


Abstract— Tangible User Interfaces (TUI) bring digital

interfaces to the real world by using specific devices to achieve a

task. They can be more intuitive, allowing the user to take

advantage of a computer tool which is associated to the real

world. One problem is that creating a TUI for each piece of

software is expensive. For instance, devices such as the mouse,

keyboard or touchscreen have become more popular. Indeed, it is

cheaper to adapt the users to the interface than creating an

adequate interface for each program. We present VirtuaOM, a

library which allows creating low cost interfaces where the users

can communicate with an application in a tangible manner.

Additionally, an application using this library can allow several

users to communicate collaboratively among them and with the

system within the interaction space. In order to build our library,

we combined the Design Thinking and Software Engineering

methodologies. We tested VirtuaOM creating an interaction

space inspired in the Sensetable device developed by Patten [9]

that permits programmers to create applications where the

system can track users and tangible wireless objects in a tabletop

surface, but we moved the interaction area from a table to the

floor to increase it and to give users the freedom to move through

it. This made it easier for multiple users to interact with each

other and with the system collaboratively.

Keywords— Application programming interfaces, Augmented

Reality, Tangible User Interfaces, Tabletop

I. INTRODUCTION

nterfaces should adapt to the users' multimodal nature in

order to create different interactions to perform diverse

tasks. Also, they should be capable to work with multiple

users collaboratively. Graphical User interfaces (GUIs) only

display data on a screen based on pixel information [2, 11].

However, interaction through screen pixels may be

inconsistent with the interaction of the user with the physical

environment. Actually, GUIs do not take advantage of the

human skills to manipulate different objects and data and are

limited to the screen. In contrast, Tangible User Interfaces

C. C. Ventes is with the DESTINO research group at the Pontificia

Universidad Javeriana, Cali - Colombia (e-mail:

ccventes@javerianacali.edu.co).

A. A. Navarro-Newball is with the DESTINO research group at the

Pontificia Universidad Javeriana, Cali - Colombia (corresponding author;

phone: 572-3218200 - 8914 ; e-mail: anavarro@javerianacali.edu.co).

D. A. Velasco is with the DESTINO research group at the Pontificia

Universidad Javeriana, Cali - Colombia (e-mail: dandresv@gmail.com).

E. C. Prakash is with the IRAC research institute at the University of

Bournemouth, UK (e-mail: eprakash@bournemouth.ac.uk).

(TUI) take advantage of human's ability to have haptic

interactions providing physical representations of the digital

information. These representations become a model and

controller for the information and allow direct manipulation

and multi sensorial interaction. TUIs offer the capability to

work in the real world and to model gestures and actions based

on the application’s context. Also, they facilitate cooperative

interaction and profit from the human ability of making better

associations with tangible elements [2, 6, 7, 8].

 However, a risk found in the development of tangible

interfaces is the need of building a specific tangible device for

every software made. In some cases, it is not even possible to

represent physical and structural changes in those devices

[11], as a consequence, the product cost increases. Even if

mouse and touchscreen interfaces cannot bring digital

information to the real world, they are very popular because

they provide a generic way to interact with software without

performing changes in hardware but creating new gestures

based in a small set of actions provided by those interfaces

(e.g. point and click using mouse or multiple contact points in

touchscreens). Given this fact, a good idea may be creating a

tangible interface with a set of actions that users can perform

and the possibility of creating new ways to interact based on

that set. Nevertheless, the amount and the difficulty of actions

performed is something important to have in mind at the time

of designing the interface. We believe that if a user recognizes

actions in a device it could be simpler for him or her to infer

new actions [10], so our task was to find or design a tangible

interface where users could perform a small set of actions;

these actions must be intuitive and make sense to the user; the

less he or she has to remember the better. Also, in case that it

is needed to create new gestures, those gestures should be

based on that small set of actions.

II. RELATED WORK

 Our work is based in the TUI literature, we explore how to

achieve multimodal and collaborative interaction between

users and with the system, so we explore several examples of

TUI to verify if there are any systems capable to fulfil those

requirements. First, we explore the gestural interface approach

as a way of natural and multimodal interaction.

A. Gestural interface

G-stalt allows interaction using special gloves to detect

gestures. Those gestures let the user organize and view

different videos in a 3D space, which implies that the system

must recognize different gestures to do different actions [8,

A Programming Library for Creating Tangible

User Interfaces

Christian C. Ventes, Andrés A. Navarro-Newball and Deivy A. Velasco, Pontificia Universidad

Javeriana – Cali - Colombia, Edmond C. Prakash, University of Bournemouth - UK

I

DOI: 10.5176/2251-3043_4.1.304

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

23

12]. However, several challenges come when we try to create

a gesture grammar capable of recognizing actions made by a

user to interact with a system.

B. TUIs

TUIs have been long used [1] and their advantages over

GUIs have been evidenced [20]. Lapides, Sharlin and Sousa

[21] describe a TUI which follows an intuitive drawing board

metaphor to map the 3D task to a physical interface. However,

this method is aimed for controlling a group of robots in three

dimensional (3D) space only. Costanza et.al. [1] describe a

low cost TUI, downloadable from the Internet, where the

physical interactive objects are made by gluing printed labels

onto existing objects or, are folded out of ordinary paper, with

visual markers printed on it. The system only requires a

regular computer, a webcam and a printer. However, it is

aimed only for musical applications.

C. Multipurpose TUI toolkits

Several toolkits support the implementation of functional

TUI prototypes [22]. These toolkits lower the threshold for

implementing functional TUI prototypes by handling low-

level events. However, most of them provide support only for

specific technology. For instance, if different technology is

used, developers are required to learn and rewrite new code.

Additionally, toolkits do not provide a comprehensive set of

abstractions for specifying and discussing tangible interaction.

Indeed, TUI design and development has conceptual,

methodological, and technical difficulties [22] due to the lack

of appropriate interaction abstractions, the shortcomings of

current software tools and the excessive effort required to

integrate novel input and output technologies. Shaer et.al. [23]

introduce the Token and Constraints (TAC) paradigm for

describing and specifying tangible user interfaces (TUIs). The

paradigm enables the description of a broad range of TUIs by

providing a common set of constructs. However, the paradigm

neither considers TUIs’ interoperability nor TUIs’

implementation. Shaer and Jacob [22] extend the previous idea

proposing a specification paradigm for designing and

implementing TUIs that uses high-level constructs which

abstract away implementation details and can be used by TUI

developers from different disciplines. The system is actually

being extended to support whole body interaction by

specifying expressive movement. Among the main challenges

observed in TUI design and implementation [22] are:

1) Deciding which information is best represented digitally

and which is best represented physically.

2) Inventing metaphors that give physical form to digital

information.

3) Defining a behavior for each possible context of use for

each interaction object.

4) Standardizing I/O devices for TUIs.

5) Using a low-level programming TUI to deal with

continuous interaction.

6) Considering issues such as access points, as well as

spatial and temporal coordination for parallel interaction.

7) Providing languages and tools to TUI developers from

different disciplines.

D. Tabletop surfaces

Among TUIs, there is a set of interfaces called the tabletop

surfaces. There is some evidence that tabletop surfaces can

enhance collaboration, exploration of experimental data and

learning [24, 25, 26]. For example, Of BATS and APES [27],

an interactive tabletop system for natural sciences museums,

favors collaboration and discussion among visitors and allow

them to achieve an active and prolonged engagement which

incentivizes research, observation and construction of

knowledge. Of BATS and APES also takes advantage of

videogame concepts and design to enhance interaction.

However, these tabletop surfaces are limited to actions

performed in the 2D space which comprises the interface.

Other tabletop systems extend the interaction to the 3D space.

For example, eLabBench [28] is a tabletop system which

allows biologists to organize their experiments. Here,

biologists can pull digital resources, annotate them, and

interact with hybrid (tangible and digital) objects such as racks

of test tubes. Nevertheless, when the interaction is extended

to the 3D space challenges with occlusion arise. In ObjectTop

[29], a system to support tabletop display applications

involving both physical and virtual objects, the challenges of

occlusion by physical objects are addressed and the

advantages of occlusion-aware techniques are shown.

E. Multiple purpose tabletop interfaces

 We found some examples of tabletop surfaces created for

multiple purposes. Those interfaces had their own API to

allow users to create new different types of software based on

the limited set of actions that those interfaces provide. The

popularity behind the tabletop as multi – purpose tools could

be based in the capability of having a large area to organize

objects spatially. Spatial arrangements are integral part of

humans’ behavior; they simplify the way we perceive our

world, our choices and they help us through our internal

computation [13]. Examples of tabletop surfaces that allow

user creating their own application or interactions include

Pingpong++ [15] which is an augmented ping pong table

capable of detecting when users touch it and show a visual

response projected on its tabletop surface with its own API to

create visualizations. Additionally, tabletop devices such as

trackmate [14], Sensetable [3] and reacTIvision [16] interact

with the system through tangible devices above the surface

instead of touching it. This gives more possibilities of

interaction other than only contact; with this, the system now

Fig. 1. It is difficult to reach the center in a large tabletop surface.

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

24

can track object position and orientation of multiple objects

which can be organized in a logical way to solve a problem or

become physical embodiments of digital information.

Improving even more, ZeroN is a tabletop surface capable to

re arrange tangible elements in a 3D space through magnetic

levitation [17].

F. Enlarged interaction area

 An increase of the interaction area is achieved with

systems such as The Magic Carpet [18] where the sensors

used detects people kinematics to track dance movements.

This system could keep away most part of the sensors used,

making it a promising tool, but we have to keep in mind that

this system was not made to detect and differentiate people

and tangible objects. Also, the magic pad; a spatial

Augmented Reality based interface can track the position and

orientation on a pad inside a CAVE type interface [19]. The

system detects the pad position and projects visual information

on it. The problem with the tool is that it separates the user

from everything outside the CAVE. We are looking for

something easier to install and that “blends” with its

environment.

III. AN AFFORDABLE TANGIBLE TABLETOP SURFACE FOR THE

FLOOR

After researching different examples of tangible interfaces

we paid special attention to the Sensetable device developed

by Patten [3, 9], due to its device interfaces which consist in

small tangible devices similar to Hockey pucks working above

a tabletop surface [3, 9]. Those devices only had two possible

movements: rotation and translation which are easy to perform

and remember. Also, in case of needing more functionality it

is possible to create more different types of interaction based

on those actions such as semantic zooming dragging two

pucks closer or farther, or attach/release projected visual

information in the surface to a puck after performing some

action with it. The Sensetable has its own API that allows

programmers to access to every puck data; this can be used to

extend the puck functionalities.

 If we think in cases such as museum exhibitions where

technology should be a reinforcement of the current material,

not a replacement; we want to increase the interaction area

while not allowing the tangible interface to become the center

of attention. On the contrary, we expect that the interface

“blends” with the exhibition, allowing users to interact with

the museum material in new ways through the technology. At

the same time, we expect that our interface can be used by

more than one user, allowing collaboratively interaction

between users and the system. After thinking in several

possibilities for increasing the interaction area of the

Sensetable or any other tabletop surface, we can observe that

if we translate that area to the floor this will not disturb the

movement of people through the hall where the interface is

located. Also, if a larger Tabletop surface is used, the larger its

interaction area is, the harder will be for users to move any

tangible device to the center of that area (Figure 1). Although

translating the interaction area to the floor seems promising, it

has a very important drawback. If the interaction area is

increased, the tangible elements (pucks) should be bigger.

Thus, we need to find new ways to detect and track those

elements. Also, if users are able to enter the interaction area,

the possibility of damage or loss of the elements of the

interface (detection sensor and tangible elements in case of the

Sensetable) will increase, increasing with this, its maintenance

cost.

 In our approach, we seek to achieve the same detection of

tangible objects in a larger tabletop area located in the floor

but keeping away any electronic device from the detection

area or the tangible objects. With this we prevent multiple

users from damaging the interaction area. Also, tangible

objects are easier to replace in case of damage or loss. After

researching several methods for object tracking we decided to

use the Kinect sensor due to its capability to use several

sensors of different type supporting each other for a better

detection.

 With the location of the detection area in the floor a user

now can enter the interaction area. Our system contributes

with new interactions between a group of users and tangible

objects. The result is VirtuaOM a library that permits creating

applications where multiple users can interact with tangible

objects in a 4m2 area. This Library has a set of instructions

that allows detecting position and orientation of those tangible

objects, detecting users who interact with those objects and

giving the possibility of improvising new type of interactions.

The use of a Kinect sensor and having no presence of

electronic devices on the tangible objects allows that those

new interactions can be developed in an easy and economic

way. We describe the methodology used to design and

implement this system, also the results obtained after its

implementation and new opportunities for further work.

VirtualOM proposes a solution for challenges (2), (3), (4),

(5) and (6) described in Section II, C . The implementation of

VirtuaOM using a game library allows the developer to invent

elaborated metaphors and narratives (2) to provide information

and to define different behaviors and continuous interaction

(5) taking advantage of the update loop from the game and the

object oriented paradigm (3). The use of the Kinect sensor

minimizes the use of electronic I/O devices, “standardizing”

interaction with real objects and; aids parallel interaction in

conjunction with an augmented reality toolkit (6).

Additionally, we present a solution to cope with occlusion

problems and provide a mechanism to compose interaction

gestures from basic ones.

VirtualOM is not a specific application [1, 21], but rather a

multipurpose interface creation tool [23], but with no

specification language associated. Its technology can allow the

easy implementation of video game narratives [27].

Additionally, it allows the developer to extend to the 3D space

[28] but in a larger area, taking advantage of TUI and tabletop

features [18, 19], but including any real object.

IV. METHODOLOGY

 We combined two approaches for problem solution.

Design Thinking is typically far from Software Engineering

methods and it is mainly used in Human Computer

Interaction for interface design [30], which typically runs

separately from Software Engineering processes. However,

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

25

there is evidence of successful use of Design Thinking aligned

to Software Engineering [31].

Design Thinking is a method for designing user centered

solutions [32]. In Design Thinking there are three design

spaces: Inspiration, which describes the problem or

opportunity motivating the search for a solution; Ideation,

which is the process of generating and testing ideas and;

Implementation, which is the execution of the ideas. These

spaces are iterated several times until the wanted solution is

found. Generated ideas are validated within the workspaces

according to project restrictions which consider criteria such

as feasibility (is it functional?), viability (is it sustainable?)

and user desirability (does it make sense for the people?)

Similarly, in Software Engineering there are stages which

are iterated to transform a set of requirements into a solution.

Particularly, in Agile Development, software evolution is

constantly presented and discussed among users, iterating an

incomplete prototype until the user is satisfied [33]. It has

similarities with Design Thinking. However, there is no way

to communicate conceptual decisions to final users [31]. Thus,

we used diagrams or analogies to present ideas (e.g. Figures 1

and 5A) and used rapid prototyping and participative design

from Design Thinking embedded in Agile Development.

Additionally, we performed the activities in each design space

to find a solution, but as new options were explored, we used

mathematics, semantics and modeling tools to describe a

solution. In order to avoid excessive repetition for each

solution option we followed a waterfall approach derived from

software engineering, where each step involved Design

Thinking Activities. We ended up with the following stages

and tasks for the whole design process:

 Analysis. We included all tasks related to the Inspiration

space. Here, we defined the technical details and some non

technical ones, but no design details were given. It included

the following tasks: audience definition, prioritization, success

criteria, glossary, problem history, state of the art, expert

opinion, features selection, available technical options.

 Design. We included all tasks related to the Ideation space.

We explored different alternative solutions, specifying

imitations and advantages and, choosing one at the end. It

included the following tasks: establishing systems´ operating

conditions, general modeling, modularization, input device

design, defining input and output operations, acceptability

criteria definition, algorithm design, output GUI design, test

experiment design.

 Implementation. We included all activities in the

traditional test and implementation method once a solution is

found. Here, it is necessary to iterate to find enhancements or

to solve problems. Once finished, the solution is executed.

Sections V, VI and VII mainly explain the solution

alternative chosen following this process. However, when

required, we explain other options. We applied this method to

different parts of VirtuaOM at different development stages.

An earlier version was presented at the CGAT 2014 [4].

V. ANALYSIS

VirtualOM was conceived given the necessity of creating

“transparent” or “invisible” (non-intrusive) interfaces that can

guide multiple users’ interactions within a specific

environment (e.g. museum exhibitions). Devices like the

Sensetable may be incorrect when you want to use the

technology in a room with a considerable number of users. A

naive solution could be placing several devices in different

locations and relating them to the actual context. However,

this requires to modify infrastructure, which can be invasive to

the environment where the tabletop surfaces are located. We

may enlarge the device to obtain a bigger workspace;

however, this option raises maintenance costs and requires the

use of a big table or surface where the device would be placed

(occupying much of the real available space) breaking with the

idea of a transparent (invisible) interface.

VirtuaOM proposes a floor based detection workspace with

the following features:

1) Large enough to allow collaborative interaction of many

users (at least four square meters).

2) Avoids the need of modifying the existing floor.

3) Physical interaction elements (pucks) that do not rely on

electronics, thus, lowering maintenance costs.

4) Allow displays of virtual information through any

projector or screen, thus, floors which are not suitable for

projection are not a limitation.

B. New Tangible Objects

For an initial prototype we decided to establish the

interaction area to 4m2. If we decide to keep tangible objects

with the same size of the tangible objects of devices like

Trackamate or Sensetable, it will be really hard to track and

locate them. Also, real interaction will be done by the user’s

body. This is the scenario where user has to remember several

instructions and there is a chance of some of the actions being

misinterpreted by the system giving us incorrect results. Some

devices are able to detect translation, pitch, and roll and could

achieve an easier detection but are be dependable of

electronics, which increases their maintenance cost.

The option we decided to implement was increasing the size

of the pucks. Large enough to allow a user to manipulate them

with both hands and so that the top of them could be located at

the height of an average user waist. With tangible object of

that size we could add two new type of interactions: multiple

users grouped in a single puck and users using a puck as a

reference (Figure 2).

C. Considerations About Detection Latency

Patten [3, 9] establishes that one of the greatest strengths of

the Sensetable is the use of the electromagnetic approach for

object tracking. He says that the method used in the three

prototypes of the Sensetable is particularly faster and less

susceptible to failure than computer vision approaches [3].

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

26

Independent of the method used to track the tangible objects it

is important that our interface is capable to detect pucks in real

time. But how “fast” the sensor used needs to be?

The first prototype of Sensetable uses Wacom tablets as

detection sensor [20]. In order to compare, we searched for a

Wacom tablet’s estimated latency; we found that WACOM

STU-300 Stylus can achieve a latency of 200 detections per

second [20] which is hard to surpass. Nevertheless we must

remember that to give a human the perception of animation, it

is only needed to show 24 images per second approximately

and computer monitors normally refresh at latency of 60Hz. It

is true that the lower the latency the better, but if the selected

approach can reach between 25 – 60 frames per second, we

believe that is enough for making detections in real time.

Using a sensor capable to give 200 detections per second

could be more than is really needed.

D. Kinect as Detection Sensor

The Magic Carpet uses more than one sensor in order to

improve its detection. Specifically, it uses piezoelectric

sensors to detect the user position and Doppler Effect sensors

to determine user movement [18]. We selected the Kinect

device as a sensor because it is composed of different Sensors

that work using their own SDK in order to make easier the

detection of users. Additionally, it can be used in a distance

where users cannot reach it when they are being detected by

the system [21]. The Kinect can provide information through 3

different type of sensors:

1) Images without processing or compression through a

CMOS RGB camera.

2) Object depth information through a CMOS

monochromatic infrared camera.

3) Audio Data through 4 microphones that organize the

sound in frequency arrays.

Kinect cameras possess an optimal area (sweet spots) where

it is assured that the system will work with less failures inside

their physical limits which is the maximum area where the

Kinect can operate. Also Kinect operates in two modes. Near

mode to position Kinect at closer distances and Default mode

which permits working at larger distances but is more

susceptible to noise. Finally, the Kinect’s camera has a

horizontal angle of vision of 57.5° and a vertical angle of

43.5°; also, it is possible to tilt the Kinect 27 degrees upwards

or downwards[21].

The Kinect microphone is programmed to recognize human

voice sounds and small sounds produced by human body

movements. It can detect audio signals from 50° to the left and

right of the sensor. Virtually, the microphone could be divided

in 10° arrays that can be used to detect the source of the

sound.

Kinect’s microphone is specially developed to detect noises

from the voice or human body movements, but it is hard to

know if it can be useful to detect tangible objects. On the other

hand, it is easy obtain data from the RGB and depth cameras.

That information could be used to differentiate or track users

and pucks using computer vision methods. An advantage of

using the depth camera is to be able to work under low light

conditions. Given the fact that depth and stream data are

relatively similar, both can be used together to create our

tracking approach.

VI. DESIGN

Our task is to build a system where users interact with

tangible elements (pucks) located in a floor area. Some

considerations we had in mind when we designed our

interaction were:

1) The system must be capable to distinguish pucks from

users. Also it has to be capable to detect when a group of

users are near a puck.

2) Users can apply two valid movements to the puck.

Translation over a detection area and rotation of a puck in its

own axis.

3) Puck height should not surpass the height of the user waist

and should be big enough to be manipulated by a user with

both hands. Also, they cannot be too heavy for being picked up

and moved through the area.

4) Sensors must not become an obstacle for the elements

inside the interaction area.

Fig. 2. Adding two new interactions with larger pucks. A) Multiple users in

a single puck. B) Using a puck as a reference.

Fig. 3. Recommended user interaction.

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

27

According to those consideration, the system can recognize

two types of actors interacting on the system. Those are users

and pucks. We had to keep in mind that if there are too many

of those actors inside the area, the space to operate will be

reduced. Also, it doesn’t make too much sense if all users are

grouped in a single puck. For that reason we recommend

limiting the number of pucks to 3 per area, also, the system

only should detect when 3 users are near a puck. Others

should be ignored (Figure 3).

B. Design of the Detection Method

 The depth stream stores every pixel of the Kinect’s

infrared camera. Different to the RGB camera, instead of

storing color information, these pixels store distance

information that can be obtained using the Kinect SDK. If we

ignore every pixel not located at a defined distance, we can

make image segmentation to detect objects that enter into the

area (Figure 4). However, image segmentation helps detecting

elements in a specific range but it cannot identify all the actors

that enter the area. To solve this we use the mean – shift

algorithm to cluster the pixel data [5, 22], this allow us to

create centroids to identify every element which enters in the

detection area (Figure 4A).

Nevertheless, an incorrect selection of centroid could show

incorrect clustering. Too much centroids could separate a

single actors in several objects, a very few will take several

actors as if they were only one (Figure 4B). Another problem

found with the mean shift algorithm is the incorrect

assignment of pixels to a centroid. In this algorithm every

pixel is assigned to the nearest centroid but depending of the

actor shape there are cases where a pixel of some actor is

closer to another actor. To solve this, we implemented circular

windows to limit the number of pixels that are assigned to a

centroid. Now only those pixels inside a window are the only

ones assigned to a centroid (Figure 4C). Once every possible

pixel is assigned, a new centroid is calculated using the pixels

inside every window. The algorithm is repeated for every

depth camera refresh and at some point the centroid converges

and the objects are identified. The last problem found is when

two objects are too close. When that happen pixels belonging

to an actor could be inside the window of a second actor. After

several iterations those wrong assigned pixels can make the

windows located in the first element converge in direction of

the second element with an incorrect tracking as a

consequence (Figure 4D). To solve this we implemented a

collision system where a collision occurs when two virtual

windows intersect each other. In our method, when two

centroid windows intersect, we detect a collision. In that

moment instead of recomputing the centroid, it remains the

same until there isn’t a collision anymore (the actor moves).

C. Detecting Puck Orientation

 We use the Kinect RGB camera to detect puck

orientation. Specifically we took advantage of a concept from

augmented reality to achieve this. Augmented reality software

can use special images called glyphs or markers. Those

images become a reference to a camera where the 3D virtual

images should be displayed in order to combine both real and

virtual worlds in a single presentation. The matrix (1)

performs the conversion of the coordinates of the glyph

according to the world to camera coordinates (XC, YC, ZC).

The Matrixes V and W contain the rotation and translation

performed in the glyph in the real world in computer

coordinates. Specifically, if we attach a glyph to the puck, we

can use the matrix V to obtain object orientation.





















































































1

1000

110001

1333

333231

232221

131211

M

M

M

xx

M

M

M

Z

Y

X

C

C

C

Z

Y

X

WV

Z

Y

X

WVVV

WVVV

WVVV

Z

Y

X

 (1)

Fig. 4. Image segmentation with Kinect's depth sensor. A) Centroids. B)

Incorrect centroid selection. C) Circular windows to limit centroid selection.

D) Wrongly assigned pixels.

Fig. 5. Actor identification scheme. A) Sketches to communicate with

designers. B) A portion of the finite state machine used to communicate with

software developers.

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

28

D. Actor Identification Scheme

 The mean-shift algorithm is useful to detect and track

multiple actors, but it is not possible to identify which actor is

a user and which actor is a puck. We designed a scheme where

the programmer decides how many users and pucks the

application will have, the order of how they will enter to the

area and their respective initial positions. Initially some initial

positions have to be established. When an application is

running it has 2 modes (Figure 5). The detection mode when

the system waits until all centroids activate. An activation

occurs when we place an actor in the initial position. Every

actor is activated one by one and there is no chance that both

actors are activated at the same time. There is no problem with

how users should enter, but every puck has to be activated in

its initial position. A puck in a wrong initial position cannot be

allowed. To help the system identify pucks in the system we

use the same Glyphs used to track their orientation.

 After every puck is activated, the system enters to tracking

mode, where the system starts tracking all the actors’ position.

It is required that at least a user stays near a puck in order to

move. This is because it has no sense that a puck moves by

itself. Also, in this stage the system has to know when a group

of users is near a puck.

VII. IMPLEMENTATION

A. Sensor Position

Now that we have an actor identification scheme working with

the mean – shift algorithm, the next thing to establish is the

sensor position. We tried three possibilities; first, the frontal

position which is completely different to the tabletop notion

and has problems detecting actors when an actor is behind

another. Next, we have the top central position, where the

Kinect is located in the top – center of the area probably in the

ceiling. The problem with this option is that we discovered we

needed to position the Kinect at least 2.76 meters at top to

reach a 4 square meters area. Finally, we have the diagonal

position. In this configuration the Kinect is at the top too, but

not in the center. With this configuration it is possible to cover

the 4 square meters required using a height less than the top –

center configuration. In Figure 6 we can see the Kinect in a

diagonal configuration. The darker part is the detection area,

actors will be detected at that area. The lighter area is called

the death zone and is beyond the Kinect view angle, this

means this is the minimal horizontal distance where actors can

be detected. That zone depends of the height where the Kinect

is located. If we position the Kinect at 2.72 meters but using

diagonal configuration instead of top center. We will have a

death zone of 0.78 meters, also we could reach an area of

more than 5 square meters. The problem with it is that the

more height the less visibility, so we can’t position too high.

Our test were made at 2.26 meters and we covered the 4

square meters with no problem. Calculations are explained in

Equations (2)(Figure 6):

ma

a

B
h

A
a

mhb

m
m

h

38.4

)27sin(
89.2

)5.43sin(

)sin()sin(

78.072.2

89.2
)5.70sin(

72.2

22











 (2)

B. System Architecture

We needed a system capable to integrate the Kinect with some

augmented reality library in order to use both systems at the

same time in an easy way. Goblin XNA is an open platform to

create 3D user interfaces with XNA. We decided to use XNA

because it uses XNA functions that can be easily integrated

with the Kinect SDK developed by Microsoft. Also Goblin

XNA simplifies some of the normal functions from XNA by

the use of different type of nodes making easier work with 3D

graphics and augmented reality and to include videogame

narratives taking advantage of the XNA game library.

VirtuaOM is used in conjunction with XNA, so it is

mandatory to install Goblin XNA, to create a XNA scene and

call both Goblin XNA and VirtuaOM to be used. Our system

has a main Controller class where after the programmer

creates all the actors he or she wants, they will be stored on

that class (Figure 7). Those actors, no matter if they are Users

or Pucks depend on the Kinect camera. On the other hand, the

Puck class uses the marker node class which is the class that

manages the augmented reality Glyphs in Goblin XNA. That

class depends of a library named ALVAR which is the class

which really is in charge of the augmented reality modules and

at the same time the class ALVAR depends on the Kinect. The

code required to use the actors includes:

 1) Actor and controller definition.

Fig. 7. VirtuaOM Architecture.

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

29

public puck.puck marker1; // puck actor

public puck.persona persona1; // user actor

public puck.controlador referi ; // controller

 2) Actor and controller initialization.

marcador1 = new puck.puck (x,y,z, 1); // puck actor

person1 = new puck.persona (x,y,z, 0); // user actor

referi = new controlador(); // controller

 3) Adding actors to the controller.

referi.Add_element(marcador1); // puck actor

referi.Add_element(persona1); // user actor

C. Independent centroid calculation every Frame.

 At first, when we executed the mean-shift algorithm in

some computers it was impossible to do real – time detection.

This happened because the mean shift calculation requires a

lot of calculation when there are more than 3 authors or more

at the same time. There is no problem when we use the

algorithm with a single author. We present a case with a Core

I3 computer with no specialized graphics card, where we test

the system under 2 conditions. In the first one, we disabled the

window collision calculation, in the second we ran the system

under normal circumstances. In the first case we obtained a

29FPS latency, with the second we obtained 14FPS latency.

We figured out that calculating a single centroid for tracking is

so fast that the human eye cannot see it, so we decided to

calculate every author separated in a different cycle. The

number of calculations made every refresh decreased. With

this we achieved a 26FPS latency doing all the calculations.

VIII. RESULTS

 We evaluated the response time in 3 different computers

with their own characteristics under 2 experiments. The first

experiment consisted in 3 users and 3 pucks moving around

the detection area. On the second experiment, we asked the

users to change pucks constantly and to form groups on every

puck. The computers used in the experiment were core i3

processor pc with a low performance graphic card (PC1), a

core i5 with an Intel HD 4000 graphic card (PC2) a high

performance core i7 with an NVidia GTX460 graphic card

(PC3). The results obtained are shown in Table I.
 In the experiments, we noticed some fluctuations on the

average latency. Big part of the low latency is obtained when

3 or more authors are together. Nevertheless, with the

fluctuations, it is still possible to obtain detections on real time

even with low performance computer.

 Additionally, to show the capability to integrate VirtuaOM

with other multimedia libraries and to show the possibilities

on multimodal interaction we developed a tangible audio

reproducer. On this application we used the library irrKlang to

control sounds. The idea is that 3 users control 3 pucks to do

the next actions (Figure 8):

1) Position puck 1 up in a play button to play/pause a song.

2) Walk through a specific area with the puck 2 to change

and repeat a song position.

3) Rotate the puck 3 to change the volume of the song.

 Then, we evaluated the interface with users based on the

Nielsen design heuristics [10]. We discovered that the

interface was easy to understand by users but it fails with user

control and freedom because when a user goes out from the

detection area there is no way to show that what he or she is

doing is wrong.

 Also, we asked five software developers how easy they felt

the library was and they all agreed if was very straight forward

to program. Finally, we asked five potential users from one

museum for potential application of this library and they found

it very useful.

IX. CONCLUSION

 A benefit of implementing the library working together with

Goblin XNA is that the use of this platform allows to present

different type of multimedia content. The children nodes

presented in Figure 7 are used by Goblin XNA to associate to

main nodes, different types of multimedia files, such as

sounds, 3D images, 2D images and videos. We can exploit

that feature to improvise new type of interactions with

VirtuaOM. Additionally, the augmented reality interface

allows VirtuaOM to show information in different ways than a

projection. This is important because not all floors can be used

for projections.

 We recognize the importance of the tangible interfaces in

order to allow the user a multimodal interaction with a

computer, also the importance of having an interface that

allow us interacting not only with the system but with other

users. VirtuaOM was built as an alternative to create tangible

collaborative interfaces of multiple purpose without being too

expensive not only on production but in maintenance cost.

TABLE I

RESPONSE TIME EVALUATION

PC Experiment 1 Experiment 2

PC1 12 - 27 FPS 17 - 27 FPS

PC2 40 - 50 FPS 27 - 30 FPS

PC3 60 FPS 60 FPS

Fig. 6. Kinect position.

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

30

VirtualOM proposes a solution for challenges (2), (3), (4), (5)

and (6) described in Section II, C.

 The computer vision approach allowed us keeping the

sensors in places where they do not disturb the user when he

or she interacts with the system. Even if other approaches are

faster to detect and track objects, we showed that is possible

use computer vision at 25-60fps latencies, which are enough

for real time applications.

 The best field of action on VirtuaOM are interfaces when it

is necessary create an interface capable to interact not only

with users collaboratively but with the environment where is

located. In places like museums exhibitions, where the

computer system should not make the users ignore the

museum content, on the contrary it should become a guide for

the users through the installations, interfaces like VirtuaOM

could be a great option, especially if we take advantage of the

integration with Goblin XNA or the possibility of using other

libraries to create Augmented and Mixed reality options.

REFERENCES

[1] E. Costanza, M. Giaccone, O. Kueng, S. Shelley, and J. Huang (20100.
Tangible interfaces for download: initial observations from users'
everyday environments. In CHI '10 Extended Abstracts on Human
Factors in Computing Systems (CHI EA '10). ACM, New York, NY,
USA, 2765-2774. DOI=10.1145/1753846.1753862
http://doi.acm.org/10.1145/1753846.1753862

[2] H. Ishii, B. Ullmer (1997). “Tangible bits: towards seamless interfaces
between people, bits and atoms”. In Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems (CHI '97). ACM,
New York, NY, USA, 234-241. DOI=10.1145/258549.258715
http://doi.acm.org/10.1145/258549.258715

[3] J. Patten, H. Ishii., J. Hines, G. Pangaro. (2001). “Sensetable: a wireless
object tracking platform for tangible user interfaces”. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'01). ACM, New York, NY, USA, 253-260.
DOI=10.1145/365024.365112
http://doi.acm.org/10.1145/365024.365112 .

[4] C. C. Ventes, A. A. Navarro-Newball, D. A. Velasco, E. C. Prakash,
(2014). " VirtuaOM: Tangible Human-Computer Interface for
Collaborative Applications." . En: Singapore Proceedings of the 7th
Anual International Conference on Computer Games, Multimedia and
Allied Technologies (CGAT 214), 25-33 ISSN: 2251-1679.

[5] P. M. Roth, M. Winter. “Survey of appearance-based methods for object
recognition”. Published January 15 2008. Inst. For Computer Graphics
and Vision Graz University of Technology, Austria 134

[6] B. Ullmer, H. Ishii, R. J. K. Jacob (2005). “Token+constraint systems
for tangible interaction with digital information”. ACM Trans. Comput.-
Hum. Interact. 12, 1 (March 2005), 81-118.
DOI=10.1145/1057237.1057242
http://doi.acm.org/10.1145/1057237.1057242

[7] K. Nesbitt, B. Orenstein, R. Gallimore (1997) “The Haptic Workbench
applied to Petroleum 3D Seismic Interpretation”. The Second
PHANToM User’s Group Workshop, 1997.

[8] M. Blackshaw, A. DeVincenzi, D. Lakatos, D. Leithinger, H. Ishii
(2011). “Recompose: direct and gestural interaction with an actuated
surface”. In CHI '11 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '11). ACM, New York, NY, USA, 1237-
1242. DOI=10.1145/1979742.1979754
http://doi.acm.org/10.1145/1979742.1979754

[9] J.M. Patten (1999). “SENSETABLE: A Wireless Object Tracking
Platform for Tangible User Interfaces”. Master dissertation thesis,
University of Virginia.

[10] J. Nielsen (2013). “10 Usability Heuristics for User Interface Design”.

http://www.nngroup.com/articles/ten-usability-heuristics/

[11] H. Ishii, D. Lakatos, L. Bonanni, JB. Labrune (2012). “Radical atoms:
beyond tangible bits, toward transformable materials”. interactions 19, 1
(January 2012), 38-51. DOI=10.1145/2065327.2065337
http://doi.acm.org/10.1145/2065327.2065337

[12] J. Zigelbaum, A. Browning, D. Leithinger, O. Bau, H. Ishii (2010). “g-
stalt: a chirocentric, spatiotemporal, and telekinetic gestural interface”.
In Proceedings of the fourth international conference on Tangible,
embedded, and embodied interaction (TEI '10). ACM, New York, NY,
USA, 261-264. DOI=10.1145/1709886.1709939
http://doi.acm.org/10.1145/1709886.1709939

[13] D. Kirsh (1995) “The intelligent use of space”. Department of cognitive
science, UCSC, La Jolla, CA. Junio 1995, available at
http://www.ida.liu.se/~729G12/mtrl/intelligent_use_of_space.pdf

[14] A. Kumpf (2009) “Trackmate: Large-Scale Accessibility of Tangible
User Interfaces”. Masters thesis. Masters of Science. Massachusetts
Institute of Technology

[15] X. Xiao, M.S. Bernstein, L. Yao, D. Lakatos, L. Gust, K. Acquah, H.
Ishii (2011). “PingPong++: community customization in games and
entertainment”. In Proceedings of the 8th International Conference on
Advances in Computer Entertainment Technology (ACE '11), Teresa
Romão, Nuno Correia, Masahiko Inami, Hirokasu Kato, Rui Prada,
Tsutomu Terada, Eduardo Dias, and Teresa Chambel (Eds.). ACM, New
York, NY, USA, , Article 24 , 6 pages. DOI=10.1145/2071423.2071453
http://doi.acm.org/10.1145/2071423.2071453

[16] Marcosalonso (2012). “Reactable: basic demo #2”. Visited january
2012. available at http://www.youtube.com/watch?v=MPG-LYoW27E

[17] J. Lee, R. Post, H. Ishii (2011). “ZeroN: mid-air tangible interaction
enabled by computer controlled magnetic levitation”. In Proceedings of
the 24th annual ACM symposium on User interface software and
technology (UIST '11). ACM, New York, NY, USA, 327-336.
DOI=10.1145/2047196.2047239
http://doi.acm.org/10.1145/2047196.2047239

[18] J. Paradiso, C. Abler, K. Hsiao, M. Reynolds. (1997). “The magic
carpet: physical sensing for immersive environments”. CHI '97
Extended Abstracts on Human Factors in Computing Systems (CHI EA
'97). ACM, New York, NY, USA, 277-278.
DOI=10.1145/1120212.1120391
http://doi.acm.org/10.1145/1120212.1120391

[19] L. Chan, L. Hyk (2010.). "The magicpad: a spatial augmented reality
based user interface". The 2010 Virtual Concept International
Conferences (IDMME 2010), Bordeaux, France, 20-22 October 2010. In
Proceedings of the IDMME, 2010.

[20] K. Sitdhisanguan, N. Chotikakamthorn, A. Dechaboon, and P. Out
(2012). Using tangible user interfaces in computer-based training
systems for low-functioning autistic children. Personal Ubiquitous
Comput. 16, 2 (February 2012), 143-155. DOI=10.1007/s00779-011-
0382-4 http://dx.doi.org/10.1007/s00779-011-0382-4

[21] P. Lapides, E. Sharlin, and M. Costa Sousa (2008). Three dimensional
tangible user interface for controlling a robotic team. In Proceedings of
the 3rd ACM/IEEE international conference on Human robot interaction
(HRI '08). ACM, New York, NY, USA, 343-350.
DOI=10.1145/1349822.1349867
http://doi.acm.org/10.1145/1349822.1349867

[22] O. Shaer and R. J.K. Jacob (2009). A specification paradigm for the
design and implementation of tangible user interfaces. ACM Trans.
Comput.-Hum. Interact. 16, 4, Article 20 (November 2009), 39 pages.
DOI=10.1145/1614390.1614395
http://doi.acm.org/10.1145/1614390.1614395

[23] O. Shaer, N. Leland, E. H. Calvillo-Gamez, and R. J. K. Jacob (2004).
The TAC paradigm: specifying tangible user interfaces. Personal
Ubiquitous Comput. 8, 5 (September 2004), 359-369.
DOI=10.1007/s00779-004-0298-3 http://dx.doi.org/10.1007/s00779-
004-0298-3

[24] A. Tang, M. Pahud, S. Carpendale, and B. Buxton (2010). VisTACO:
visualizing tabletop collaboration. In ACM International Conference on
Interactive Tabletops and Surfaces (ITS '10). ACM, New York, NY,
USA, 29-38. DOI=10.1145/1936652.1936659
http://doi.acm.org/10.1145/1936652.1936659

[25] A. Kharrufa, R. Martinez-Maldonado, J. Kay, and P. Olivier (2013).
Extending tabletop application design to the classroom. In Proceedings
of the 2013 ACM international conference on Interactive tabletops and

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

31

surfaces (ITS '13). ACM, New York, NY, USA, 115-124.
DOI=10.1145/2512349.2512816
http://doi.acm.org/10.1145/2512349.2512816

[26] A. Clayphan, A. Collins, C. Ackad, B. Kummerfeld, and J. Kay (2011).
Firestorm: a brainstorming application for collaborative group work at
tabletops. In Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS '11). ACM, New York, NY,
USA, 162-171. DOI=10.1145/2076354.2076386
http://doi.acm.org/10.1145/2076354.2076386

[27] M. Horn, Z. Atrash Leong, F. Block, J. Diamond, E. M. Evans, B.
Phillips, and C. Shen (2012). Of BATs and APEs: an interactive tabletop
game for natural history museums. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '12). ACM,
New York, NY, USA, 2059-2068. DOI=10.1145/2207676.2208355
http://doi.acm.org/10.1145/2207676.2208355

[28] A. Tabard, J. Hincapié-Ramos, M. Esbensen, and J. E. Bardram (2011).
The eLabBench: an interactive tabletop system for the biology
laboratory. In Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS '11). ACM, New York, NY,
USA, 202-211. DOI=10.1145/2076354.2076391
http://doi.acm.org/10.1145/2076354.2076391

[29] M. Khalilbeigi, J. Steimle, J. Riemann, N. Dezfuli, M. Mühlhäuser, and
J. D. Hollan (2013). ObjecTop: occlusion awareness of physical objects
on interactive tabletops. In Proceedings of the 2013 ACM international
conference on Interactive tabletops and surfaces (ITS '13). ACM, New
York, NY, USA, 255-264. DOI=10.1145/2512349.2512806
http://doi.acm.org/10.1145/2512349.2512806

[30] S. Klemmer. Katayanagi lectura at Carnegie mellon university. Video:
http://www.youtube.com/watch?v=-QXEb6XSvXs

[31] A. Grosskopf, M. Weske, J. Edelman, M. Steinert, L. Leifer. Design
Thinking implemented in Software Engineering Tools Proposing and
Applying the Design Thinking Transformation Framework.
hassoPlattner-Institute, University Potsdam, Germany, center for Design
research, Stanford University, cA, USA. Disponible
http://www.dab.uts.edu.au/research/conferences/dtrs8/docs/DTRS8-
Luebbe-et-al.pdf

[32] T. Brown and B. Katz (2009) Change by Design: How Design
Thinking Transforms Organizations and Inspires Innovation, Harper
Business, New York

[33] A. Fox and D. Patterson (2013). Engineering Software as a Service: An
Agile Approach Using Cloud Computing. Strawberry Canyon LLC.
ISBN-10: 0984881247.

AUTHORS’ PROFILE

Christian C. Ventes. Software Engineer with Animation and Interactive

Systems emphasis from the Pontificia Universidad Javeriana, Cali in

Colombia. Interested in the areas of Human computer interaction, Interaction

design, Interface development, user experience, affective computation and

Computer graphics specialized in video games development.

Andrés A. Navarro-Newball. MSc and PhD in Computer Graphics.

Associate Professor from the Electronics and Computer Science Department

at the Pontificia Universidad Javeriana, Cali. WEB:

http://cic.puj.edu.co/~anavarro

Deivy A. Velasco. Software Engineer from the Fundación Universitaria de

Popayán University and master in computer science from the Pontificia

Universidad javeriana cali in Colombia. Specialized in Interactive Systems,

such as Augmented reality and speech processing.

Edmond C. Prakash. Professor in Computer Games Programming in the

Department of Creative Technology, Faculty of Science and Technology,

Bournemouth University, United Kingdom.

GSTF Journal on Computing (JoC) Vol.4 No.1, October 2014

© 2014 GSTF

32

