimental data and 

learning [24, 25, 26]. For example, Of BATS and APES [27], 

an interactive tabletop system for natural sciences museums, 

favors collaboration and discussion among visitors and allow 

them to achieve an active and prolonged engagement which 

incentivizes research, observation and construction of 

knowledge. Of BATS and APES also takes advantage of 

videogame concepts and design to enhance interaction. 

However, these tabletop surfaces are limited to actions 

performed in the 2D space which comprises the interface. 

Other tabletop systems extend the interaction to the 3D space. 

For example, eLabBench [28] is a tabletop system which 

allows biologists to organize their experiments.  Here, 

biologists can pull digital resources, annotate them, and 

interact with hybrid (tangible and digital) objects such as racks 

of test tubes.  Nevertheless, when the interaction is extended 

to the 3D space challenges with occlusion arise. In ObjectTop 

[29], a system to support tabletop display applications 

involving both physical and virtual objects, the challenges of 

occlusion by physical objects are addressed and the 

advantages of occlusion-aware techniques are shown. 

E. Multiple purpose tabletop interfaces 

 We found some examples of tabletop surfaces created for 

multiple purposes. Those interfaces had their own API to 

allow users to create new different types of software based on 

the limited set of actions that those interfaces provide. The 

popularity behind the tabletop as multi – purpose tools could 

be based in the capability of having a large area to organize 

objects spatially. Spatial arrangements are integral part of 

humans’ behavior; they simplify the way we perceive our 

world, our choices and they help us through our internal 

computation [13]. Examples of tabletop surfaces that allow 

user creating their own application or interactions include 

Pingpong++ [15] which is an augmented ping pong table 

capable of detecting when users touch it and show a visual 

response projected on its tabletop surface with its own API to 

create visualizations. Additionally, tabletop devices such as 

trackmate [14], Sensetable [3] and reacTIvision [16] interact 

with the system through tangible devices above the surface 

instead of touching it. This gives more possibilities of 

interaction other than only contact; with this, the system now 

 
Fig. 1.  It is difficult to reach the center in a large tabletop surface. 
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can track object position and orientation of multiple objects 

which can be organized in a logical way to solve a problem or 

become physical embodiments of digital information. 

Improving even more, ZeroN is a tabletop surface capable to 

re arrange tangible elements in a 3D space through magnetic 

levitation [17]. 

F. Enlarged interaction area 

  An increase of the interaction area is achieved with 

systems such as The Magic Carpet [18] where the sensors 

used detects people kinematics to track dance movements. 

This system could keep away most part of the sensors used, 

making it a promising tool, but we have to keep in mind that 

this system was not made to detect and differentiate people 

and tangible objects. Also, the magic pad; a spatial 

Augmented Reality based interface can track the position and 

orientation on a pad inside a CAVE type interface [19]. The 

system detects the pad position and projects visual information 

on it. The problem with the tool is that it separates the user 

from everything outside the CAVE. We are looking for 

something easier to install and that “blends” with its 

environment. 

III. AN AFFORDABLE TANGIBLE TABLETOP SURFACE FOR THE 

FLOOR 

After researching different examples of tangible interfaces 

we paid special attention to the Sensetable device developed 

by Patten [3, 9], due to its device interfaces which consist in 

small tangible devices similar to Hockey pucks working above 

a tabletop surface [3, 9]. Those devices only had two possible 

movements: rotation and translation which are easy to perform 

and remember. Also, in case of needing more functionality it 

is possible to create more different types of interaction based 

on those actions such as semantic zooming dragging two 

pucks closer or farther, or attach/release projected visual 

information in the surface to a puck after performing some 

action with it. The Sensetable has its own API that allows 

programmers to access to every puck data; this can be used to 

extend the puck functionalities.  

    If we think in cases such as museum exhibitions where 

technology should be a reinforcement of the current material, 

not a replacement; we want to increase the interaction area 

while not allowing the tangible interface to become the center 

of attention. On the contrary, we expect that the interface 

“blends” with the exhibition, allowing users to interact with 

the museum material in new ways through the technology. At 

the same time, we expect that our interface can be used by 

more than one user, allowing collaboratively interaction 

between users and the system. After thinking in several 

possibilities for increasing the interaction area of the 

Sensetable or any other tabletop surface, we can observe that 

if we translate that area to the floor this will not disturb the 

movement of people through the hall where the interface is 

located. Also, if a larger Tabletop surface is used, the larger its 

interaction area is, the harder will be for users to move any 

tangible device to the center of that area (Figure 1). Although 

translating the interaction area to the floor seems promising, it 

has a very important drawback. If the interaction area is 

increased, the tangible elements (pucks) should be bigger. 

Thus, we need to find new ways to detect and track those 

elements. Also, if users are able to enter the interaction area, 

the possibility of damage or loss of the elements of the 

interface (detection sensor and tangible elements in case of the 

Sensetable) will increase, increasing with this, its maintenance 

cost. 

 In our approach, we seek to achieve the same detection of 

tangible objects in a larger tabletop area located in the floor 

but keeping away any electronic device from the detection 

area or the tangible objects. With this we prevent multiple 

users from damaging the interaction area. Also, tangible 

objects are easier to replace in case of damage or loss. After 

researching several methods for object tracking we decided to 

use the Kinect sensor due to its capability to use several 

sensors of different type supporting each other for a better 

detection.  

  With the location of the detection area in the floor a user 

now can enter the interaction area. Our system contributes 

with new interactions between a group of users and tangible 

objects. The result is VirtuaOM a library that permits creating 

applications where multiple users can interact with tangible 

objects in a 4m2 area. This Library has a set of instructions 

that allows detecting position and orientation of those tangible 

objects, detecting users who interact with those objects and 

giving the possibility of improvising new type of interactions. 

The use of a Kinect sensor and having no presence of 

electronic devices on the tangible objects allows that those 

new interactions can be developed in an easy and economic 

way. We describe the methodology used to design and 

implement this system, also the results obtained after its 

implementation and new opportunities for further work. 

VirtualOM proposes a solution for challenges (2), (3), (4), 

(5) and (6) described in Section II, C . The implementation of 

VirtuaOM using a game library allows the developer to invent 

elaborated metaphors and narratives (2) to provide information 

and to define different behaviors and continuous interaction 

(5) taking advantage of the update loop from the game and the 

object oriented paradigm (3). The use of the Kinect sensor 

minimizes the use of electronic I/O devices, “standardizing” 

interaction with real objects and; aids parallel interaction in 

conjunction with an augmented reality toolkit (6). 

Additionally, we present a solution to cope with occlusion 

problems and provide a mechanism to compose interaction 

gestures from basic ones. 

VirtualOM is not a specific application [1, 21], but rather a 

multipurpose interface creation tool [23], but with no 

specification language associated. Its technology can allow the 

easy implementation of video game narratives [27]. 

Additionally, it allows the developer to extend to the 3D space 

[28] but in a larger area, taking advantage of TUI and tabletop 

features [18, 19], but including any real object. 

IV. METHODOLOGY 

  We combined two approaches for problem solution. 

Design Thinking is typically far from Software Engineering 

methods and  it is mainly used in Human Computer 

Interaction for interface design [30], which typically runs 

separately from Software Engineering processes. However, 
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there is evidence of successful use of Design Thinking aligned 

to Software Engineering [31].  

Design Thinking is a method for designing user centered 

solutions [32]. In Design Thinking there are three design 

spaces: Inspiration, which describes the problem or 

opportunity motivating the search for a solution; Ideation, 

which is the process of generating and testing ideas and; 

Implementation, which is the execution of the ideas. These 

spaces are iterated several times until the wanted solution is 

found. Generated ideas are validated within the workspaces 

according to project restrictions which consider criteria such 

as feasibility (is it functional?), viability (is it sustainable?) 

and user desirability (does it make sense for the people?) 

Similarly, in Software Engineering there are stages which 

are iterated to transform a set of requirements into a solution. 

Particularly, in Agile Development, software evolution is 

constantly presented and discussed among users, iterating an 

incomplete prototype until the user is satisfied [33]. It has 

similarities with Design Thinking. However, there is no way 

to communicate conceptual decisions to final users [31]. Thus, 

we used diagrams or analogies to present ideas (e.g. Figures 1 

and 5A) and used rapid prototyping and participative design 

from Design Thinking embedded in Agile Development. 

Additionally, we performed the activities in each design space 

to find a solution, but as new options were explored, we used 

mathematics, semantics and modeling tools to describe a 

solution. In order to avoid excessive repetition for each 

solution option we followed a waterfall approach derived from 

software engineering, where each step involved Design 

Thinking Activities. We ended up with the following stages 

and tasks for the whole design process:  

 Analysis. We included all tasks related to the Inspiration 

space. Here, we defined the technical details and some non 

technical ones, but no design details were given. It included 

the following tasks: audience definition, prioritization, success 

criteria, glossary, problem history, state of the art, expert 

opinion, features selection, available technical options. 

 Design. We included all tasks related to the Ideation space. 

We explored different alternative solutions, specifying 

imitations and advantages and, choosing one at the end. It 

included the following tasks: establishing systems´ operating 

conditions, general modeling, modularization, input device 

design, defining input and output operations, acceptability 

criteria definition, algorithm design, output GUI design, test 

experiment design. 

 Implementation. We included all activities in the 

traditional test and implementation method once a solution is 

found. Here, it is necessary to iterate to find enhancements or 

to solve problems. Once finished, the solution is executed.  

 

Sections V, VI and VII mainly explain the solution 

alternative chosen following this process. However, when 

required, we explain other options. We applied this method to 

different parts of VirtuaOM at different development stages. 

An earlier version was presented at the CGAT 2014 [4]. 

V. ANALYSIS 

VirtualOM was conceived given the necessity of creating 

“transparent” or “invisible” (non-intrusive) interfaces that can 

guide multiple users’ interactions within a specific 

environment (e.g. museum exhibitions). Devices like the 

Sensetable may be incorrect when you want to use the 

technology in a room with a considerable number of users. A 

naive solution could be placing several devices in different 

locations and relating them to the actual context. However, 

this requires to modify infrastructure, which can be invasive to 

the environment where the tabletop surfaces are located. We 

may enlarge the device to obtain a bigger workspace; 

however, this option raises maintenance costs and requires the 

use of a big table or surface where the device would be placed 

(occupying much of the real available space) breaking with the 

idea of a transparent (invisible) interface.  

VirtuaOM proposes a floor based detection workspace with 

the following features:  

1) Large enough to allow collaborative interaction of many 

users (at least four square meters).  

2) Avoids the need of modifying the existing floor. 

3) Physical interaction elements (pucks) that do not rely on 

electronics, thus, lowering maintenance costs.  

4) Allow displays of virtual information through any 

projector or screen, thus, floors which are not suitable for 

projection are not a limitation. 

 

B. New Tangible Objects 

 

For an initial prototype we decided to establish the 

interaction area to 4m2. If we decide to keep tangible objects 

with the same size of the tangible objects of devices like 

Trackamate or Sensetable, it will be really hard to track and 

locate them. Also, real interaction will be done by the user’s 

body. This is the scenario where user has to remember several 

instructions and there is a chance of some of the actions being 

misinterpreted by the system giving us incorrect results. Some 

devices are able to detect translation, pitch, and roll and could 

achieve an easier detection but are be dependable of 

electronics, which increases their maintenance cost. 

The option we decided to implement was increasing the size 

of the pucks. Large enough to allow a user to manipulate them 

with both hands and so that the top of them could be located at 

the height of an average user waist. With tangible object of 

that size we could add two new type of interactions: multiple 

users grouped in a single puck and users using a puck as a 

reference (Figure 2). 

 

C. Considerations About Detection Latency 

 

Patten [3, 9] establishes that one of the greatest strengths of 

the Sensetable is the use of the electromagnetic approach for 

object tracking. He says that the method used in the three 

prototypes of the Sensetable is particularly faster and less 

susceptible to failure than computer vision approaches [3]. 
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Independent of the method used to track the tangible objects it 

is important that our interface is capable to detect pucks in real 

time. But how “fast” the sensor used needs to be? 

The first prototype of Sensetable uses Wacom tablets as 

detection sensor [20]. In order to compare, we searched for a 

Wacom tablet’s estimated latency; we found that WACOM 

STU-300 Stylus can achieve a latency of 200 detections per 

second [20] which is hard to surpass. Nevertheless we must 

remember that to give a human the perception of animation, it 

is only needed to show 24 images per second approximately 

and computer monitors normally refresh at latency of 60Hz. It 

is true that the lower the latency the better, but if the selected 

approach can reach between 25 – 60 frames per second, we 

believe that is enough for making detections in real time. 

Using a sensor capable to give 200 detections per second 

could be more than is really needed. 

 

D. Kinect as Detection Sensor 

 

The Magic Carpet uses more than one sensor in order to 

improve its detection. Specifically, it uses piezoelectric 

sensors to detect the user position and Doppler Effect sensors 

to determine user movement [18]. We selected the Kinect 

device as a sensor because it is composed of different Sensors 

that work using their own SDK in order to make easier the 

detection of users. Additionally, it can be used in a distance 

where users cannot reach it when they are being detected by 

the system [21]. The Kinect can provide information through 3 

different type of sensors: 

 

1) Images without processing or compression through a 

CMOS RGB camera. 

2) Object depth information through a CMOS 

monochromatic infrared camera. 

3) Audio Data through 4 microphones that organize the 

sound in frequency arrays. 

   

Kinect cameras possess an optimal area (sweet spots) where 

it is assured that the system will work with less failures inside 

their physical limits which is the maximum area where the 

Kinect can operate. Also Kinect operates in two modes. Near 

mode to position Kinect at closer distances and Default mode 

which permits working at larger distances but is more 

susceptible to noise. Finally, the Kinect’s camera has a 

horizontal angle of vision of 57.5° and a vertical angle of 

43.5°; also, it is possible to tilt the Kinect 27 degrees upwards 

or downwards[21]. 

The Kinect microphone is programmed to recognize human 

voice sounds and small sounds produced by human body 

movements. It can detect audio signals from 50° to the left and 

right of the sensor. Virtually, the microphone could be divided 

in 10° arrays that can be used to detect the source of the 

sound. 

 

Kinect’s microphone is specially developed to detect noises 

from the voice or human body movements, but it is hard to 

know if it can be useful to detect tangible objects. On the other 

hand, it is easy obtain data from the RGB and depth cameras. 

That information could be used to differentiate or track users 

and pucks using computer vision methods. An advantage of 

using the depth camera is to be able to work under low light 

conditions. Given the fact that depth and stream data are 

relatively similar, both can be used together to create our 

tracking approach. 

VI. DESIGN 

Our task is to build a system where users interact with 

tangible elements (pucks) located in a floor area. Some 

considerations we had in mind when we designed our 

interaction were: 

 

1) The system must be capable to distinguish pucks from 

users. Also it has to be capable to detect when a group of 

users are near a puck. 

2) Users can apply two valid movements to the puck. 

Translation over a detection area and rotation of a puck in its 

own axis. 

3) Puck height should not surpass the height of the user waist 

and should be big enough to be manipulated by a user with 

both hands. Also, they cannot be too heavy for being picked up 

and moved through the area. 

4) Sensors must not become an obstacle for the elements 

inside the interaction area. 

 

 
Fig. 2.  Adding two new interactions with larger pucks. A) Multiple users in 

a single puck. B) Using a puck as a reference. 

  

 

 
Fig. 3.  Recommended user interaction. 
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According to those consideration, the system can recognize 

two types of actors interacting on the system. Those are users 

and pucks. We had to keep in mind that if there are too many 

of those actors inside the area, the space to operate will be 

reduced. Also, it doesn’t make too much sense if all users are 

grouped in a single puck. For that reason we recommend 

limiting the number of pucks to 3 per area, also, the system 

only should detect when 3 users are near a puck. Others 

should be ignored (Figure 3). 

 

B. Design of the Detection Method 

 

     The depth stream stores every pixel of the Kinect’s 

infrared camera. Different to the RGB camera, instead of 

storing color information, these pixels store distance 

information that can be obtained using the Kinect SDK. If we 

ignore every pixel not located at a defined distance, we can 

make image segmentation to detect objects that enter into the 

area (Figure 4). However, image segmentation helps detecting 

elements in a specific range but it cannot identify all the actors 

that enter the area. To solve this we use the mean – shift 

algorithm to cluster the pixel data [5, 22], this allow us to 

create centroids to identify every element which enters in the 

detection area (Figure 4A).  

Nevertheless, an incorrect selection of centroid could show 

incorrect clustering. Too much centroids could separate a 

single actors in several objects, a very few will take several 

actors as if they were only one (Figure 4B). Another problem 

found with the mean shift algorithm is the incorrect 

assignment of pixels to a centroid. In this algorithm every 

pixel is assigned to the nearest centroid but depending of the 

actor shape there are cases where a pixel of some actor is 

closer to another actor. To solve this, we implemented circular 

windows to limit the number of pixels that are assigned to a 

centroid. Now only those pixels inside a window are the only 

ones assigned to a centroid (Figure 4C). Once every possible 

pixel is assigned, a new centroid is calculated using the pixels 

inside every window. The algorithm is repeated for every 

depth camera refresh and at some point the centroid converges 

and the objects are identified. The last problem found is when 

two objects are too close. When that happen pixels belonging 

to an actor could be inside the window of a second actor. After 

several iterations those wrong assigned pixels can make the 

windows located in the first element converge in direction of 

the second element with an incorrect tracking as a 

consequence (Figure 4D). To solve this we implemented a 

collision system where a collision occurs when two virtual 

windows intersect each other. In our method, when two 

centroid windows intersect, we detect a collision. In that 

moment instead of recomputing the centroid, it remains the 

same until there isn’t a collision anymore (the actor moves). 

 

C. Detecting Puck Orientation 

 

     We use the Kinect RGB camera to detect puck 

orientation. Specifically we took advantage of a concept from 

augmented reality to achieve this. Augmented reality software 

can use special images called glyphs or markers. Those 

images become a reference to a camera where the 3D virtual 

images should be displayed in order to combine both real and 

virtual worlds in a single presentation. The matrix (1) 

performs the conversion of the coordinates of the glyph 

according to the world to camera coordinates (XC, YC, ZC). 

The Matrixes V and W contain the rotation and translation 

performed in the glyph in the real world in computer 

coordinates. Specifically, if we attach a glyph to the puck, we 

can use the matrix V to obtain object orientation. 
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Fig. 4.  Image segmentation with Kinect's depth sensor. A) Centroids. B) 

Incorrect centroid selection. C) Circular windows to limit centroid selection. 

D) Wrongly assigned pixels.   

 
Fig. 5.  Actor identification scheme. A) Sketches to communicate with 

designers. B) A portion of the finite state machine used to communicate with 

software developers.  
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D. Actor Identification Scheme 

 

     The mean-shift algorithm is useful to detect and track 

multiple actors, but it is not possible to identify which actor is 

a user and which actor is a puck. We designed a scheme where 

the programmer decides how many users and pucks the 

application will have, the order of how they will enter to the 

area and their respective initial positions. Initially some initial 

positions have to be established. When an application is 

running it has 2 modes (Figure 5). The detection mode when 

the system waits until all centroids activate. An activation 

occurs when we place an actor in the initial position. Every 

actor is activated one by one and there is no chance that both 

actors are activated at the same time. There is no problem with 

how users should enter, but every puck has to be activated in 

its initial position. A puck in a wrong initial position cannot be 

allowed. To help the system identify pucks in the system we 

use the same Glyphs used to track their orientation. 

 

  After every puck is activated, the system enters to tracking 

mode, where the system starts tracking all the actors’ position. 

It is required that at least a user stays near a puck in order to 

move. This is because it has no sense that a puck moves by 

itself. Also, in this stage the system has to know when a group 

of users is near a puck. 

VII. IMPLEMENTATION 

A. Sensor Position 

 

Now that we have an actor identification scheme working with 

the mean – shift algorithm, the next thing to establish is the 

sensor position. We tried three possibilities; first, the frontal 

position which is completely different to the tabletop notion 

and has problems detecting actors when an actor is behind 

another. Next, we have the top central position, where the 

Kinect is located in the top – center of the area probably in the 

ceiling. The problem with this option is that we discovered we 

needed to position the Kinect at least 2.76 meters at top to 

reach a 4 square meters area. Finally, we have the diagonal 

position. In this configuration the Kinect is at the top too, but 

not in the center. With this configuration it is possible to cover 

the 4 square meters required using a height less than the top – 

center configuration. In Figure 6 we can see the Kinect in a 

diagonal configuration. The darker part is the detection area, 

actors will be detected at that area. The lighter area is called 

the death zone and is beyond the Kinect view angle, this 

means this is the minimal horizontal distance where actors can 

be detected. That zone depends of the height where the Kinect 

is located. If we position the Kinect at 2.72 meters but using 

diagonal configuration instead of top center. We will have a 

death zone of 0.78 meters, also we could reach an area of 

more than 5 square meters. The problem with it is that the 

more height the less visibility, so we can’t position too high. 

Our test were made at 2.26 meters and we covered the 4 

square meters with no problem. Calculations are explained in 

Equations (2)(Figure 6): 
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B. System Architecture  

 

We needed a system capable to integrate the Kinect with some 

augmented reality library in order to use both systems at the 

same time in an easy way. Goblin XNA is an open platform to 

create 3D user interfaces with XNA. We decided to use XNA 

because it uses XNA functions that can be easily integrated 

with the Kinect SDK developed by Microsoft. Also Goblin 

XNA simplifies some of the normal functions from XNA by 

the use of different type of nodes making easier work with 3D 

graphics and augmented reality and to include videogame 

narratives taking advantage of the XNA game library. 

 

VirtuaOM is used in conjunction with XNA, so it is 

mandatory to install Goblin XNA, to create a XNA scene and 

call both Goblin XNA and VirtuaOM to be used. Our system 

has a main Controller class where after the programmer 

creates all the actors he or she wants, they will be stored on 

that class (Figure 7). Those actors, no matter if they are Users 

or Pucks depend on the Kinect camera. On the other hand, the 

Puck class uses the marker node class which is the class that 

manages the augmented reality Glyphs in Goblin XNA. That 

class depends of a library named ALVAR which is the class 

which really is in charge of the augmented reality modules and 

at the same time the class ALVAR depends on the Kinect. The 

code required to use the actors includes: 

  

 1) Actor and controller definition. 

 

 
Fig. 7.  VirtuaOM Architecture. 
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public puck.puck marker1;  // puck actor 

public puck.persona persona1;  // user actor 

public puck.controlador referi ; // controller 

 

 2) Actor and controller initialization. 

 

marcador1 = new puck.puck (x,y,z, 1);  // puck actor 

person1 = new puck.persona (x,y,z, 0); // user actor 

referi = new controlador();   // controller 

 

 3) Adding actors to the controller. 

 

referi.Add_element(marcador1);   // puck actor 

referi.Add_element(persona1);  // user actor 

 

C. Independent centroid calculation every Frame. 

 

 At first, when we executed the mean-shift algorithm in 

some computers it was impossible to do real – time detection. 

This happened because the mean shift calculation requires a 

lot of calculation when there are more than 3 authors or more 

at the same time. There is no problem when we use the 

algorithm with a single author. We present a case with a Core 

I3 computer with no specialized graphics card, where we test 

the system under 2 conditions. In the first one, we disabled the 

window collision calculation, in the second we ran the system 

under normal circumstances. In the first case we obtained a 

29FPS latency, with the second we obtained 14FPS latency. 

We figured out that calculating a single centroid for tracking is 

so fast that the human eye cannot see it, so we decided to 

calculate every author separated in a different cycle. The 

number of calculations made every refresh decreased. With 

this we achieved a 26FPS latency doing all the calculations. 

VIII. RESULTS 

 We evaluated the response time in 3 different computers 

with their own characteristics under 2 experiments. The first 

experiment consisted in 3 users and 3 pucks moving around 

the detection area. On the second experiment, we asked the 

users to change pucks constantly and to form groups on every 

puck. The computers used in the experiment were core i3 

processor pc with a low performance graphic card (PC1), a 

core i5 with an Intel HD 4000 graphic card (PC2) a high 

performance core i7 with an NVidia GTX460 graphic card 

(PC3). The results obtained are shown in Table I. 
 In the experiments, we noticed some fluctuations on the 

average latency. Big part of the low latency is obtained when 

3 or more authors are together. Nevertheless, with the 

fluctuations, it is still possible to obtain detections on real time 

even with low performance computer. 

 Additionally, to show the capability to integrate VirtuaOM 

with other multimedia libraries and to show the possibilities 

on multimodal interaction we developed a tangible audio 

reproducer. On this application we used the library irrKlang to 

control sounds. The idea is that 3 users control 3 pucks to do 

the next actions (Figure 8): 

1) Position puck 1 up in a play button to play/pause a song. 

2) Walk through a specific area with the puck 2 to change 

and repeat a song position. 

3) Rotate the puck 3 to change the volume of the song. 

 

 Then, we evaluated the interface with users based on the 

Nielsen design heuristics [10]. We discovered that the 

interface was easy to understand by users but it fails with user 

control and freedom because when a user goes out from the 

detection area there is no way to show that what he or she is 

doing is wrong. 

 Also, we asked five software developers how easy they felt 

the library was and they all agreed if was very straight forward 

to program. Finally, we asked five potential users from one 

museum for potential application of this library and they found 

it very useful.   

IX. CONCLUSION 

 A benefit of implementing the library working together with 

Goblin XNA is that the use of this platform allows to present 

different type of multimedia content. The children nodes 

presented in Figure 7 are used by Goblin XNA to associate to 

main nodes, different types of multimedia files, such as 

sounds, 3D images, 2D images and videos. We can exploit 

that feature to improvise new type of interactions with 

VirtuaOM. Additionally, the augmented reality interface 

allows VirtuaOM to show information in different ways than a 

projection. This is important because not all floors can be used 

for projections. 

 

      We recognize the importance of the tangible interfaces in 

order to allow the user a multimodal interaction with a 

computer, also the importance of having an interface that 

allow us interacting not only with the system but with other 

users. VirtuaOM was built as an alternative to create tangible 

collaborative interfaces of multiple purpose without being too 

expensive not only on production but in maintenance cost. 

TABLE I 

RESPONSE TIME EVALUATION 

PC Experiment 1 Experiment 2 

   

PC1 12 - 27 FPS 17 - 27 FPS 

PC2 40 - 50 FPS 27 - 30 FPS 

PC3 60 FPS 60 FPS 

 

 
Fig. 6.  Kinect position. 
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VirtualOM proposes a solution for challenges (2), (3), (4), (5) 

and (6) described in Section II, C. 

 

     The computer vision approach allowed us keeping the 

sensors in places where they do not disturb the user when he 

or she interacts with the system. Even if other approaches are 

faster to detect and track objects, we showed that is possible 

use computer vision at 25-60fps latencies, which are enough 

for real time applications. 

 

 The best field of action on VirtuaOM are interfaces when it 

is necessary create an interface capable to interact not only 

with users collaboratively but with the environment where is 

located. In places like museums exhibitions, where the 

computer system should not make the users ignore the 

museum content, on the contrary it should become a guide for 

the users through the installations, interfaces like VirtuaOM 

could be a great option, especially if we take advantage of the 

integration with Goblin XNA or the possibility of using other 

libraries to create Augmented and Mixed reality options. 
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