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Abstract 35 
Non-Alcoholic Fatty Liver Disease (NAFLD) is associated with multi-organ (hepatic, skeletal muscle, 36 
adipose tissue) insulin resistance (IR). Exercise is an effective treatment for lowering liver fat but its 37 
effect on insulin resistance in NAFLD is unknown. 38 

We aimed to determine whether supervised exercise in NAFLD would reduce liver fat and improve 39 
hepatic and peripheral (skeletal muscle and adipose tissue) insulin sensitivity. Sixty nine NAFLD 40 
patients were randomised to 16 weeks exercise supervision (n=38) or counselling (n=31) without 41 
dietary modification. All participants underwent magnetic resonance imaging/spectroscopy to assess 42 
changes in body fat, and in liver and skeletal muscle triglyceride, before and following 43 
exercise/counselling. To quantify changes in hepatic and peripheral insulin sensitivity, a pre-44 
determined subset (n=12 per group) underwent a two-stage hyperinsulinaemic euglycaemic clamp 45 
pre- and post-intervention. Results are shown as mean (95% CI). 46 

Fifty participants (30 exercise, 20 counselling), 51 y (40, 56), BMI 31 kg/m2 (29, 35) with baseline 47 
liver fat/water % of 18.8 % (10.7, 34.6) completed the study (12/12 exercise and 7/12 counselling 48 
completed the clamp studies). Supervised exercise mediated a greater reduction in liver fat/water % 49 
WKDQ� FRXQVHOOLQJ� >ǻ�PHDQ� FKDQJH� ����� ������� ������P<0.05], which correlated with the change in 50 
cardiorespiratory fitness (r = -0.34, P = 0.0173).  51 

With exercise, peripheral insulin sensitivity significant increased (following high-dose insulin) despite 52 
no significant change in hepatic glucose production (following low-dose insulin); no changes were 53 
observed in the control group.  54 

Although supervised exercise effectively reduced liver fat, improving peripheral IR in NAFLD, the 55 
reduction in liver fat was insufficient to improve hepatic IR.  56 
 57 
Keywords: NAFLD, insulin resistance, exercise, liver fat and magnetic resonance spectroscopy. 58 
 59 
Summary statement 60 
In NAFLD, 16 weeks of supervised exercise effectively reduces liver fat and improve peripheral 61 
insulin resistance and cardiorespiratory fitness. Greater reductions in liver fat are needed to improve 62 
hepatic insulin resistance, requiring higher intensity or longer duration of exercise.  63 

  64 
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Introduction 65 

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of histopathological abnormalities which 66 
increase the risk of chronic liver disease, hepatocellular carcinoma and cardiovascular disease (1). 67 
NAFLD arises from accumulation of liver fat, frequently complicating obesity and other insulin-68 
resistant states, co-existing with the metabolic syndrome (2, 3). NAFLD is associated with multi-69 
organ (hepatic, skeletal muscle and adipose tissue) insulin resistance (IR) (4, 5).  70 

Although certain anti-diabetes agents reduce liver fat (6, 7), the cornerstone of therapy is lifestyle 71 
modification through dietary intervention and/or physical activity (8, 9). Weight loss through dietary 72 
intervention has been shown to normalise moderate hepatic steatosis (12-13%) and hepatic IR (10, 73 
11). Considering that NAFLD patients tend to engage in less habitual leisure-time physical activity 74 
and be more sedentary, physical activity is also recommended (12, 13). Various modalities of exercise 75 
have been shown to be beneficial in reducing liver fat in NAFLD including aerobic (5, 14, 15) and 76 
resistance exercise (13), even without weight loss. A recent study addressing the dose-response 77 
relationship between aerobic exercise and reduction in liver fat suggests that even low volume, low 78 
intensity aerobic exercise can reduce liver fat without clinically significant weight loss (16). It is 79 
unclear to what extent reduction in liver fat following exercise is associated with improvements in 80 
hepatic and peripheral IR. This is of particular importance considering the high rates of incident type 81 
2 diabetes mellitus (T2DM) in NAFLD patients.  82 

We set out to determine the efficacy of supervised exercise training in reducing liver fat, and the 83 
relationship between reduction in liver fat and improvements in hepatic and peripheral IR using the 84 
gold standard method for measuring insulin resistance, a 2-step euglycaemic hyperinsulinaemic 85 
clamp.  86 

Experimental materials and Methods  87 

Design  88 

A 16-week randomised controlled trial of NAFLD patients, randomised to supervised moderate-89 
intensity aerobic exercise or conventional counselling (control group) (Clinical Trials.gov 90 
NCT01834300).  91 

Participants 92 

Patients were recruited through hepatology clinics where they were undergoing routine clinical care 93 
from 4 teaching hospitals, and studied in 2 centres, in Guildford and Liverpool. NAFLD was 94 
diagnosed clinically by a hepatologist after exclusion of (steatogenic) drug causes, viral or auto-95 
immune hepatitis (negative hepatitis B and C serology and auto-antibody screen), primary biliary 96 
cirrhosis and metabolic disorders (Į1-antitrypin deficiency, Wilson’s disease).  97 
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Inclusion criteria were a diagnosis of NAFLD, being sedentary (<2 h/week low-intensity physical 98 
activity, no moderate- or high-intensity activity), non-smokers, with alcohol consumption <14 99 
(females) and <21 (males) units/week. Exclusion criteria were T2DM, ischaemic heart disease or 100 
contraindications to exercise. Participants were excluded from follow-up assessment if they deviated 101 
from their habitual diet and lost excessive weight.  102 

The study conformed to the Declaration of Helsinki and was approved by the local research ethics 103 
committees. All participants provided fully informed written consent. 104 

Protocol 105 

69 patients were randomly assigned on a 1:1 basis using a computer-generated sequence to 16 weeks 106 
supervised exercise or conventional counselling (control group) using SAS v 9.1, PROC PLAN 107 
software (Statistical Analysis System Institute, NC, USA). Figure 1 shows the CONSORT diagram.  108 

Supervised Exercise. After a familiarisation session, participants attended the university gymnasium 109 
weekly, wearing a heart rate monitor (Polar Electro Oy, Finland) and supervised by a trained exercise 110 
physiologist. Training intensity was based on individual heart rate reserve (HRR) ([Maximal HR 111 
during cardiorespiratory fitness testing] – [Resting HR]). Participants performed 3/week 30 min 112 
moderate (30% HRR) aerobic exercise (treadmill, cross-trainer, bike ergometer, rower) progressing 113 
weekly based on HR responses (5/week 45 min at 60% HRR by week 12). Throughout, participants 114 
were monitored via the Wellness SystemTM (Technogym U.K. Ltd., Bracknell, UK), which tracks 115 
exercise activity within designated fitness facilities or by repeated telephone or e-mail contact.  116 

No dietary modifications were made, confirmed by standard 3-day food diaries collected immediately 117 
before and after the intervention and analysed for macronutrient intake.  118 

Control Group. Participants were provided with advice about the health benefits of exercise in 119 
NAFLD but had no further contact with the research team. To minimise disturbance to behaviour, diet 120 
and physical activity were not monitored. 121 

Measurements 122 
Measurements were performed before and immediately after the intervention period. After overnight 123 
fast, venous blood was taken for measurement of glucose, liver function, lipid profile, adiponectin and 124 
leptin. 125 

After full medical history and physical examination, a single person at each centre measured body 126 
weight, blood pressure, height, waist (umbilical) and hip (greater trochanter) circumference and 127 
performed bioimpedance analysis (Tanita BC-420MA, Tokyo, Japan).  128 

Magnetic resonance methods were as previously described (17). Volumetric analysis of abdominal 129 
subcutaneous adipose tissue (SAT) and abdominal visceral adipose tissue (VAT) used whole-body 130 
axial T1-weighted fast spin echo scans (10 mm slice, 10 mm gap), the abdominal region being defined 131 
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from the slices between the femoral heads, top of liver and lung bases. Proton magnetic resonance 132 
spectroscopy (1H MRS) quantified intrahepatocellular lipid (IHCL) and intramyocellular lipid (IMCL) 133 
(17). In liver 3 voxels of interest were identified at standardised sites avoiding ducts and vasculature. 134 
In skeletal muscle a single voxel was identified in each of the tibialis anterior and soleus muscles, 135 
avoiding bone, fascia and neurovascular bundle. Single voxel spectroscopy was conducted at each of 136 
these five sites: voxel size was 20×20×20 mm, TE (echo time) 135 msec, TR (repetition time) 1500 137 
msec, with 64 acquisitions. 1H-MR spectra were quantified using the AMARES algorithm in the 138 
software package jMRUI-3.0 (18). Data were processed blind. Liver fat is expressed as the percentage 139 
of CH2 lipid signal amplitude relative to water signal amplitude after correcting for T1 and T2 (19), 140 
and intramyocellular lipid (IMCL) is expressed as CH2 lipid amplitude relative to total creatine 141 
amplitude after correcting for T1 and T2 (20). NAFLD was defined as mean IHCL > 5·3%, which 142 
corresponds in the present units (CH2/H20) to the cut off of 5.5% by weight advocated on the basis of 143 
a large healthy-population 1H MRS study (21) which took account of tissue density, water content and 144 
the relative proton densities of triglyceride and water to express IHCL as % by weight in terms more 145 
directly comparable with biochemical measurements. This cutoff is also in accordance with traditional 146 
definitions of fatty liver based on biochemical analysis (21). (Any IHCL value expressed here as x% 147 
CH2/H2O can be converted to y% by weight (i.e. 10 × y mg/g) by using y% = 97.1/[1 + (89.1/x%)], 148 
based on assumptions and data detailed in (21, 22)) 149 

Clamp. Participants were instructed to avoid strenuous physical activity for 48 h. Upon arrival 150 
intravenous cannulae were inserted into both antecubital fossae for blood sampling and infusion of 151 
stable isotopes, insulin and glucose. After unenriched blood samples, a primed infusion of [6,6-2H2] 152 
glucose (170 mg; 1.7 mg.min-1) was started. 5 baseline samples were taken from 100-120 min, when a 153 
2-step hyperinsulinaemic–euglycaemic clamp commenced: insulin infusion at 0.3 mU.kg-1.min-1 (low-154 
dose) for 120 min to measure insulin sensitivity of hepatic glucose production (HGP), then at 1.5 155 
mU.kg-1.min-1

 
(high-dose) for 180 min to measure insulin sensitivity of peripheral glucose uptake. 156 

Euglycaemia was maintained by adjusting a 20% glucose infusion, spiked with [6,6-2H2] glucose (7 157 
mg.g-1 glucose for low-dose, 10 mg.g-1 high dose) according to 5 min plasma glucose measurements 158 
using a glucose oxidase method (Yellow Springs Analyser). Blood samples were taken every 30 min, 159 
except for every 5 min from 210-240 min (low-dose steady-state) and 390-420 min (high-dose steady-160 
state).  161 

Plasma glucose concentration and enrichment time-courses were smoothed using optimal segments 162 
analysis (23). HGP and glucose uptake (rate of disappearance, Rd) (µmol.kg-1.min-1) were calculated 163 
using non-steady-state equations (24), assuming a volume of distribution of 22% body weight. HGP 164 
was calculated at steady-state basally (90-120 min) and following low-dose insulin (210-240 min), 165 
corrected for fat-free mass and (since HGP is inversely related to [insulin]) multiplied by mean 166 
steady-state [insulin] (pmol.ml-1) at low-dose. Glucose Rd was calculated at steady-state following 167 



 6 

high-dose insulin (390-420 min) and metabolic clearance rate (MCR) (ml.kg-1.min-1) was calculated at 168 
basal and high-dose insulin steady-state (390-420 min) as (glucose Rd)/[glucose]. Glucose MCR and 169 
Rd were corrected for fat-free mass and (since they are directly related to [insulin]) divided by mean 170 
steady-state [insulin] (pmol.l-1) at basal and high-dose.  171 

Cardiorespiratory fitness assessment In Liverpool, cardiorespiratory fitness was assessed on a 172 
treadmill ergometer following the Bruce protocol (25). Following 2 min warm up at 2.2 km/h on the 173 
flat, initial workload was set at 2.7 km/h at 5° grade, then speed and grade increased step-wise every 174 
minute. Heart rate and rate of perceived exertion were monitored throughout. VO2peak was calculated 175 
from expired gas fractions (Oxycon Pro, Jaegar, Hochberg, Germany) as the highest consecutive 15 s 176 
rate in the last minute before volitional exhaustion, or when heart rate and/or VO2 reached a plateau 177 
(21). In Guildford, VO2peak was performed on an electronically-braked bicycle ergometer (Lode; 178 
Excaliber Sport, Groningen, the Netherlands) with breath analyser (Medical Graphics, St Paul, MN, 179 
USA). Heart rate was measured throughout. After 2 min warm up at 50 W, resistance increased step-180 
wise at 20 W/min until volitional exhaustion (26). Cardiorespiratory fitness was defined as VO2peak 181 
identically at each facility (despite the different exercise modalities), expressed per kg body weight. 182 

Biochemistry. Baseline plasma samples were analysed using an Olympus AU2700 (Beckman Coulter, 183 
High Wycombe, UK) in Liverpool and an Advia 1800 Chemistry System (Siemens Healthcare 184 
Diagnostics, Frimley UK) in Guildford, with standard proprietary reagents and methods: glucose with 185 
hexokinase, total cholesterol and high-density lipoprotein (HDL) with cholesterol esterase/oxidase, 186 
triglyceride with glycerol kinase and liver enzymes including alanine aminotransferase (ALT), 187 
aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT) with International 188 
Federation of Clinical Chemistry (IFCC) kinetic UV (without pyridoxal phosphate activation). Intra- 189 
and inter- assay coefficients of variation were ������/RZ-density lipoprotein (LDL) was calculated 190 
using the Friedwald formula. At a single centre, serum insulin, plasma adiponectin and leptin were 191 
measured by RIA using commercial kits (Millipore Corporation, Billerica, MA; intra-assay CV 6%, 192 
5%, 5% respectively), irisin by ELISA (Phoenix Pharmaceuticals, Inc. Burlingame, CA; intra-assay 193 
CV 4.1%), fetuin-A by ELISA (Epitope Diagnostics, Inc. San Diego; intra-assay CV 4.8%) and serum 194 
NEFA (Wako Chemicals, Neuss, Germany; inter- assay CV 3.0%). Glucose isotopic enrichment was 195 
measured by GC-MS on a HP 5971A MSD (Agilent Technologies, Wokingham, Berks, UK)(27). IR 196 
was quantified using HOMA2-IR (28). Indices of hepatic insulin resistance (Hepatic-IR) and adipose 197 
tissue insulin resistance (Adipose-IR) were calculated (29, 30). 198 

Diagnosis of metabolic syndrome was based on the National Cholesterol Education Program Adult 199 
Treatment Panel III criteria (31). Ten-year cardiovascular risk was calculated using the 10 year 200 
Framingham Risk Score (32). 201 

Statistical Analysis  202 
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Power calculation. The primary outcome variable was IHCL (% fat/water). Based on mean IHCL of 203 
20%, we considered 30% relative difference between groups to be clinically significant, implying 204 
mean IHCL of 20% and 14% in the control and exercise groups respectively. Based on a 2-sample t-205 
test, 5% 2-sided significance and standard deviation (SD) of 7.75% from previous studies, 56 patients 206 
(28 in each arm) were required to detect this 6% absolute IHCL difference with 80% power (27).  207 

Statistical methods. For the primary comparison of supervised exercise vs. control, GHOWD��ǻ��FKDQJH�208 
from pre-intervention was calculated and analysed using linear regression (ANCOVA), with pre data 209 
as a covariate (33). Linear regression assumptions were assessed using Q-Q plots and scatter plots of 210 
studentised residuals versus fitted values. Where linear regression assumptions were not met these 211 
were resolved using the natural logarithm transformation. For exploratory and comparison purposes 212 
any continuous demographic variable within each group was also estimated using a paired t-test. 213 
Correlations were quantified using Spearman’s Rank correlation coefficient (rs). Data for continuous 214 
demographic variables are presented as median and inter-quartile range (IQR) and changes between 215 
supervised exercise compared to control are presented as mean (95% CI). Statistical analyses used 216 
Stata 13 (StataCorp. 2013. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP). 217 
Unless otherwise stated, exact P-values are cited (values of “0.000” are reported as “<0.001”). Results 218 
are shown as mean (95% CI). 219 

Results  220 

Baseline characteristics Fifty patients completed the study [n=30 exercise (23 males, 7 female) and 221 
n=20 control (16 males, 4 female)] (Figure 1). The age of the participants was similar in the exercise 222 
[50y (46, 58), BMI 30.7 kg/m2 (29.2,32.9)] vs. control groups [52y (46, 59), BMI 29.7kg/m2 223 
(28.0,33.8)]. An equal number (n=15) completed the exercise in each centre (total exercise=30); 8 224 
controls completed in Liverpool and 12 controls completed in Guildford, Surrey (total controls n=20). 225 
Pre-intervention characteristics of the groups were similar with respect to age, VO2peak, biochemical 226 
and metabolic characteristics, and body composition (Tables 1 and 2).  227 

Changes in dietary intake In the exercise group after 16 weeks, total energy intake and macronutrient 228 
composition remained unchanged compared with baseline: energy [0.4 MJ (-0.4, 1.2), P=0.40)], 229 
protein [0.4 g (-11.6, 12.0), P=0.97], carbohydrate [6.4 g (-24.2, 37.0), P=0.34], sugars [-9.2 g (-27.2, 230 
30.0), P=0.41] and fat [9.8 g (8.5, 22.0), P=0.44]. 231 

Changes in body composition and biochemistry The primary outcome measure of IHCL in the 232 
exercise group was significantly reduced after 16 weeks: 19.4% (14.6, 36.1) vs. 10.1% (6.5, 27.1), but 233 
not in the control group: 16.0% (9.6, 32.5) % vs. 14.6 (8.8, 27.3). Supervised exercise mediated a 234 
greater IHCL reduction than in the controls [-4.7 % (-9.4, -0.01); P<0.05] (Table 2). Changes in ALT, 235 
AST and in GGT were not significant.  236 
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SAT reduction with exercise was significantly greater than with control [-1.8L (= -3.0, -0.7); 237 
P=0.003], but changes in VAT were not [-0.7L (-1.6, 0.2); P<0.109], and nor were changes in IMCL 238 
in soleus and tibialis anterior (Table 1). 239 

The changes in fasting plasma insulin and HOMA2-IR [-0.5 (-1.0, 0.02; P=0.06] with exercise were 240 
not significantly different compared with control, nor were those in adiponectin, leptin, irisin or fetuin 241 
(Table 2). 242 

Changes in cardiorespiratory fitness Cardiorespiratory fitness (expressed as ml/kg/min) significantly 243 
improved in the exercise group after 16 weeks: 23.7 ml/kg/min (21.7, 27.8) vs. 32.3 ml/kg/min (27.6, 244 
38.0); there was no significant increase in the control group: 23.2 ml/kg/min (20.9, 25.6) vs. 23.1 245 
ml/kg/min (20.9, 26.9). Exercise mediated a greater improvement compared to control [7.3 ml/kg/min 246 
(5.0, 9.7); P<0.001].  247 

Cardiorespiratory fitness (expressed as absolute values in l/min) significantly improved in the exercise 248 
group after 16 weeks: 2.45 l/min (2.22, 2.69) vs. 3.05 l/min (2.77, 3.34); there was no significant 249 
increase in the control group: 2.31 l/min (2.05, 2.63) vs. 2.30 l/min (2.04, 2.57). Exercise mediated a 250 
greater improvement compared to control [0.72 l/min (0.42, 1.02); P<0.001].  251 

The greater fitness improvement was accompanied by greater reductions in total body weight [-2.5 kg 252 
(-3.9, -1.1); P<0.001)], waist circumference [-3.0 cm (-5, -1); P<0.05] and percentage fat mass [-1.9% 253 
(-3.0, -0.7]; P<0.01) compared to control (Table 1). Changes in IHCL were significantly correlated 254 
with improvements in cardiorespiratory fitness (absolute and relative), total body weight and with 255 
reductions in visceral and subcutaneous fat (Figure 2).  256 

Changes in peripheral and hepatic insulin sensitivity In the subset of 24 patients that underwent the 2-257 
stage hyperinsulinaemic euglycaemic clamp, 12 patients in the exercise group and 7 patients in the 258 
controls completed the full clamp measurements. The changes in this exercise and control subset were 259 
similar to those seen in the whole group: [Liver fat, -9.3% (-18.1, 0.5) vs. 3.5% (-11.1, 3.9)] and 260 
VO2peak [7.7ml/kg/min (4.0, 11.1) vs. -1.4ml/kg/min (-4.4, 1.6)].  261 

Plasma glucose concentration at basal and during the clamp did not differ between interventions (data 262 
not shown). In the exercise group glucose infusion rate, corrected for [insulin], during the high-dose 263 
insulin infusion was higher post-exercise (P=0.009) (Figure 3a) but did not change in the control 264 
group. Following high-dose insulin infusion there was a significant increase in glucose Rd and MCR, 265 
corrected for [insulin] in the exercise group (P=0.02, P=0.004 respectively) with no significant 266 
change in the control group (Figure 3b and c). The change in glucose MCR was significantly different 267 
between groups (P=0.03).  268 

There was no significant difference with either intervention in HGP corrected for [insulin] at baseline 269 
or after low-dose insulin, (Figure 3d) or in the percentage decrease in HGP following low-dose insulin 270 



 9 

in either the exercise group (pre-exercise 50.9±5.3 %; post-exercise 55.3±6.4 %) or the control group 271 
(pre 46.5±10.3 %; post 56.0±8.5 %). 272 

Changes in glucose MCR, corrected for insulin, under basal conditions were significantly correlated 273 
with changes in fitness (rs=0.48; P=0.04) but not in IHCL (rs=0.26; P=0.28). After high-dose insulin, 274 
the correlation with IHCL did not reach statistical significance (rs=0.43; P=0.18). 275 

Discussion 276 

We have demonstrated in a randomised controlled study that 16 weeks of supervised moderate-277 
intensity aerobic exercise in NAFLD reduces liver fat and that this was correlated with an 278 
improvement in cardiorespiratory fitness. Using a 2-step euglycaemic hyperinsulinaemic clamp in 279 
conjunction with quantification of liver fat, we showed, for the first time in patients with NAFLD, 280 
that the exercise-induced reduction in liver fat was accompanied by enhanced skeletal muscle and 281 
adipose tissue insulin sensitivity, with no improvement in hepatic glucose production.  282 

Various factors modulate liver fat, particularly regular physical activity (34, 35). Numerous studies 283 
have highlighted the therapeutic effects of endurance or resistance exercise in lowering liver fat in 284 
NAFLD, even without weight loss (15). However modest weight loss also has clinically significant 285 
effects on IHCL. In a study by Coker et al., measuring multi-organ insulin sensitivity in caloric 286 
restriction and exercise training (with and without weight loss), exercise with weight loss had the 287 
greatest effect both on visceral fat and hepatic glucose output suppression (36). However, liver fat 288 
was not measured, precluding direct comparison with the current study. 289 

In the current study, exercising participants lost ~3% of body weight and this will have contributed to 290 
the reduction in IHCL. In a 2-week dietary intervention in NAFLD, ~4% weight reduction was 291 
associated with 42% reduction in liver fat (37) while in the LOOK-AHEAD study, lifestyle 292 
intervention in T2DM resulting in 1-5% weight change produced 33% reduction in hepatic steatosis 293 
(14). While there are clearly weight-dependent effects, the correlation between a reduction in liver fat 294 
and improvement in cardiorespiratory fitness in the supervised exercise group suggests that the latter 295 
also is a major driver of IHCL levels. 296 

A significant improvement in peripheral (skeletal muscle and adipose) insulin sensitivity 297 
accompanied the reduction in liver fat following exercise. It is well documented that chronic exercise 298 
improves peripheral insulin sensitivity (38, 39). The improvement in peripheral insulin sensitivity 299 
following exercise training occurred without any change in intramyocellular lipid as has been shown 300 
in a previous study of overweight men (23). Petersen et al. (40), proposed that skeletal muscle IR 301 
promotes hepatic steatosis and metabolic syndrome, by altering post-prandial energy distribution, 302 
diverting glucose to the liver for de novo lipogenesis (DNL) and triglyceride synthesis. Furthermore, 303 
acute exercise through reversal of muscle IR, has been shown to reduce hepatic DNL by 30% and 304 
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hepatic triglyceride synthesis by 40% (41). In myostatin-null mice, increased muscle insulin 305 
sensitivity also protects against hepatic steatosis during high-fat feeding (42). Thus, skeletal muscle 306 
metabolism may influence hepatic triglyceride content and metabolism, with inter-organ ‘cross-talk’ 307 
between skeletal muscle, adipose tissue and liver (43). Although not measured here, myokines 308 
secreted by skeletal muscle after contraction appear to mediate this cross talk. Thus a plausible 309 
mechanism in our study for the reduction in liver fat is enhanced peripheral insulin sensitivity and 310 
increased skeletal muscle glucose uptake reducing the flux of plasma glucose to the liver for 311 
triglyceride synthesis. The critical role of adipose IR in the metabolic and histological changes in 312 
NAFLD, as well as its reversal using thiazolidinediones, has also been demonstrated (29, 44). In this 313 
study, we showed that adipose-IR could also be improved with exercise training.  314 

The lack of effect of the exercise programme on hepatic insulin resistance was surprising given the 315 
assumed links between liver fat accumulation and defective insulin suppression of glucose production 316 
(4, 45). Other studies have reported reduced hepatic steatosis and improved hepatic insulin resistance 317 
with weight loss following low calorie diets in NAFLD (10,11). However, in these studies liver fat 318 
was lower than in the current study and was reduced to normal by weight loss, from 12 to 2.5% (10) 319 
and from 12.8 to 2.9% (11). Although in our study there was a comparable loss of liver fat in the 320 
exercise group (9.3%) because the group had much higher liver fat levels at baseline (median 19.4%) 321 
many patients remained above the normal range after 16 weeks exercise. This suggests that greater 322 
reductions in liver fat are needed to improve hepatic insulin resistance, possibly to within the normal 323 
range. It is likely that this could be achieved by increasing the period of exercise supervision or the 324 
intensity of the exercise, or by caloric restriction (46). Sullivan et al. noted a similar dissociation 325 
between (reduced) liver fat and (unchanged) VLDL triglyceride synthesis rate, a metabolic pathway 326 
that also exhibits resistance to insulin, after exercise training in patients with NAFLD. Interestingly in 327 
the latter study, % liver fat was similar at baseline to the current study (5). Recent animal data may 328 
help provide a mechanistic explanation for the phenomenon of improved peripheral insulin 329 
sensitivity, reduced liver fat but impaired hepatic insulin sensitivity of glucose metabolism. This data 330 
suggests that within the liver glucose production and de novo lipogenesis have different insulin 331 
sensitivities: the gluconeogenic pathway is insulin-resistant (thus insulin cannot inhibit hepatic 332 
glucose production through gluconeogenesis) while the lipogenic pathway remains insulin-sensitive 333 
(thus insulin retains its ability to stimulate fatty acid synthesis) (47). This selective insulin resistance 334 
is explained by a bifurcation of the hepatic insulin signalling pathway: control of the repression of 335 
gluconeogenesis occurs through FoxO1, while a separate pathway controlling lipogenesis involves 336 
SREBP-1c(48). Although this cannot be tested in the current study, this mechanism would provide a 337 
plausible explanation for the dissociation of the effects of exercise on hepatic liver fat and hepatic 338 
glucose production.  339 
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We acknowledge limitations to the study. We used a per protocol analysis. The drop-out rate (19/69, 340 
28%) was higher than the anticipated 15-20%, 15 controls and 4 in the exercise group, apparently 341 
mainly for practical reasons (e.g. time constraints, excessive research burden) but we believe the 342 
disproportionately higher dropout rate in the control group reflects many participants’ underlying 343 
desire to be randomised to the exercise program. The higher dropout rate in the control group is, we 344 
cautiously argue, unlikely to bias our conclusion, and will of course not affect assessment of the effect 345 
of the exercise intervention per se. A further imitation is that cardiorespiratory fitness was assessed at 346 
study sites using two different modalities, treadmill vs. cycle ergometer. Whilst cardiorespiratory 347 
fitness may be lower using cycle ergometry, the primary comparison was the change in fitness with 348 
intervention, thus this is unlikely to bias our findings. This is likely due to the greater spread of 349 
VO2peak results given the improvements post exercise training. While we believe our cohort is 350 
representative of the general NAFLD population, there may be a selection bias with only the most 351 
motivated patients consenting to participate in an exercise intervention study: this may underlie the 352 
high dropout rate of controls. Accepting these limitations, the noteworthy strengths are the application 353 
of whole body MRI and 1H-MRS, the most sensitive, non-invasive method to quantitate liver fat, and 354 
measurement of corresponding changes in organ-specific insulin sensitivity. Using these gold 355 
standard techniques we provide important insight into the mechanism by which exercise mediates 356 
reduction in liver fat by enhanced peripheral (skeletal muscle) insulin sensitivity, without this 357 
reduction in liver fat being paralleled by improved hepatic insulin sensitivity.  358 

 359 

In summary, in patients with NAFLD exercise-induced reduction in liver fat is related to the 360 
improvement in cardiorespiratory fitness and accompanied by an improvement of peripheral (muscle 361 
and adipose) but not hepatic IR. The greatest benefit in normalising liver fat, improving both 362 
peripheral and hepatic IR and potentially providing the greatest protection against incident T2DM, 363 
may require increasing the duration and/or intensity of the exercise supervision, in conjunction with 364 
caloric restriction.  365 

 366 
Acknowledgements 367 
The European Federation for the Study of Diabetes (EFSD) funded this research (Clinical Research 368 
Grant) to investigate the effects of supervised exercise on hepatic and peripheral insulin sensitivity 369 
and lipoprotein metabolism in patients with NAFLD.  370 
 371 
Declaration of interest 372 
The authors have nothing to declare. 373 
 374 
 375 



 12 

Funding information 376 
This research work was funded by the European Foundation for the Study of Diabetes (EFSD). 377 
 378 
Author contribution statement 379 
DC, FSM, AMU and GJK conceived and designed the study protocol, obtained funding, were 380 
involved in collection and analysis of data and wrote the manuscript. VSS, CJP, HJ, MB, PR, MB, 381 
NCJ, ELT and JDB were involved in collection and analysis of data and contributed to the editing of 382 
the manuscript.  383 

 384 
Clinical Perspectives 385 
x NAFLD represents a common obesity-related complication, increasing the risk of type 2 diabetes 386 

mellitus, cardiovascular disease and chronic liver disease. Exercise interventions are effective in 387 
reducing liver fat, even without significant weight loss.  388 

x We demonstrate exercise supervision is effective at reducing liver fat and this was related to an 389 
improvement in cardiorespiratory fitness. As expected exercise was associated with significant 390 
improvements in peripheral (skeletal muscle and adipose tissue) insulin resistance. 391 

x Surprisingly, despite significant reductions in liver fat with exercise, we did not observe an 392 
improvement in hepatic insulin resistance. We speculate that persisting elevated liver fat even after 393 
exercise training, means undiminished hepatic insulin resistance. Exercise training needs to be 394 
more prolonged or more intense to achieve a greater reduction in liver fat. These results have 395 
potential public health implications considering the associated long-term metabolic, hepatic and 396 
cardiovascular complications.  397 

 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
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Figure legends 550 
 551 
Figure 1. CONSORT diagram showing flow of participants through the study. 552 
Figure 2. Black circles indicate individuals in the exercise group; open circles indicate individuals in 553 
the control group. 554 
A) Relationship between reduction in liver fat (IHCL) and improvement in cardiorespiratory 555 
fitness (VO2peak ml.kg-1.min-1) (r= -0.34; P=0.02) 556 
B) Relationship between reduction in IHCL and reduction in body weight (r=0.48; P<0.001) 557 
C) Relationship between reduction in IHCL and reduction in visceral adipose tissue volume 558 
(VAT) (r=0.37; P=0.008). 559 
D) Relationship between reduction in IHCL and reduction in subcutaneous adipose tissue 560 
volume (SAT) (r=0.61; P<0.001). 561 
Figure 3. Rates of a) glucose infusion (GINF) during high dose insulin, b) glucose uptake (Rd) during 562 
high dose insulin, c) glucose metabolic clearance (MCR) during high dose insulin and d) hepatic 563 
glucose production (HGP) during low dose insulin expressed relative to insulin, before (grey bars) 564 
and after (black bars) exercise or controls. 565 

 566 
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Table 1. Clinical, biochemical and MRI-measured body composition in 50 patients before and after supervised exercise intervention (Ex; n=30) and control 
(Con; n=20) (reported as median and interquartile range as within group comparison). Mean delta changes with 95% confidence intervals (with significance 
values) are shown for each intervention and the delta changes are compared (between group comparison). *P<0.05; **P<0.001 
 
 Within-group comparison Between-group comparison 

 Pre Ex 
Median (IQR) 

Post Ex 
Median (IQR) 

Pre Con 
Median (IQR) 

Post Con 
Median (IQR) 

Ex ǻ Change  
Mean (95 % CI) 

Con ǻ�&KDQJH 
 Mean (95% CI) 

ǻ�0HDQ������&,� 
 

P 

Weight (kg) 95.6 (83.8-104) 90.7 (80.1-101.5)  90.4 (86.5-107.5) 90.7 (86.4-108.5) -2.5 (-3.5, -1.4)** 0.2 (-0.8, 1.1) -2.5 (-3.9, -1.1) 0.001 
BMI (kg/m2) 30.6 (29.0-32.9) 30.0 (27.9-32.0) 29.7 (28.0-33.8) 29.9 (28.0-33.0) -0.9 (-1.4, -0.5)** 0.02 (-0.5, 0.6) -1 (-1.3, -0.3) 0.007 
Waist (cm) 106 (101-112) 103 (95-109) 102 (99-114) 101 (98-114) -4.1 (-5.8, -2.4)** -1.01 (-2.45, 0.34) -3 (-5, -1) 0.013 
% fat mass 30.4 (25.9-32.1) 28.0 (24.3-29.8) 31.0 (26.5-37.7) 30.7 (25.8-37.0) -1.6 (-2.4, -0.7)** 0.2 (-0.6, 1.1) -1.9 (-3.0, -0.7) 0.002 
Systolic BP (mmHg) 135 (125-142) 129 (121-137) 125 (118-142) 132 (123-143) -5 (-9, -1)* 1 (-5, 7) -4. (-10, 1.0) 0.111 
Diastolic BP  83 (75-87) 78 (74-82) 82 (72-92) 83 (72-90) -4 (-7, -0.3)* -3 (-9, 3) -2 (-5, 3) 0.456 
VO2peak(ml/kg/min)^ 23.7 (21.7-27.8) 32.3 (27.6-38.0) 23.2 (20.9-25.6) 23.1 (20.9-26.9) 7.2 (5.3, 9.1)** -0.2 (-1.7, 1.3) 7.3 (5.0,9.7) <0.001 
ALT^ (U/l) 45 (36-66) 32 (25-44) 47 (29-63) 34 (24-51) -14 (-23, 5)** -12(-19, -4)** 0.99 (0.78, 1.20) 0.760 
AST^ (U/l) 33 (25-47) 29 (22-35) 31 (23-41) 27 (23-36) -8 (-12, -3)** -4 (-8,1) 0.92 (0.79, 1.07) 0.268 
GGT^ (U/l) 47 (35-62) 34 (22-48) 42 (28-66) 41 (26-68) -18 (-29, -7)** -8(-18, 2) 0.87 (0.74, 1.02) 0.089 
Cholesterol (mmol/l)  5.1 (4.7-5.7) 4.8 (4.4-5.3) 5.2 (4.60-5.49) 5.1 (4.53) -0.19 (-0.38, 0.01) 0.02 (-0.18, 0.22) -0.20 (-0.49, 0.09) 0.169 
Triglycerides 
(mmol/l) 

1.9 (1.4-2.63) 1.7 (1.3-2.2) 1.5 (1.2-2.7) 1.6 (1.4-2.7) -0.16 (-0.37, 0.04) 0.05 (-0.40, 0.50) -0.24 (-0.54, 0.07) 0.123 

HDL (mmol/l) 1.2 (0.9-1.4) 1.2 (0.9-1.4) 1.2 (0.9-1.3) 1.1 (0.9-1.3) 0.02 (-0.02, 0.06) 0.00 (-0.06, 0.06) 0.03 (-0.04, 0.09) 0.443 
LDL (mmol/l) 3.5 (3.0-3.9) 3.2 (2.8-3.5) 3.4 (2.6-3.7) 3.1 (2.5-3.5) -0.29 (-0.5, -0.1)* -0.26 (-0.56, 0.03) 0.06 (-0.29, 0.40) 0.745 
Chol:HDL ratio 4.6 (4.0-5.1) 4.0 (3.3-5.0) 4.7 (4.0-5.6) 4.6 (4.0-5.2) 0.3 (-0.0-0.5)* -0.09 (-0.44, 0.27) -0.21 (-0.61, 0.18) 0.279 
Liver fat (% 
CH2/water) 

19.4 (14.6-36.1) 10.1 (6.5-27.1) 16.0 (9.6-32.5) 14.6 (8.8-27.3) -9.3 (-13.1, -5.3)* -2.5 (-6.2, 1.2) -4.7 (-9.4, 0.01) 0.05 

VAT (l) 9.8 (8.0-11.7) 8.6 (7.8-9.6) 7.8 (6.9-9.2) 8.0 (6.9-9.1) -1.0 (-1.6, -0.4)* -0.2 (-0.8, 0.5) -0.7 (-1.6, 0.2) 0.109 
SAT (l) 23.1 (19.4-32.0) 20.7 (17.5-28.3) 21.7 (19.6-29.1) 23.1 (19.1-29.3) -1.4 (-2.6, -1.0)* 0.01 (-0.8, 0.9) -1.8 (-3.0, -0.7) 0.003 
Abdominal fat (l)  33.2 (29.1-41.0) 29.9 (26.7-37.2) 30.0 (27.5-38.2) 31.9 (27.1-37.5) -2.8 (-4.0, -1.6)* -0.15 (-1.6, 1.3) -2.7 (-4.6, -0.8) 0.006 
VAT:SAT ratio  0.4 (0.3-0.6) 0.4 (0.3-0.5) 0.4 (0.3-0.4) 0.3 (0.3-0.4) -0.01 (-0.03, 0.00) -0.01 (-0.02, 0.01) 0.00 (-0.03, 0.02) 0.853 
IMCL Soleus  
(CH2/creatine) 

12.3 (9.0-16.8) 12.8 (9.2-15.6) 15.5 (11.7-21.8) 15.0 (12.9-21.4) -0.8 (-2.7, 1.2) -1.1 (-1.8, 4.1) -1.9 (-5.0, 1.3) 0.237 

IMCL Tibialis Ant.  9.0 (5.6-11.2) 8.6 (6.8-11.6) 7.3 (5.3-9.5) 8.7 (7.1-11.7) 0.2 (-2.3, 2.8) -0.9 (-9.3, 7.6) 1.0 (0.7, 1.3) 0.848 

Within-group comparisons use paired t-tests, p < 0.05 being taken as evidence of a significant change pre- to post-intervention: a negative change indicates reduction pre- to 

post. Between-group comparisons (final two columns) use linear regression (ANCOVA) comparing post-scores between groups correcting for pre-scores, ǻ�therefore indicates 



 19 

the difference between post-intervention means after correcting for pre-intervention scores: a negative difference indicates a lower mean for the exercise group compared with 

control. ^ indicates that a log transformation was necessary to meet the assumptions of linear regression; here, ǻ� is the ratio of geometric means post-intervention after 

correcting for pre-intervention scores, a ratio <1 indicating a lower mean in exercise group relative to control. 
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Table 2. Metabolic measurements in 50 patients before and after supervised exercise intervention (Ex; n=30) and control (Con; n=20) (reported as median 
and interquartile range as within group comparison). Mean delta changes with 95% confidence intervals (with significance values) are shown for each 
intervention and the delta changes are compared (between group comparison). *P<0.05. 
 
 Within-group comparison Between-group comparison 

 Pre Ex 
Median (IQR) 

Post Ex 
Median (IQR) 

Pre Con 
Median (IQR) 

Post Con 
Median (IQR) 

Ex ǻ Change  
Mean (95 % CI) 

Con ǻ�&KDQJH 
Mean (95% CI) 

ǻ Mean 
(95% CI) 

Fasting glucose (mmol/l) 5.4 (4.8-6.1) 5.3 (4.9-5.7)* 5.6 (4.8-6.1) 5.5 (5.0-5.8)* -0.15 (-0.30, 0.00) -0.2 (-0.3, 0.0) 0.0 (-0.2, 0.2) 

Fasting insulin (pmol/l) 131 (96-162) 115 (72-158)* 119(96-193) 130 (95-195) -22 (-43, -1) 2 (-19, 23) -26 (-55, 2) 
HOMA2-IR 2.5 (1.8-3.0) 2.1 (1.3-2.9)* 2.2 (1.8-3.6) 2.5 (1.8-3.7) -0.43 (-0.81, -0.05) 0.03 (-0.3, 0.4) -0.5 (-0.1.0, 0.02) 

Fasting FFA (mmol/l)  0.52 (0.45-0.60) 0.42 (0.35-0.59) 0.56 (0.39-0.71) 0.54 (0.42-0.65) -0.04 (-0.11, 0.03) -0.03 (-0.08, 0.03) -0.03 (-0.1, 0.1) 

Adipose–IR (mmol/l.pmol/l) 61 (48-88) 50 (30-86)* 55. (47-87) 60 (44-84) -15 (-27, -2) -0.5 (-17, 16) -18 (-36, 0.5)* 

Adiponectin (ng/ml) 5950 (3700-8100) 5450 (3550-7650) 6300 (5200-7950) 6650 (4950-9750) -260 (-790, 269) 259(-543, 1060) -630(-1497, 238) 

Leptin (ng/ml) 9.2 (6.5-12.6) 7.1 (4.3-11.9)* 11.8 (7.0-18.5) 11.8 (6.9-19.0) -1.7 (-3.0, -0.4)* -0.3 (-1.5, 1.0) -1.7 (-3.5, 0.1) 

Irisin (ng/ml) 140 (128-171) 129 (121-173)* 140 (128-179) 145 (123-156) -10.5 (-18.9, -2.1) -5.4 (-16, 5.1) -4.7 (-17, 8) 
Fetuin-A *(µg/ml) 483 (412-518) 470(397-506) 424 (393.8 -

4780.0) 
428 (394-477) -1.9 (-15.5, 11.6) -4.0 (27, 19) -2. (-28, 24) 

 
Within-group comparisons use paired t-tests, P<0.05 being taken as evidence of a change pre- to post-intervention: a negative change indicates reduction pre- to post. 
Between-group comparisons use linear regression (ANCOVA) comparing post scores between groups whilst correcting for pre-scores, therefore indicates the difference 
between post intervention means after correcting for pre-intervention scores: a negative difference indicates a lower mean for the exercise group compared with control 
group. 
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