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Abstract 

We present a novel exploratory method that combines line of sight 

visibility (viewshed analysis) with techniques from social network 

analysis to investigate archaeological data. At increasing distances 

different nodes are connected creating a set of networks, which are 

subsequently described using centrality measures and clustering 

coefficients. Networks with significant properties are examined in 

more detail. We use this method to investigate the placement of 

hillforts (nodes) in the Gwent region of south-east Wales, UK. We 

are able to determine distances that support significant transitions in 

network structure that could have archaeological validity. 

1 Introduction 

The types of technologies utilised in knowledge discovery from 

databases and data mining develops as opportunities are presented 

by new datasets. Our study uses both geographical and 

graph/network structures, and presents an exploratory methodology 

within which to discover significant distances underlying network 

creation. In this respect the approach has a more general use than 
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archaeological informatics, for instance neural architectures, 

transportation networks, and other forms of geographical networks. 

We develop connectivity between Iron Age hillforts based on 

viewsheds and an increasing distance threshold. A viewshed is the 

area of land that is within line of sight from a fixed viewing position. 

We analyse the generated set of networks of connected hillforts 

using social network analysis, and use the metrics to inform theories 

of possible use and communication between hillforts.  
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Figure 1 Hillforts in south-east Wales. Hillforts are displayed as white crosses on the front contour display. The same terrain and 

hillforts (white circles) are displayed behind on a Digital Elevation Model (DEM). The DEM display shows that there are many 

other sites that could have been used for placement of hillforts. 

Our methodology is applied to the area of the Iron Age tribe known 

as the Silures in south-east Wales, UK.  The Silures have been 

described as a ‘resilient and sophisticated clan based tribal 

confederation’ [6, p.113] and it seems reasonable to explore the 

extent to which spatial relationships and other landscape factors may 

help to shed light on the degree to which that description is 

appropriate. Our preliminary investigation focuses on the Gwent 

region with a study area which roughly approximates the county as 

constituted between 1974 and 1996.  Figure 1 shows the placement 

of 30 hillforts in this region. This focus seems appropriate as it 

relates to the early medieval kingdom of Gwent which derived its 

name from Caerwent, the civitas capital of the Silures, and which 

may have seen considerable cultural continuity from the Iron Age  

[6]. 

The data used includes the Iron Age hillfort data, provided from 

HMR1, and a Digital Elevation Model (DEM) based on the Shuttle 

                                                 

1 Historic Monument Record 
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Radar Topography Mission data (UK SRTM DEM2) with 90m 

horizontal resolution. 

2 Spatial and graph based data 

Within data mining exist the fields of graph-based and spatial-based 

data mining. Graph-based data mining (e.g. [2]) has a close cousin in 

the long established field of social network analysis (SNA), a set of 

metrics that operates over graphs (networks) created from links [16]. 

Metrics include those to find clusters within networks, to find points 

that have significant properties, for instance how central a point is. 

Spatial data mining likewise has an extensive history (e.g. [9]), and 

is the discovery of interesting patterns from spatial datasets. 

This research lies in the intersection of these two forms of data, 

spatial and network/graphs. Related work includes that of the 

physics literature on geographical networks (e.g. [1]), architectural 

analysis and the isovist literature including its visibility graphs 

[14,8,15], and the authors own work incorporating a kernel density 

                                                 

2 UK_SRTM_DEM created by Addy Pope. Spatial Reference System - Great Brit-

ain National Grid. Available at: http://edina.ac.uk/projects/sharegeo/ 
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estimation weighting factor into the betweenness social network 

metric [10].  

We use MATLAB’s los2/viewshed functions and the viewshed 

functionality in ESRI ArcGIS’s Spatial Analyst toolbox for our 

geographical algorithms and our SNA measures include both 

centrality measures (degree, closeness, betweenness) and clustering 

coefficients.  

Degree centrality is simplest and is a count of the number of links to 

other nodes in the network. Closeness [12] however is a measure of 

how close a node is to all other nodes in a network. It is the mean of 

the shortest paths between a node and all other nodes reachable from 

it. Betweenness [4] is the extent to which a node lies between other 

nodes in the network and is equal to the number of shortest paths 

from all nodes to all others that pass through that node. This measure 

takes into account the connectivity of the node’s neighbors, giving a 

higher value for nodes which bridge clusters.   

The final SNA measure used was a clustering coefficient [17]. This 

indicates to what extent the nodes in a graph tend to cluster together, 

http://en.wikipedia.org/wiki/Betweenness
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with the local clustering coefficient quantifying how close a nodes’ 

neighbours are to being a clique (fully connected). 

3 Methodology and Results 

Viewsheds were generated for each hillfort, in order to determine 

intervisibility between every hillfort – this is the attribute 

visiblenm in the following algorithm, true if nodes n and m are 

intervisible. The distances distnm between each hillfort were also 

determined.  

We were then able at any given distance threshold to determine 

which hillforts would be intervisible.  We increased the distance 

value from 0m to 40,000m in steps of 500m. 

Create all Viewsheds, determine all Intervisibility 

Calculate Distances between all nodes 

FOR Distance = 0 TO 40000 STEP 500 

 FOR EACH node (n) 

  FOR EACH node (m) 

   IF (distnm < Distance)  

           AND (visiblenm == true) 

    Assert edgenm 

   END IF  

  END FOR 

 END FOR 

 Create NetworkDistance from Edges 

 Calculate NetworkDistance Measures 

http://en.wikipedia.org/wiki/Clique_%28graph_theory%29
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Analyse NetworkDistance Measures 

END FOR 

In this way we can investigate networks of hillforts at different 

distance values (in this case, 80 networks). Figure 2 shows the 

number of hillforts (nodes) and visibility ‘connections’ between 

hillforts (edges) plotted against distance, with Figure 3 showing the 

clustering coefficient and betweenness measure also plotted against 

distance. 

There are several interesting transition points in Figures 2 and 3. For 

instance: 25/30 nodes (hillforts) are connected at a distance of 5km; 

27/30 nodes are connected at 10km distance; and, the maximum 

number of nodes are connected between 15km and 20km. The clus-

tering coefficient also shows interesting peaks around 15km and 

20km. Figure 4 therefore shows clear transition distances of 5-10km, 

10-15km and 15-20km. Based on these observations of the 80 gener-

ated networks we decided to investigate further the shape of the net-

works at distances of 5km, 10km, 15km and 20 km, which can be 

seen in the following Figure 4. 

From Figure 4, network 1 (5km) shows localised clusters evident, 

network 2 (10km) larger regions are connected, with connectivity 

along the shore and also up waterways. Network 3 (15km) has the 

greatest diameter of network achieved. Network 4 (20km), at this 

network distance 5147 has finally joined the network (at 17km). 
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Figure 2  Nodes and edges plotted against distance. These represent how 

many hillforts are connected to any other hillforts (in any cluster) at the 

stated distance.  

Figure 3 Clustering coefficient and Betweenness.  
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Figure 4 Interesting networks. 1: 5km. 2: 10km. 3: 15km. 4: 20km. 

We examine the centrality of individual nodes (hillforts) in these 

networks with the most significant values are highlighted in Table 1. 
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Recalling the definitions of these measures, that closeness is a meas-

ure of how close a node is to all other nodes in a network, and be-

tweenness is a more useful measure of the node’s importance to the 

network than just connectivity, we make the following observations: 

Table 1 Betweenness (Bet), Closeness (Clo), Degree (Deg) for interesting networks. 

Hillfort 

 

1 

        

2 
  

3 
  

4 
  

Clo Deg Clo Deg Bet Clo Deg Bet Clo Deg 

17 0.13 0.21 0.24 0.34 0 0.35 0.41 0.01 0.42 0.59 

161 0.13 0.21 0.24 0.34 0 0.35 0.41 0.01 0.41 0.55 

193 0.17 0.24 0.26 0.34 0.07 0.40 0.45 0.03 0.42 0.45 

225 0.17 0.24 0.25 0.34 0.12 0.40 0.55 0.09 0.44 0.62 

895 0.10 0.14 0.34 0.48 0.09 0.40 0.48 0.03 0.42 0.48 

1579 0.08 0.03 0.22 0.14 0.25 0.40 0.41 0.13 0.48 0.41 

2405 0.13 0.14 0.26 0.38 0.01 0.35 0.38 0.10 0.48 0.41 

2981 0.13 0.17 0.20 0.28 0.33 0.40 0.41 0.37 0.52 0.45 

4102 0.10 0.07 0.26 0.14 0.06 0.35 0.24 0.01 0.37 0.38 

8833 0.00 0.00 0.08 0.03 0.45 0.42 0.24 0.51 0.55 0.41 

 

   

 Consistently  #225 has a consistently high centrality value. 

 #17, #153, #161, #193 also have high centrality values, and with 

#225 form a highly connected cluster with small diameter (5km). 

Isolated clique Nodes join previ-

ously separated 

cliques 

Nodes stretch-

ing diameter 

Still important 

gatekeeper 

Nodes from isolated 

cliques visible to 

larger distances 
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 In networks 3 and 4, low degree value and high centrality indicate 

an important role as ‘gatekeeping’. #8833 and #2981 are nodes 

with these properties. 

 #895 has mid-range high centrality values.  

4 Discussion 

Among preliminary conclusions arising from this first phase of 

investigation is that the methodology employed can effectively 

inform our understanding of Iron Age social structures. For example, 

viewshed analysis confirms clustering of hillforts in the region and it 

seems reasonable that this clustering arises, at least in part, from the 

existence of clans.  Moreover, there was clearly extensive line of 

sight communication, not only within clusters, but also with other 

hillfort groupings.  The model of a clan based confederation with 

regional emphasis, and possibly variation, but with wider 

connectivity sufficient to allow the cohesion necessary to have 

resisted the Roman advance so effectively seems wholly appropriate. 

However, the analysis is confounded by the function of hillforts gen-

erally.  It seems likely that the roles of hillforts have been varied 

through time and that hillforts could have had defensive, ritual, trade 

or other functions, e.g. [13] proposed division of hillforts into those 

for communication, those for watching rivers and land routes, and 

those for close living. 
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In order to understand better the value of this approach, which ad-

mittedly has been used on a small dataset, we need to consider prob-

lems with modern viewshed analysis and its interpretation. 

The technique has long been used in archaeological informatics. Its 

simplest model, a binary viewshed, assumes perfect clarity and 

perfect visibility and consists solely of 1s and 0s, representing cells 

which are either visible from the viewing location or not visible 

from the viewing location. Of course this approach assumes the 

artificiality of the ‘infinite’ view [18].  

Fisher [3] first proposed the fuzzy viewshed, later expanded upon by 

[11], whereby a distance decay function is introduced into the 

standard binary viewshed.  This function models the drop in visual 

clarity that occurs with increasing distance from the viewpoint, 

incorporating fixed values for the maximum distance from 

viewpoint of clear visibility, and the distance from viewpoint at 

which visibility drops to 50%. Ogburn [11] proposes different values 

for the latter, using 4.75 km, 7.6 km and 16.2 km. Note that these 

values are decided a priori. 

Jones [7] investigated the limit of normal human vision, or the 

distance at which an object could be recognized by some people 
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under very favourable conditions, is reached when an object 

subtends 1’ of visual arc, or 3440m [11]. However a target 5m wide 

would subtend this arc at a distance of 17.2 km. 

Higuchi [5] also includes this human aspect, developing the concept 

of three levels of perceptive visibility based upon the visual 

characteristics of a tree as they related to the distance of that tree 

from an observer. His short-distance view includes those features 

which are integral and immediate to the everyday lives of the 

people. The middle-distance view is the scenic landscape setting, 

giving context of meaning for a given locale. The long-distance view 

is the background, where features may be visible but are not readily 

identifiable. These ranges are again decided a priori. 

Certainly it is important to determine what it is that is important to 

be seen, while Higuchi uses trees as his factors, we suspect that 

people, livestock and smoke plumes might be more significant 

factors for our study. However the important point to note is that in 

this study we are not interested in correctly determining a priori 

distances and decay values, although we can draw upon these studies 

to help us understand our significant networks and distance values 

discovered through our analysis. We are interested in discovering 
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interesting patterns and clusters and then investigating them a 

posteriori for (archaeological) validity. 
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