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Abstract—This paper proposes a content adaptive fast CU size
selection algorithm for HEVC intra-prediction using weighted
support vector machines. The proposed algorithm demonstrates
an average encoding time reduction of 52.38% with 1.19%
average BDBR increase compared to HM16.1 reference encoder.

I. INTRODUCTION

High Efficiency Video Coding (HEVC) constitutes an as-
sortment of new coding tools and a quadtree based coding
structure, that contribute to its superior coding efficiency
improvement over its predecessor, H.264/AVC [1]. However,
the Rate-Distortion (RD) optimization based approach used to
determine the optimum coding parameters for a given content,
substantially increases the complexity of HEVC encoders.

The state-of-the-art methods for encoding complexity re-
duction can be generally grouped into two categories; sta-
tistical knowledge-based and learning-based approaches. For
example, the algorithms proposed by Cho et al. [2], and
Thanuja et al. [3] adopt statistical knowledge based approaches
to early determine the Coding Unit (CU) size using Bayes
decision rules, and texture statistics, respectively. On the other
hand, learning based methods use supervised machine learning
techniques to generate offline inference models utilizing a
large amount of training data. For example, Zhang et al.
[4] propose Support Vector Machines (SVM) to determine
the early termination of CU splitting in the HEVC quadtree
structure. In addition, deep learning based neural network
models such as Convolutional Neural Networks (CNN) have
also been utilized with different architectures and features [5],
for similar purposes. However, fixed thresholds, rigid decision
trees, and offline trained rigid inference models make these
algorithms less flexible to the changing video content. Thus,
content adaptive decision making models are crucial to make
fast CU size decisions while keeping the coding efficiency
performance intact.

To this end, this paper proposes a content adaptive fast
CU size selection algorithm for HEVC intra-prediction using
weighted SVMs, which, the models are trained using content
specific data collected online during the encoding cycle.

II. PROPOSED METHOD

The proposed method comprises of weighted SVMs that are
generated and applied on two different levels at the encoder.
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A. Level-1 (L-1) SVMs: Features and optimal weights

1) Data collection: L-1 has two SVMs for each CU depth.
Training data is obtained during the encoding process with the
traditional RD optimization, until N = 2000 data points are
gathered for each CU depth level, i = 0, 1, 2. The L-1 SVMs
are re-created after a certain number of predictions and the
ratio between the number of training and predicted samples is
1:400. This ensures the SVM models are kept relevant to the
content and their CU split decisions are content adaptive.

2) Feature selection: Let F ij be the set of features extracted
for CU depth i in the jth level. Therefore, at L-1, F ij=1 is
defined as,

F ij=1 := {αi, βi, γi}, (1)

where, αi, βi, and γi correspond to the texture complexity,
estimated RD cost for the current depth, and context informa-
tion, respectively for the ith CU depth [4].

3) Weight calculation: The objective function for the two
class, weighted SVM quadratic programming problem can be
defined as,

min
1

2
||w||2 + C ·Wns

Nns∑
i=1

ζi + C ·Ws

Ns∑
i=1

ζi, (2)

s.t. yi(w · xi + b) ≥ 1 − ζi, where ζi ≥ 0, ∀xi. Here,
xi = 1, 2, 3..., N is the feature vector of the training set,
with ith sample being represented as {xi, yi}, where yi ∈
{+1(split),−1(non− split)} is the class label. Furthermore,
w, ζ, C, Wns and Ws are the hyperplane margin, slack
variable, and trade-off parameter for hyperplane margin width
and misclassification, and weight parameters for CU non-split
and split classes, respectively.

The weight parameters Wns and Ws are computed with the
data collected during the encoding process. Here, weight value
pairs ranging from 1:5({Ws : Wns}) and 5:1({Ws : Wns})
with 0.5 step sizes are evaluated for each SVM, and the weight
pair that achieves the highest precision is selected to build the
SVM classification model. In this case, the precisions for split
ϕs and non-split ϕns classes are computed as ϕs = Tp/Tp+Fp

and ϕns = Tn/Tn+Fn. Here, Tp, Tn are the true positive, and
true negative samples, whereas Fp and Fn are the false positive
and false negative samples, respectively.

B. Level-2 (L-2) SVMs: Features and optimal weights

The CUs with split decisions that are not categorized by the
L-1 SVMs are evaluated using the L-2 SVMs.



TABLE I
CODING EFFICIENCY AND COMPLEXITY REDUCTION PERFORMANCE (ALL INTRA MAIN).

Sequence Proposed (δ = 100) vs HM Proposed (δ = 20) vs HM Zhang et al. [4] vs HM Liu et al. [5] vs HM
∆T(%) BD-Rate

(%)
BD-

PSNR(dB)
∆T
(%)

BD-Rate
(%)

BD-
PSNR(dB)

∆T
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BD-Rate
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BD-
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(%)

BD-Rate
(%)

BD-
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Kimono 72.60 2.32 -0.08 81.06 5.92 -0.20 80.74 4.13 -0.14 70.50 2.54 -0.08
Basketball Pass 52.68 0.56 -0.03 72.15 5.99 -0.34 51.84 1.21 -0.07 54.55 2.80 -0.16
BQTerrace 56.17 0.91 -0.05 72.94 7.52 -0.33 52.03 0.80 -0.04 56.78 1.95 -0.09
Traffic 61.71 0.56 -0.03 78.59 6.45 -0.30 49.48 0.98 -0.05 59.02 2.35 -0.11
RaceHorses 40.92 0.47 -0.03 62.75 4.82 -0.28 49.07 1.04 -0.06 53.98 2.36 -0.11
BlowingBubbles 31.78 0.28 -0.02 40.21 2.81 -0.18 31.33 0.41 -0.03 31.59 1.93 -0.13
Johnny 56.61 2.22 -0.09 70.46 6.02 -0.25 71.99 2.94 -0.12 71.35 4.28 -0.17
KristenAndSara 59.41 1.68 -0.08 66.74 4.89 -0.24 62.14 2.21 -0.11 68.78 3.18 -0.15
PeopleOnStreet 49.59 2.36 -0.12 75.61 13.65 -0.70 44.42 1.17 -0.06 56.49 2.25 -0.11
PartyScene 42.37 0.58 -0.04 52.91 3.40 -0.24 29.68 0.30 -0.02 44.72 2.23 -0.15
Average 52.38 1.19 -0.06 67.34 6.15 -0.31 52.27 1.52 -0.07 56.78 2.59 -0.13

1) Data collection: In L-2, only one SVM model is used at
each CU depth level. The number of training samples collected
for L-2 SVM models is maintained at 1000 per depth level.
Similar to L-1 models, SVMs are re-trained after a certain
number of predictions (i.e., in L-2, 1:200 ratio), allowing the
prediction models to be dynamic and content adaptive.

2) Feature selection: Let F ij=2 be the set of features
extracted for ith CU depth level in jth SVM level. Thus, for
L-2, F ij=2 is defined as,

F ij=2 := {θi, πi, τ i}, (3)

where θi, πi, and τ i refer to texture, context, and coding
information, respectively [4].

3) Weight calculation: L-2 only uses one SVM per CU
depth level, hence, the CUs are classified either split or non-
split. The weight parameters are calculated using a F-score
which is given by, F− score = 2×(χ∗ω)/(χ+ω), where χ and
ω are precision and recall, respectively. Here, recall ω is
calculated using ω = Tp/Tp+Fn.

4) Complexity control parameter (δ): The proposed method
introduces a complexity control parameter to allow δ% number
of CUs that reach L-2 models, to go through traditional RD-
optimization, to determine their CU split decisions. Control-
ling δ in the proposed algorithm, facilitates the flexibility to
trade-off coding complexity to the coding efficiency.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed algorithm has been implemented in HM16.1
reference encoder [6] using libSVM [7] to handle the SVM
functionalities. In addition, Radial Basis Function has been
used as the kernel function due to its higher accuracy when
dealing with small number of features, and its ability to handle
non-linear decision boundaries. The parameter C is maintained
at C = 100 to achieve better generalization and two coding
complexity trade-off parameter values δ% ∈ {100, 20} have
been used to evaluate the proposed algorithm.

The performance of the proposed method under all intra
main encoding configuration has been compared against two
state-of-the-art methods in the literature, i.e., [4], [5] and is
illustrated in the Table I. The encoding time performance
∆T (%) is evaluated using,

∆T(%) =
THM − Tρ
THM

× 100, (4)

where THM , and Tρ are the encoding times of the HM
reference encoder and the evaluating algorithm, respectively,
for QP ∈ {22, 27, 32, 37}. The impact on coding efficiency for
the proposed and state-of-the-art methods is measured using
the Bjøntegaard Delta Bit Rate (BDBR) increase [8].

It can be observed that the proposed algorithm with δ=100%
achieves an average encoding time saving of 52.38% with a
negligible BDBR loss, which outperform the state-of-the-art
methods. The generation of SVM models online during the
encoding, maintains the BDBR increase in proposed algorithm
at 1.19%, compared to BDBR increases in [4] and [5], which
use offline trained rigid inference models. In addition, the
experimental results with δ=100% and δ=20% demonstrate
the proposed algorithm’s capability to trade-off the coding
efficiency to the encoding complexity.

IV. CONCLUSION

The experimental results of the proposed algorithm demon-
strate an average encoding time saving of up to 52.38%, with
only 1.19% average BDBR increase compared to the HM16.1.
The future work will focus on extending the framework for
fast content adaptive HEVC inter coding.
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