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Abstract—The complexity of the novel video compression
algorithms is a major contributor for the increased demand of
processing and energy resources for video playback in consumer
electronic devices. Therefore, a decoder complexity reduction
mechanism is proposed which constitutes a model that predicts
the decoder’s complexity requirements to decode the HEVC
encoded bit streams with a 4.2% average prediction error and a
decoder complexity optimized encoding algorithm, which reduces
the decoding complexity by an average of 28.06% and 41.19%
with a -1.91 dB and -2.46 dB impact to the BD-PSNR for the
low delay P and random access configurations, respectively.

I. INTRODUCTION

The proliferation of High Definition (HD) and Ultra-High
Definition (UHD) video formats, increased complexity of the
state-of-the-art video compression algorithms such as High
Efficiency Video Coding (HEVC) [1], [2] and the unprece-
dented growth in mobile video data (expected to reach three-
fourth of the overall mobile data traffic by 2019 [3]), have
become crucial factors in making video playback in Consumer
Electronic (CE) devices a resource intensive operation. In
this context, the limited availability of processing and energy
resources in hand-held CE devices (smart phones, tablets, etc.,)
present a bottleneck when it comes to multimedia playback.
Thus, improving the energy efficiency of these devices has
become a compelling challenge that must be overcome. That
said, the energy consumed by the multimedia playback is
highly correlated with both the complexity of the codec as
well as the content. Therefore, a video encoding framework
that minimizes the resource utilization of the decoders could
positively contribute towards enhancing the energy efficiency
of these CE devices.

Reducing the complexity of the decoder, and by extension
the device’s energy consumption, has received significant
attention in the recent literature. However, the energy-aware
media delivery mechanisms that involve proxy servers [4],
and media transcoding techniques [5] are only limited to
the dynamic variation of the Quantization Parameter (QP),
spatial resolution, and frame rate. A more complex power-
aware HEVC streaming solution which generates bit streams
with various complexity levels has been proposed by He et al.
[6]. Moreover, Nogues et al. [7] introduced modifications to
the in-loop filtering process and the interpolation filters at the
decoder to further reduce the decoder’s complexity. In general,
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these methods, as well as Dynamic Voltage and Frequency
Scaling (DVFS) [8] solutions typically suffer from video
quality artifacts due to the skipping of decoder operations
and frame drop encounters, respectively. Therefore, mecha-
nisms to generate encoded bit streams which minimize the
extensive resource utilization at the decoders are envisioned
to achieve both complexity reductions while maintaining the
perceived video quality intact. Crucially, such frameworks
require an accurate and detailed complexity estimation model
that predicts the processing requirements of the decoder. The
state-of-the-art models for the complexity estimation include
approaches such as predicting the decoding energy of a bit
stream using the decoder processing time [9], and the mapping
of the relationships between the decoder complexity, content
and the QP [10]. Moreover, Herglotz et al. introduce two such
models [11], [12] that estimate the HEVC decoding energy
for intra- and inter-coded frames, respectively. However, the
level of detail considered in these models is found to be
inadequate when estimating the decoding complexity at the
Coding Unit (CU) level within the traditional Rate-Distortion
(RD) optimized encoding chain.

To this end, this paper introduces a novel feature based
decoder complexity model that predicts the decoding com-
plexity of an inter-coded CU. Thereafter, a decoder complexity
optimized coding mode selection algorithm, which leverages
the proposed complexity model to exploit the diverse decoder
complexities associated with the novel coding modes and fea-
tures in HEVC, is introduced to generate video bit streams that
minimize the decoder’s processing and energy requirements.

II. HEVC DECODER COMPLEXITY MODELING

This section first describes the process of formulating the
proposed decoder complexity model and is followed by a
description of the process of profiling the decoder complexity.

A. Formulating the Decoder Complexity Model

The process of reconstructing a CU at the decoder consists
of two phases; the decoding phase (i.e., entropy decoding of
syntax and residual coefficients) and the decompression phase
(i.e., predicting and reconstructing the block based on decoded
information). In this context, considering the most significant
functions (illustrated in Fig. 1), the decompression complexity



TABLE I
ESTIMATED CPU CYCLES OF THE DECOMPRESSION OPERATIONS IN THE HEVC DECODER.

efc elf ecf ewp erc eit eoverhead
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Fig. 1. Distribution of decoder complexity of the low delay P encoded
Kimono HD at QP=22 using the HM reference decoder.

for an inter predicted CU can be expressed as,

Ed =

N∑
i=1

{
efc(i)+elf (i)+2×ecf (i)+ewp(i)

}
+

M∑
j=1

eit(j)+er,

(1)
where efc, elf , ecf , ewp, eit and er correspond to the
complexities in the decoder for the filter copying (i.e., for
integer-pel motion vectors), luma filtering, chroma filtering,
weighted average prediction, inverse transform and reconstruc-
tion operations, respectively. Moreover, N and M identify the
number of Prediction Units (PU) and Transform Units (TU)
that constitute the CU.1

The complexity of the decoding phase is dominated by
the resources consumed for the residual coefficient decoding.
Thus, the decoding complexity of processing the jth CU is
given by,

ECU (j) = Ed + ecoeff +
eoverhead(j)

nCU(j)
. (2)

Here, ecoeff denotes the complexity incurred when decoding
the transform coefficients, and eoverhead encompasses the
overhead generated due to the quadtree structure of the CTU
that results from the jth CU for the selected PU size. nCU
represents the total number of CUs of the same size as the
jth CU that could reside within a CTU. Hence, the decoding
complexity of a CTU, which comprises of inter predicted CUs,
(ECTU ) becomes the summation of ECU (j) values and can
be expressed as

ECTU =

K∑
j=1

ECU (j), (3)

where K is the total number of CUs that make up the CTU.

1The elf and ecf terms need to be considered twice when both vertical
and horizontal filtering are used in a PU. In addition, eit becomes non-zero
only when a TU comprises of non-zero coefficients.

B. Profiling the Complexity of the HEVC Decoder

In order to estimate the complexity of the decoding op-
erations, this work profiles the decoder for a range of test
sequences (see Table II for details) with the commonly used
instruction level profiling tools [13] that have been used
extensively for the purpose of complexity analysis [14]. Here,
the decoding complexity of an inter-coded CU with respect
to the HM reference decoder is analyzed, and is presented
in terms of the number of CPU cycles (with respect to an
Intel x86 reference system with a 3.4 GHz CPU, 8GB RAM)
consumed, which represent the relative complexity of each
operation.

The decoder complexity of the decompression operations
predominantly depend on the CU, PU and TU sizes. Thus,
the estimated CPU cycles are averaged and presented in Table
I as a base value with respect to the smallest unit of operation
considered (i.e., the smallest CU, PU, and TU size). The
decoder complexity of efc, elf , ewp and ecf are presented
as a function of PU size. In this context, the complexity of an
arbitrary PU in a given CU can be derived by appropriately
scaling the given CPU cycles to the required PU size.

Furthermore, the complexity associated with the transform
coefficient decoding, ecoeff , can be modeled as a linear
function of the number of non-zero transform coefficients
[10]. In addition, the decoder complexity model and the
profiling details for intra-predicted CUs are derived based on
the information presented in [15].

III. DECODER COMPLEXITY OPTIMIZED ENCODING

Traditionally, the HEVC reference encoder has followed a
RD optimization process in order to select the coding modes
and coding structures for a given content. The Lagrangian cost
function evaluated therein can be expressed as

min D(p) + λR(p)
∣∣ p ∈ Pk, (4)

where λ ≥ 0 is the Lagrange multiplier, p is a particular
coding parameter combination in the set of all the possible
coding options Pk, and D(p), R(p) are the distortion and
rate associated with the selected set of coding parameters,
respectively. The coding mode and structure that returns the
minimum cost for a given content is selected as the coding
parameter combination that gives the best coding efficiency.
However, due to the varying distribution of decoder complex-
ities, the coding parameters selected via (4), may still utilize
a significant amount of resources during decoding. Therefore,
generating a decoder complexity optimized bit stream requires
the selection of less complex coding modes during the RD
optimization phase.



TABLE II
ACCURACY OF THE COMPLEXITY ESTIMATION MODEL

Low Delay P (LDP) Low Delay B (LDB)
Sequence Pe(%) Sequence Pe(%)

Tr
ai

ni
ng

Se
t Bridge-far 6.13 Bridge-far 4.58

Waterfall 0.44 Waterfall 3.60
Band HD 5.96 Band HD 4.33
Kimono HD 4.84 Kimono HD 4.25
GT Fly 3.52 GT Fly 2.94
Average 4.17 Average 3.94

V
al

id
at

io
n

Se
t Coastguard 3.30 Coastguard 2.43

Container 6.86 Container 1.36
Beergarden HD 4.84 Beergarden HD 4.55
Dancer HD 4.75 Dancer HD 4.32
Cafe HD 5.04 Cafe HD 5.88
Musicians HD 2.40 Musicians HD 8.47
Average 4.53 Average 4.50

In this context, the complexity models for inter predicted
and intra predicted CUs introduced in Sec. II and in [15],
respectively, are capable of estimating the required decoding
complexity for a particular coding mode, which could be used
in the Lagrangian optimization. Therefore, the modified cost
function in the proposed algorithm can be expressed as,

min E(p)
∣∣ p ∈ Pk, (5)

where, E(p) represents the decoder’s complexity cost for the
coding parameter set p. In this context, the minimum decoding
complexity becomes the selection criteria for the PU mode, CU
size, TU size, motion vectors (e.g., integer-pel vs fractional-pel
motion vectors), etc. for a particular QP.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results are first presented for the validation
of the proposed complexity estimation model, followed by
a discussion of the performance of the proposed complexity
optimized coding mode selection algorithm.

A. Validating the Proposed Complexity Model

The decoding complexity predicted by the proposed model
(Ep), is compared with the complexity that is measured
directly from the profiling tools (Ea) [13], and the prediction
error, Pe is calculated as

Pe = 100× |Ea − Ep|
Ea

. (6)

The experimental results illustrated in the Table II reveal that
the proposed model, which demonstrates an average prediction
error less than 5% for both uni- and bi-predicted video frames
(for 50 frames averaged over the QPs 22, 27, 32, and 37), is
essentially a suitable complexity estimation model to be used
in decoder complexity optimized video coding applications.

B. Performance of the Proposed Encoding Algorithm

The performance of the proposed algorithm is compared
with two similar state-of-the-art algorithms in terms of the
complexity reduction and the quality impact. In this context,
the decoder’s complexity reduction is computed using

∆E = 100× |Eρ − EHM |
EHM

, (7)

where Eρ and EHM are the estimated decoder complexities
for the bit streams generated by the proposed and other state-
of-the-art algorithms, and the bit streams generated by the
HM reference encoder [16], respectively. Moreover, the quality
impact is measured using the Bjøntegaard Delta-Peak Signal-
to-Noise Ratio (BD-PSNR) [17]. The performance is analyzed
and presented for the test sequences encoded using the low
delay P and random access configurations for 50 frames
averaged over the QPs 22, 27, 32, and 37. All the bit streams
are decoded using the HM reference decoder [16] in an Intel
x86 system with a 3.4 GHz CPU and 8GB RAM.

The algorithm proposed by Nogues et al. [7] constitutes a
process that alters the interpolation filters (MC), and an algo-
rithm that skips the loop filtering process (LF) based on the
required complexity level. The experimental results presented
in the Tables III and IV correspond to the lowest complexity
level for which the decoder applies the respective algorithms
for all the video frames in the sequence. However, despite the
average 28% decoder complexity reduction, the reconstructed
sequences demonstrate a considerable loss in BD-PSNR. The
changes to the interpolation filters at the decoder, which are
unaware to the encoder, causes prediction artifacts resulting in
the aforementioned quality drop. The algorithm proposed by
He at al. [6] utilizes an energy optimized PU mode selection
(PUM), and a distortion-energy optimized de-blocking filter
decision algorithm (DBLK) to achieve bit streams with various
complexity levels (low, medium, high), where the presented
results correspond to the lowest level. The PUM mode is
constrained to the PU mode decision and motion estimation vs
merge mode decision, hence, the level of complexity reduction
achieved is in the range of 16.4%.

In contrast, the proposed complexity optimized encoding
algorithm utilizes the decoding complexity estimated from a
detailed and accurate model which results in a less complex
coding structure while the motion estimation yield a motion
vector for the PU that reduces the overall complexity of the
CU. Hence, the resulting bit streams are shown to consume
less amount of decoder complexity compared to the state-of-
the-art algorithms. Moreover, the usage of the LF in [7], which
is mutually exclusive to the proposed CU level mode deci-
sions, further increases the decoder’s complexity reduction.
However, the proposed algorithm only considers the decoding
complexity for the mode selection, hence results in a less RD
optimized bit stream.

V. CONCLUSION

In conclusion, it is evident that encoders could generate
decoder resource optimized video bit streams by exploiting
the diversities of the decoder complexity requirements of the
HEVC coding modes. In this context, the proposed complexity
model for HEVC inter-frame decoding predicts the decoding
complexity with an average prediction error less than 5% for
both uni- and bi-predicted frames. Furthermore, the proposed
encoding algorithm is capable of generating HEVC bit streams
that can achieve an average decoder complexity reduction of
28.06% and 41.19% with a BD-PSNR loss of -1.91 dB and



TABLE III
COMPLEXITY REDUCTION PERFORMANCE OF THE PROPOSED METHOD (LOW DELAY P).

Sequence Proposed
(Model)

Proposed (Model
+ LF [7])

He et al. [6]
(PUM)

He et al. [6]
(PUM+DBLK)

Nogues et al. [7]
(MC+LF)

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

Tr
ai

ni
ng

Se
t Bridge-far 12.90 -0.42 31.54 -1.96 3.28 -0.02 12.10 -0.08 19.16 -1.30

Waterfall 26.97 -2.59 44.74 -3.61 10.42 -1.72 16.67 -2.12 22.42 -14.05
Band HD 26.86 -1.46 49.46 -3.31 8.67 -0.82 11.21 -2.74 28.55 -7.47
Kimono HD 39.68 -1.89 60.00 -5.14 17.35 -0.61 17.35 -0.64 31.31 -12.63
GT Fly 46.48 -2.15 62.4 -3.66 29.07 -1.2 34.09 -1.24 43.63 -11.47

V
al

id
at

io
n

Se
t Coastguard 18.15 -1.64 43.29 -5.16 12.59 -0.51 14.70 -0.54 25.34 -12.50

Container 18.99 -2.06 38.99 -3.22 8.41 -0.77 17.65 -0.84 16.77 -9.20
Beergarden 24.14 -1.58 45.19 -3.83 9.66 0.44 11.66 -2.05 26.80 -12.90
Dancer 40.66 -2.51 59.52 -3.73 21.96 -1.02 25.33 -1.13 40.76 -11.58
Cafe 17.32 -1.55 42.59 -3.09 7.52 -0.62 14.30 -0.69 27.90 -10.68
Musicians 36.54 -3.19 62.00 -6.57 15.85 -1.90 15.90 -1.98 36.74 -14.90
Average 28.06 -1.91 49.06 -3.93 13.16 -0.79 17.36 -1.27 29.03 -10.78

TABLE IV
COMPLEXITY REDUCTION PERFORMANCE OF THE PROPOSED METHOD (RANDOM ACCESS).

Sequence Proposed
(Model)

Proposed (Model
+ LF [7])

He et al. [6]
(PUM)

He et al. [6]
(PUM+DBLK)

Nogues et al. [7]
(MC+LF)

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

∆E(%) BD-
PSNR

Tr
ai

ni
ng

Se
t Bridge-far 33.22 -1.69 45.80 -1.42 2.79 -0.01 7.18 -0.03 15.64 -0.22

Waterfall 39.10 -2.89 48.68 -3.19 13.89 -0.54 18.36 -0.56 30.09 -6.53
Band HD 41.59 -2.65 55.32 -3.00 6.03 -0.54 9.47 -0.56 21.72 -1.81
Kimono HD 48.20 -2.32 62.16 -5.10 18.07 -0.58 18.60 -0.59 32.71 -2.69
GT Fly 52.80 -3.20 64.20 -4.20 22.48 -0.75 27.40 -0.75 37.26 -5.50

V
al

id
at

io
n

Se
t Coastguard 34.94 -4.13 47.33 -4.51 12.53 -0.49 13.76 -0.50 24.66 -4.68

Container 36.54 -1.91 46.40 -2.29 8.08 -0.28 12.95 -0.31 19.42 -5.67
Beergarden 36.60 -2.13 49.30 -2.68 7.11 -0.33 9.59 -0.34 23.08 -3.91
Dancer 49.50 -0.54 61.10 -3.25 18.75 -0.49 22.50 -0.58 35.60 -5.66
Cafe 36.00 -1.99 49.80 -3.60 4.63 -0.23 9.55 -0.22 18.54 -1.49
Musicians 44.60 -3.71 58.26 -5.40 18.12 -3.17 19.48 -3.18 37.44 -9.38
Average 41.19 -2.46 53.48 -3.51 12.04 -0.67 15.34 -0.69 26.92 -4.32

-2.46 dB for low delay P and random access configurations,
respectively, compared to the bit streams generated by the HM
reference encoder. The future work will focus on extending the
framework to consider both the rate and the distortion, along
side the decoder’s complexity, to generate more optimized
HEVC video bit streams.
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