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Force production during maximal effort bend sprinting: theory 1 

versus reality 2 

ABSTRACT 3 

This study investigated whether the ‘constant limb force hypothesis’ can be applied to bend 4 

sprinting on an athletics track and to understand how force production influences 5 

performance on the bend compared with the straight. Force and three-dimensional video 6 

analyses were conducted on seven competitive athletes during maximal effort sprinting on the 7 

bend (radius 37.72 m) and straight. Left step mean peak vertical and resultant force decreased 8 

significantly by 0.37 BW and 0.21 BW, respectively, on the bend compared with the straight. 9 

Right step force production was not compromised in the same way, and some athletes 10 

demonstrated substantial increases in these variables on the bend. More inward impulse 11 

during left (39.9 ± 6.5 Ns) than right foot contact (24.7 ± 5.8 Ns) resulted in 1.6° more 12 

turning during the left step on the bend. There was a 2.3% decrease in velocity from straight 13 

to bend for both steps. The constant limb force hypothesis is not entirely valid for maximal 14 

effort sprinting on the bend. Also, the force requirements of bend sprinting are considerably 15 

different to straight-line sprinting and are asymmetrical in nature. Overall, bend-specific 16 

strength and technique training may improve performance during this portion of 200 m and 17 

400 m races. 18 

 19 
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Introduction 22 

Force production during maximal effort sprinting on the bend, on the surfaces and at radii 23 

typical of athletic sprint events, is not well understood. This is despite the fact that during 24 

200 m and 400 m track and field sprint events more than 50% of the race is run on the bend 25 

section of the track. Utilising information from Greene (1985) and Weyand et al. (2000), 26 

Usherwood and Wilson (2006) adopted the ‘constant limb force hypothesis’ for their 27 

mathematical model of bend sprinting. This model assumes that athletes running on the bend 28 

would generate the same constant maximum resultant force as on the straight. Thus, with the 29 

additional requirement to generate centripetal force to turn on the bend (and stay within the 30 

lane), it was postulated by Usherwood and Wilson (2006) that athletes would increase the 31 

time spent in ground contact in order to produce the necessary vertical and inward impulses. 32 

This consequently would reduce the sprinting speed. On the other hand, Gaudet (2014), when 33 

creating a mathematical model for sprinting, speculated that athletes do not apply maximum 34 

force during the bend running, although the author did not provide any empirical evidence for 35 

this statement.  36 

 37 

In contrast to the above, empirical research into maximal effort sprinting on bends of very 38 

small radii (1-6 m) has found athletes to be unable to achieve the resultant and vertical forces 39 

on the bend that they were capable of during straight-line sprinting (Chang & Kram, 2007). 40 

Even during slower running (approximately 6 m/s) on larger radii typical of an athletics track, 41 

vertical force production has been observed to be reduced compared with straight-line 42 

running (Hamill et al., 1987). 43 

 44 

There is reason to believe that left and right legs may have different roles in force production 45 

and in keeping the athletes on the appropriate curved path during bend sprinting. Chang and 46 



 

 

Kram (2007) found that during sprinting on bends with radii of 1-6 m, the right leg produced 47 

greater peak lateral forces than the left leg. In contrast, Hamill et al. (1987) found that at a 48 

bend radius of 31.5 m, larger peak lateral forces were produced by the left leg than the right 49 

leg when running at approximately 6 m/s. Churchill et al. (2015) reported that, during 50 

maximal effort sprinting on a track bend radius of 37.72 m, more turning was achieved 51 

during the left ground contact than the right. This suggests that when sprinting maximally at 52 

radii typical of an athletics track, the left leg may produce greater inward force than the right 53 

leg. However, empirical measurement is required to confirm this.  54 

 55 

Although Usherwood and Wilson (2005) demonstrated that the constant limb force 56 

hypothesis fails for greyhounds (limb forces increase on the bend), this theory has never been 57 

appropriately and empirically tested on sprinters running on an athletics track. Thus, the main 58 

aim of this study was to empirically investigate whether the constant limb force hypothesis is 59 

valid in maximal effort bend sprinting. In order to test this, force production characteristics 60 

were compared between bend and straight line sprinting with a view to understand how any 61 

potential changes in force production contribute to changes in performance descriptors. Based 62 

on the empirical literature of smaller radii running, it was hypothesised that athletes would 63 

produce less maximum resultant and vertical force on the bend than the straight. The second 64 

hypothesis was that more inward impulse, and thus turning, would be generated during the 65 

left ground contact than the right.  66 

 67 

Methods 68 

Participants 69 

Considering that all participants were required to be experienced in bend sprinting (200 m 70 

and/or 400 m) and competed at national or international level, and the fact that such athletes 71 



 

 

are often reluctant to take part in research (Kearney, 1999), an opportunistic sampling of 72 

seven male sprinters from a limited pool of appropriate athletes volunteered for the study. 73 

The mean age, mass and height of the participants were 22.6 ± 4.2 years, 70.7 ± 9.2 kg and 74 

1.76 ± 0.06 m, respectively, with the mean 200 m personal best time = 22.04 ± 0.74 s (range 75 

= 20.89 s to 22.90 s). The study procedures were approved by the local research ethics 76 

committee and all athletes provided written informed consent. 77 

 78 

Data collection 79 

Athletes undertook maximal effort sprints on the bend and straight in an indoor athletics 80 

centre. For the bend trials, markings were made on the track surface across the flat infield to 81 

fully replicate 60 m of lane 2 of a standard outdoor track (radius: 37.72 m). Bend trials were 82 

completed entirely around the bend and straight trials entirely on the straight. Two 0.90 m by 83 

0.60 m force plates (9287BA, Kistler Instruments Ltd, Switzerland) operating at 1000 Hz 84 

were located contiguously in an area where the bend and straight lanes overlapped (Fig. 1). 85 

The force plates were isolated from the track foundations and surrounding track surface, and 86 

were covered with a piece of firmly-secured synthetic track surface which was flush with the 87 

rest of the track. Two video cameras (HVR-Z5E, Sony Corporation, Japan) operating at 200 88 

Hz, with a shutter speed of 1/600 s, recorded a whole step starting from touchdown on the 89 

force plate and finishing with the touchdown of the contralateral leg. The separation angle of 90 

the two cameras' optical axes was approximately 95° (Fig. 1). 91 

 92 

***Fig. 1 near here*** 93 

 94 

An 18-point structure was used to calibrate a three-dimensional (3D) activity volume (6.00 m 95 

long × 1.60 m wide × 2.00 m high). The positive y-axis of the global coordinate system 96 



 

 

(GCS) was aligned with the positive y-axis of the force plates (the primary direction of travel 97 

of the athlete within the activity volume), the positive x-axis was to the right and positive z-98 

axis was vertically upwards.  99 

 100 

Athletes completed their typical competition warm up before undertaking up to six 60 m 101 

maximal effort sprints to achieve one successful left step and one successful right step on the 102 

bend and one successful left step and one successful right step on the straight. A step was 103 

assigned as left or right based on the leg producing the force on the initial contact with the 104 

force plate and for the following airborne phase. A successful trial was when the athlete’s 105 

foot made contact within the force plate area without any visible alteration to the step pattern. 106 

All athletes achieved the required four different steps within the agreed maximum of six runs. 107 

This was helped by one investigator modifying the starting location of athletes based on a 108 

warm-up run and consequent trials after spotting the locations of the steps on the force plate 109 

area. In order to reduce the likelihood of force plate targeting, athletes were not informed of 110 

the location of the force plates, nor were they easily visible. All athletes had at least 40 m 111 

run-up, before the filming area. Recovery time between trials was approximately eight 112 

minutes. 113 

 114 

Data processing 115 

All trials were manually digitised using Vicon Motus software (Version 9.2, Vicon, Oxford, 116 

UK) at a resolution of 720 × 576 pixels with a 2 × zoom function increasing the effective 117 

resolution of the screen to 1440 × 1152 pixels. Two sets of synchronised 20-LED displays 118 

were triggered during each trial to allow the video streams and the force data to be 119 

synchronised to the nearest 1 ms.  120 

 121 



 

 

Digitised trial video clips included 10 fields before the touchdown on the force plate and 10 122 

fields after the next touchdown to mitigate against end-point errors in the data conditioning 123 

process (Smith, 1989). The digitised 20-point model of the human body consisted of the top 124 

of the head, the joint centres of the neck (C7 level), shoulders, elbows, wrists, hips, knees, 125 

ankles, second metatarsophalangeal (MTP) joints and the tips of the middle finger and 126 

running shoe. Six video fields of the calibration structure were digitised in each camera view 127 

to provide 11 DLT parameters (Abdel-Aziz & Karara, 1971). The raw 3D coordinates and the 128 

force data were exported to a custom written Matlab script (v7.9.0, The MathWorks, USA) 129 

for further processing. Position data were filtered with a low-pass, 2nd order, zero lag, 130 

recursive Butterworth filter (Winter, 2009) with a cut-off frequency of 20 Hz. Force data 131 

were filtered with a 150 Hz cut-off frequency, chosen based on previous sprint research under 132 

similar testing conditions (Bezodis et al., 2014).  133 

 134 

A 16-segment kinematic model of the human body was created. A standard 14-segment body 135 

model, with inertia data from de Leva (1996), had the feet additionally split into rearfeet and 136 

forefeet based on the average ratio of the male data obtained for Bezodis et al. (2012). The 137 

mass of a typical spiked sprinting shoe (0.2 kg; Hunter et al., 2004) was added to the mass of 138 

each foot with 85% and 15% added to the rearfeet and forefeet, respectively (Churchill et al. 139 

2015). The ratios of the total mass for all segment masses were, thus, adjusted accordingly.  140 

 141 

Gait events (touchdown and take off) were determined using a combination of force plate and 142 

kinematic data. Touchdown and take-off on the force plate were defined using a two standard 143 

deviation threshold of the mean zero-load vertical force. An alternative first touchdown event 144 

was also determined from the peak vertical acceleration of the touchdown MTP point 145 

(Bezodis et al., 2007) and used only for the purpose of calculating step time. Second 146 



 

 

touchdown, which occurred off the force plate, was identified solely from this peak vertical 147 

acceleration of the touchdown MTP.  148 

 149 

Calculation of variables 150 

All variables were measured separately for the left and right steps. A number of ground 151 

reaction force variables were calculated and expressed relative to body weight (BW). 152 

Impulses were calculated in absolute terms and also expressed relative to body mass. 153 

Variables were selected based on force variables that have been shown to be important for 154 

performance in the straight-line sprinting literature and in the limited bend sprinting 155 

literature. These included peak values in horizontal, vertical and resultant directions, and the 156 

mean values and impulses over ground contact in each direction. Force data were aligned 157 

with the GCS for straight trials. During the bend trials, the horizontal forces in the GCS were 158 

rotated relative to the direction of travel of the athlete using a finite difference method based 159 

on the horizontal displacement of the Centre of Mass (CoM; Glaister et al., 2007). 160 

 161 

Additionally, performance descriptors were selected based on those that have been shown to 162 

be affected by sprinting on the bend (Churchill et al., 2015). Full details of the methods of 163 

calculation of race velocity (the athletes’ performance with respect to the official race 164 

distance), race step length (the length of the race distance covered by each step), step 165 

frequency and turn of the CoM during ground contact (the change in trajectory of the CoM 166 

during contact to follow the curved path in the bend trials) can be found in Churchill et al. 167 

(2015). In the present study, ground contact time was calculated as the time from touchdown 168 

to take off, as identified using force plate data. Flight time was calculated as step time (based 169 

on MTP acceleration data) minus ground contact time.  170 

 171 



 

 

Statistical analysis 172 

Paired samples t-tests were used to identify significant differences between left and right 173 

steps for variables within the straight and bend conditions separately, and between the 174 

straight and bend for the left and right steps separately. Based on Perneger (1998) and 175 

additionally in order to limit the risk of a type II error, no adjustment was made to the alpha 176 

level (P < 0.05). All statistical analyses were performed using IBM SPSS Statistics software 177 

(v19.0, SPSS Inc., USA). Cohen’s d effect sizes (Cohen, 1988) are provided in the results 178 

section as additional contextualisation of the meaning of the results. Magnitudes less than or 179 

equal to 0.20 represent a small difference, d greater than 0.20 but less than 0.80 a moderate 180 

difference and d greater than or equal to 0.80 a large difference, between the two means.  181 

 182 

Results 183 

Mean peak resultant force during the left step was lower on the bend (3.61 ± 0.45 BW) than 184 

the straight (3.82 ± 0.53 BW; P = 0.044, d = 0.45, Table 1). For the right step, however, mean 185 

peak resultant force was greater on the bend (4.19 ± 1.29 BW) than the straight (3.66 ± 186 

0.29 BW; P = 0.248, d = 0.57, Table 1), although this result was markedly influenced by one 187 

athlete producing a peak resultant force of 7.02 BW during the right step on the bend, 188 

compared with 4.11 BW for the right step on the straight.  189 

 190 

***Table 1 near here*** 191 

 192 

Typical ground reaction force-time curves for the left and right steps on the bend and straight 193 

are provided in Fig. 2. There was a 19% increase in braking impulse (P = 0.012, d = 0.72) 194 

and the duration of braking (13% increase, P = 0.003, d = 1.25) for the left step on the bend 195 

when compared with the left step on the straight (Table 2). Additionally, there was greater 196 



 

 

braking impulse (33% increase, P = 0.001, d = 1.34) and duration of braking (30% increase, 197 

P < 0.0005, d = 2.84) for the left compared with the right step on the bend. Mean peak inward 198 

force and net inward impulse were higher during the left step than the right step on the bend 199 

(P = 0.018, d = 0.85 and P = 0.001, d = 2.46, respectively, Table 3).  200 

 201 

***Fig. 2 near here*** 202 

***Tables 2 and 3 near here*** 203 

 204 

Mean race velocity was 2.3% lower on the bend compared with the straight for both the left 205 

step (P = 0.012, d = 0.48) and right step (P = 0.001, d = 0.47; Table 4). The mean right race 206 

step length reduced from 2.12 ± 0.08 m on the straight to 2.02 ± 0.07 m on the bend 207 

(P = 0.030, d = 1.31). This was accompanied by a slight increase in mean right step 208 

frequency from 4.49 ± 0.22 Hz on the straight to 4.59 ± 0.23 Hz on the bend (P = 0.225, 209 

d = 0.47). There were non-significant reductions (0.03 m) in left race step length (P = 0.148, 210 

d = 0.67) and left step frequency (0.02 Hz decrease, P = 0.404, d = 0.13) from straight to 211 

bend. A slight decrease in left step frequency and the increase in right step frequency on the 212 

bend did, however, result in a significant difference between left and right steps on the bend 213 

for this variable (right step frequency 0.15 Hz higher, P = 0.024, d = 0.67, Table 4), which 214 

was not seen on the straight. Additionally, there was more turning (change of CoM trajectory) 215 

achieved during the left step (4.2 ± 0.9°) than the right step (2.6 ± 0.7°) on the bend 216 

(P = 0.025, d = 1.99, Table 4).  217 

 218 

***Table 4 near here*** 219 

 220 

 221 



 

 

Discussion 222 

To the authors’ knowledge this is the first full study to empirically investigate force 223 

production in maximal effort sprinting on a radius and surface typical of outdoor athletic 224 

competition. We investigated both whether the constant limb force hypothesis can be applied 225 

to bend sprinting and how force production on the bend influences performance. Firstly, we 226 

found that the constant limb force hypothesis is not fully valid in bend sprinting. Secondly, 227 

there are clear disparities in force production and function between left and right legs, which 228 

affect bend sprinting performance differently.  229 

 230 

A reduction in left step peak vertical (9.8%) and resultant forces (5.7%) on the bend 231 

compared with the straight confirms our study’s first hypothesis, at least for the left step, that 232 

lower vertical and resultant forces would be generated on the bend than on the straight. The 233 

0.21 BW reduction in peak resultant force production in the present study for the left step on 234 

the bend compared with the straight runs counter to Usherwood and Wilson’s (2006) use of 235 

the constant limb force assumption which suggested that athletes will generate a maximum 236 

resultant force on the bend equal to that generated on the straight. Our finding, however, 237 

concurs with the ground reaction force results of Chang and Kram (2007).  238 

 239 

The bend did not appear to compromise vertical or resultant force production during the right 240 

step (Table 1), thus the study’s first hypothesis is rejected for the right step. In fact, peak 241 

resultant force increased from 3.66 ± 0.29 BW on the straight to 4.19 ± 1.29 BW on the bend 242 

for the right step (Table 1). This increase was, however, influenced by an exceptionally large 243 

(more than seven times body weight) peak resultant force produced during the right step on 244 

the bend by one athlete. These very large forces produced by this one athlete seems to have 245 

been due to an individualised technique, as the athlete produced higher forces than any other 246 



 

 

athlete in each of the conditions, even once normalised to body weight. This athlete was 247 

running at the second highest velocity within that condition (9.66 m/s) and the ground contact 248 

time for that step was the shortest at 0.097 s. When that athlete’s result for peak resultant 249 

force during the right step was removed, the group mean was 3.58 ± 0.23 BW on the straight 250 

and 3.72 ± 0.37 BW on the bend. Although this was not statistically significant, the 14% 251 

increase in right step peak resultant force on the bend compared with the straight, and 252 

considering the substantial increase in force on the bend for some athletes, these results 253 

demonstrate that the constant limb force hypothesis may not be valid for the right leg either. 254 

Usherwood and Wilson (2006) were able to use their mathematical model effectively to 255 

match indoor competition results based on the outdoor sprinting speeds. However, it is clear 256 

the constant limb force hypothesis is not a valid assumption for humans sprinting maximally 257 

on an outdoor athletics track, especially when specific information about force production is 258 

required. 259 

 260 

Naturally, the horizontal (anteroposterior) force production is also very important in 261 

sprinting. As this study was conducted at the perceived maximum velocity phase, the net 262 

anteroposterior impulse by default is very close to zero (just enough positive to counteract the 263 

air resistance of the sprinter). Thus, we could not expect large differences in anteroposterior 264 

forces between the conditions. However, there was a statistically significant difference in 265 

anteroposterior propulsive impulse between straight and bend for the right step. This was 266 

mainly due to one athlete as explained above. Gaudet (2014), using a mathematical model 267 

containing several assumptions, speculated that during Berlin 2009 World Championships, 268 

Usain Bolt applied 97.3% of the horizontal forces in the curve of the 200 m final in 269 

comparison with his 100 m final in the same championships. In the current study, the left step 270 

peak anteroposterior propulsive force on the bend was 93.0% of that on the straight. The 271 



 

 

respective value for the right step was 106.3%. However, as our forces are actual measured 272 

forces during a step and Gaudet’s (2014) value is an estimation over a longer period of race, 273 

we need to be careful of drawing any meaningful comparisons from the values.  274 

 275 

Kinematic analysis of maximal (Churchill et al., 2015) and submaximal (Alt et al., 2015) 276 

effort bend sprinting has shown that inward lean during bend sprinting results in greater 277 

adduction of the left hip during the ground contact phase of bend sprinting compared with 278 

straight-line sprinting. On the other hand, Churchill et al. (2015) reported that the right hip 279 

abduction/adduction angle at touchdown was not significantly affected by the bend and that 280 

peak adduction was less on the bend compared with the straight. The inward lean and 281 

adduction/abduction angles could also influence why there were statistically significant 282 

differences in horizontal braking impulses between left and right step on the bend (left step 283 

braking larger) and between the straight and bend conditions for the left leg (bend condition 284 

larger). It seems that due to inward lean, left leg has ‘less room’ (in relation to CoM) to 285 

produce the pull-back action in the air and consequently makes contact earlier producing 286 

larger and longer braking phases.   287 

 288 

Some of the muscles that are involved in hip and knee flexion or extension are also involved 289 

in controlling hip abduction or adduction (Palastanga et al., 2006). Thus, it is possible that 290 

alterations to joint positions in the frontal plane may have an impact on those muscles’ ability 291 

to generate forces in the sagittal plane. Indeed, it has been suggested that the ability to sustain 292 

forces in the frontal plane, whilst generating force in the sagittal plane, may be the limiting 293 

factor to bend running performance (Chang & Kram, 2007). Measurement of 3D joint 294 

moments whilst bend sprinting at track specific radii is lacking in the literature and is a 295 

potential area for further investigation in order to establish whether frontal plane joint 296 



 

 

moments are, in fact, limiting factors to bend running performance. These measures may also 297 

explain the reduced vertical and resultant ground reaction forces observed for the left step and 298 

why the right step force production appeared to be less affected in the present study.  299 

 300 

In addition to the above, the position of the foot during the push off may have influenced the 301 

force generation during the left and right steps on the bend. Although not directly measured 302 

in the present study, Bojsen-Møller (1979) described the foot as being capable of using two 303 

alternative axes for push off: the transverse and oblique axes. The transverse axis runs 304 

through the first and second metatarsal heads, whereas the oblique axis runs through the 305 

second to the fifth metatarsal heads (Bojsen-Møller, 1979). The use of these two axes affects 306 

the congruency of the calcaneocuboid joint and the effectiveness of the windlass mechanism 307 

of the plantar aponeurosis, which in turn affects the stability of the foot and so its 308 

effectiveness for propulsion is likely superior when push off is about the transverse axis 309 

rather than the oblique axis (Bojsen-Møller, 1979). It is probable that inward lean of the 310 

athletes during bend running means that in the ground phase, the left foot contact is more 311 

lateral and the right foot contact is more medial. This would mean the left foot would be more 312 

likely to employ the oblique axis during the push off phase so may account for the reduction 313 

in vertical force production during the left step on the bend compared with the straight. It 314 

may also explain the significantly greater inward impulse generated on the left step compared 315 

with the right step on the bend. In contrast, the right foot would be more likely to employ the 316 

transverse axis, which may have contributed to maintenance of vertical and anteroposterior 317 

propulsive force generation, but may not be conducive for inward force generation.  318 

 319 

The present results for the left step do provide partial support for Usherwood and Wilson’s 320 

(2006) mathematical model, as a significant 10 ms increase in ground contact time was 321 



 

 

observed for the left step on the bend compared with the straight (Table 4). Usherwood and 322 

Wilson (2006) suggested, based on the research of Weyand et al. (2000), that the maximum 323 

force an athlete is able to produce is already achieved during straight-line sprinting. They 324 

postulated that ground contact time and the proportion of stride time spent in ground contact 325 

during bend running would be increased in order to generate the centripetal force required to 326 

follow the curved path. They suggested that swing time would remain constant and, therefore, 327 

step frequency would decrease. The increased left step ground contact time in the present 328 

study is in line with previously reported increases of 11 ms in left step ground contact time 329 

during maximal effort bend sprinting (Churchill et al., 2015). Alt et al. (2015) revealed a 330 

much smaller increase in contact time of the left step from straight to bend sprinting (2.6 ms). 331 

Right step ground contact time decreased, although not significantly, on the bend compared 332 

with the straight, again counter to the assumptions of Usherwood and Wilson (2006). The 333 

reduction was less than in Alt et al. (2015) who found right ground contact time reduced 334 

significantly on the bend compared with the straight. The observed differences between the 335 

studies may be due to the fact that Alt et al. (2015) analysed matching velocities in two 336 

conditions rather than maximal effort trials, allowing their athletes to have a relatively longer 337 

contact time on the straight. The increased ground contact time in the current study enabled 338 

maintenance of vertical impulse (only a 0.7 Ns reduction) for the left step on the bend 339 

compared with the straight in the presence of significantly reduced mean vertical forces (0.11 340 

BW). For the right step, vertical impulse results were similar between conditions, yet there 341 

was a significant decrease in right step flight time (by 0.012 s), which had the effect of 342 

significantly reducing right race step length (by 0.010 m). A reduction in right step length on 343 

the bend compared with the straight has previously been shown in both the acceleration phase 344 

(Stoner & Ben-Sira, 1979) and the maximum speed phase of bend sprinting (Churchill et al., 345 

2015).  346 



 

 

 347 

The net inward impulse was significantly greater (61.2%) during the left step than the right 348 

on the bend, resulting in 1.6° more turning of the CoM being achieved during the left than 349 

right ground contact (Table 4). This greater inward impulse was produced via a combination 350 

of both an increased contact time and a higher mean inward force (impulse divided by contact 351 

time) being generated for the left step than the right step. This finding supports our second 352 

hypothesis and suggests that there are functional differences between the left and right steps 353 

in terms of force generation during bend sprinting. This finding is in line with our previous 354 

kinematics study on a different participant group which also showed more turning was 355 

achieved during the left step than the right (Churchill et al., 2015). Furthermore, the present 356 

results contradict previous research that found the outer (right) leg generated greater peak 357 

inward forces than the inside leg during maximal effort sprinting on radii of up to 6 m (Chang 358 

& Kram, 2007) and during running (~5 m/s) on a curved path of 5 m radius on turf (Smith et 359 

al., 2006). The tightness of the radii may account for the differences between those studies 360 

(Chang & Kram, 2007; Smith et al., 2006) and the present study. Thus, the turning method 361 

employed by sprinters running at maximal effort in athletic events appears to be different to 362 

that of cutting actions, or of turning on very small radii. While the amount of turning of the 363 

CoM is the consequence of the net impulse, there are various internal/external rotations 364 

within joints and segments in bend sprinting. Regarding these rotational elements, Alt et al. 365 

(2015) provided further insight into the functional differences between the legs. For example, 366 

their results showed that the peak external rotation of the right ankle was three times more 367 

than in the left ankle, although the overall external rotation from initial contact to peak 368 

external rotation was similar in both ankles. 369 

 370 



 

 

Mean peak inward forces during bend trials were over two-fold higher than the observed 371 

mediolateral forces during straight trials (Table 3). These values were even larger than the 372 

mean peak anteroposterior propulsive forces observed and may have potential implications 373 

for strength training of athletes. Coupled with differences in frontal plane kinematics on the 374 

bend compared with the straight, including leaning into the bend and hip abduction/adduction 375 

angles (Alt et al., 2015; Churchill et al., 2015) and likely changes in frontal plane joint 376 

moments on the bend when compared with the straight (Chang & Kram, 2007), these aspects 377 

should be a consideration in both strength and technique training for athletes. For example, 378 

athletes should ensure that they undertake some maximum-speed training on the bend in 379 

order that the high forces whilst leaning are not only experienced during a competition 380 

setting. This means that when the focus of the training is the bend, the starting positions 381 

should, at times, be such that a substantial proportion of the maximum-speed phase occurs on 382 

the bend. Additionally, the use of ropes or harnesses may allow athletes to be supported in a 383 

leaning position during strength training and/or plyometric training. Moreover, the demands 384 

of the left and right steps on the bend appear to be functionally different, but care should be 385 

taken to avoid introducing asymmetries, such as strength imbalances, that might be 386 

detrimental to the straight-line portion of the race. 387 

 388 

The straight line velocities, step lengths and step frequencies achieved in the present study 389 

(Table 4) were similar to those reported in previous studies of the maximal phase of straight 390 

line sprinting in athletes of similar calibre (Bezodis et al., 2008; Churchill et al., 2015; Mero 391 

& Komi, 1986). Furthermore, the athletes in the present study were able to achieve vertical 392 

and anteroposterior ground reaction forces on the straight which were similar to previously 393 

reported values. For example, Korhonen et al. (2010) reported peak vertical, braking and 394 

anteroposterior propulsive ground reaction forces of 3.35 BW, 1.43 BW and 0.74 BW, 395 



 

 

respectively, for athletes sprinting on the straight at a similar velocity (9.5 m/s). These 396 

findings confirm that the athletes in our study were typical competitive athletes performing 397 

normally. However, a limitation of the present study is that the number of trials was limited 398 

to a maximum of six per athlete in total, as the quality of runs may not be maintained at 399 

maximal effort beyond that, highlighting challenges when investigating competitive sprinters 400 

in ecologically valid situations. This meant that only one successful foot strike on the force 401 

plate was achieved for each foot under each condition for each athlete. Force data from 402 

multiple steps have been collected in sprinting (e.g. Belli et al., 2002; Korhonen et al., 2010; 403 

Mero & Komi, 1986; Morin et al., 2011, 2012). However, these have been carried out either 404 

on instrumented treadmills (Morin et al., 2011, 2012), which is not applicable to track bend 405 

sprinting, or on long multiple force plates (Belli et al., 2002; Korhonen et al., 2010; Mero & 406 

Komi, 1986) that are not readily available. Data collection on separate occasions would have 407 

facilitated multiple trials per foot per condition, but this would have increased variation due 408 

to data being collected on different days and would likely have increased participant drop-409 

out. It is acknowledged that there was a relatively limited sample size in this study. However, 410 

this was due to the requirement to have high calibre athletes who were experienced in bend 411 

sprinting and competing regularly so that any differences found could be confidently 412 

attributed to the running condition rather than the novelty of the task. Despite being a limited 413 

sample, statistically significant results were found, and differences in force production 414 

between the bend and straight were still identified. 415 

 416 

Perspectives 417 

We believe this is the first investigation of the kinetics of maximal effort bend sprinting on a 418 

surface and radius typical of an outdoor athletics track. Overall force production reduced on 419 

the left step on the bend resulting in lower velocity, contrary to the assumptions of 420 



 

 

Usherwood and Wilson's (2006) mathematical model. The decrease in velocity was due to 421 

decreased step length and frequency similar to Alt et al. (2015) and Churchill et al. (2015). 422 

However, the left step contributed more than the right step to the generation of inward 423 

impulses and turning, contradicting studies of small radii (Chang & Kram, 2007; Smith et al., 424 

2006). Resultant force increased during the right foot contact, although step velocity reduced 425 

due to shorter step length. This was possibly due to difficulties in repositioning the left leg for 426 

the subsequent contact leading to an abbreviated step. Force requirements of bend sprinting 427 

were considerably different to those of straight-line sprinting with asymmetries between left 428 

and right steps observed on the bend. Therefore, bend specific strength and technique training 429 

performed at high velocity may improve athletes' ability to meet the requirements of bend 430 

sprinting, thus improving performance during this portion of a race. 431 

 432 
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Table 1. Left and right step group mean values (± SD) and significant differences for vertical and resultant force variables on the straight and 

bend. 

 Straight Bend Significant differences 

 

Left Right Left Right 

L
ef

t 
v

s.
 r

ig
h

t 
S

tr
ai

g
h

t 

L
ef

t 
v

s.
 r

ig
h

t 
B

en
d 

S
tr

ai
g

h
t 

v
s.

 b
en

d
 L

ef
t 

S
tr

ai
g

h
t 

v
s.

 b
en

d
 R

ig
h

t 

Peak vertical force (BW) 3.80 ± 0.52 3.64 ± 0.29 3.43 ± 0.41 4.13 ± 1.27   #  

Mean vertical force (BW) 2.13 ± 0.25 2.05 ± 0.14 2.02 ± 0.20 2.09 ± 0.20   #  

Vertical impulse (Ns) 82.0 ± 18.2 76.9 ± 13.0 81.3 ± 17.4 78.4 ± 18.0     

Relative vertical impulse (m/s) 1.16 ± 0.21 1.09 ± 0.07 1.15 ± 0.20 1.11 ± 0.18     

Peak resultant force (BW) 3.82 ± 0.53 3.66 ± 0.29 3.61 ± 0.45 4.19 ± 1.29   *  

Mean resultant force (BW) 2.23 ± 0.26 2.14 ± 0.15 2.18 ± 0.21 2.22 ± 0.20     

* significant at P < 0.05; # significant at P < 0.01  



Table 2. Left and right step group mean values (± SD) and significant differences for anteroposterior force variables on the straight and bend. 

 Straight Bend Significant differences 

 

Left Right Left Right 
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Peak braking force (BW) 1.43 ± 0.39 1.31 ± 0.26 1.41 ± 0.34 1.31 ± 0.22     

Braking impulse (Ns) 14.0 ± 3.7 13.2 ± 3.8 16.6 ± 3.5 12.4 ± 2.8  # *  

Relative braking impulse (m/s) 0.20 ± 0.04 0.18 ± 0.04 0.23 ± 0.02 0.17 ± 0.02  § *  

Duration of braking (s) 0.046 ± 0.006 0.044 ± 0.007 0.052 ± 0.004 0.040 ± 0.004  § #  

Peak anteroposterior propulsive force (BW) 0.81 ± 0.09 0.73 ± 0.07 0.76 ± 0.09 0.77 ± 0.07 *    

Anteroposterior propulsive impulse (Ns) 18.3 ± 3.7 16.8 ± 3.7 19.1 ± 2.8 18.7 ± 3.9    * 

Relative anteroposterior propulsive impulse (m/s) 0.26 ± 0.02 0.24 ± 0.03 0.27 ± 0.02 0.26 ± 0.03    * 

Duration of anteroposterior propulsion (s) 0.061 ± 0.004 0.064 ± 0.006 0.064 ± 0.003 0.064 ± 0.005   #  

* significant at P < 0.05; # significant at P < 0.01; § significant at P < 0.001 
 



Table 3. Left and right step group mean values (± SD) and significant differences for mediolateral force variables on the straight and bend. 

 Straight Bend Significant differences 

 

Left Right Left Right 
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Peak medial force (BW) 0.41 ± 0.11 0.41 ± 0.11       

Peak lateral force (BW) 0.22 ± 0.14 0.25 ± 0.06       

Net mediolateral impulse (Ns) 1 3.2 ± 5.0 5.3 ± 2.1       

Relative net lateral impulse (m/s) 0.05 ± 0.08 0.08 ± 0.03       

Peak inward force (BW)   1.07 ± 0.22 0.86 ± 0.25  *   

Net inward impulse (Ns)   39.9 ± 6.5 24.7 ± 5.8  #   

Relative net inward impulse (m/s)   0.56 ± 0.05 0.35 ± 0.06  #   

1 A positive value indicates a net lateral impulse (away from the midline of the body); * significant at P < 0.05; # significant at P < 0.01 



Table 4. Left and right step group mean values (± SD) and significant differences for performance descriptors on the straight and bend. 

 Straight Bend Significant differences 

 

Left Right Left Right 
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Race velocity (m/s) 9.56 ± 0.46 9.51 ± 0.47 9.34 ± 0.43 9.29 ± 0.47   * # 

Race step length (m) 2.14 ± 0.05 2.12 ± 0.08 2.11 ± 0.05 2.02 ± 0.07  *  * 

Step frequency (Hz) 4.46 ± 0.23 4.49 ± 0.22 4.44 ± 0.25 4.59 ± 0.23  *   

Ground contact time (s) 0.107 ± 0.008 0.108 ± 0.008 0.117 ± 0.006 0.104 ± 0.005  § #  

Flight time (s) 0.116 ± 0.019 0.120 ± 0.014 0.118 ± 0.011 0.108 ± 0.016    * 

Turn of CoM (°)   4.2 ± 0.9 2.6 ± 0.7  *   

* significant at P < 0.05; # significant at P < 0.01; § significant at P < 0.001 

 



 

Fig 1. Camera set-up for bend and straight trials (not to scale).   

 

 



 
(a) Bend – Left step (b) Bend – Right step 

  

(c) Straight – Left step (d) Straight – Right step 

  

Fig 2. Ground reaction forces for one participant’s left and right steps on the bend and 

straight.  Negative Fx on the bend represents inward force; Negative and positive Fx 

for the left step on the straight represents lateral and medial force, respectively; 

Negative and positive Fx for the right step on the straight represents medial and lateral 

force, respectively. Negative and positive Fy represents braking and anteroposterior 

propulsive force, respectively.  Positive Fz represents upwards vertical force.  

 


