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ABSTRACT 

The aim of this study was to examine the acute supplementation effects of dietary nitrate, 

caffeine, and their combination on 20 km cycling time-trial performance. Using a randomized, 

counterbalanced, double-blind, Latin-square design, 14 competitive, female cyclists (age: 31  7 

years; height: 1.69  0.07 m; body mass: 61.6  6.0 kg) completed four 20 km time-trials on a racing 

bicycle fitted to a turbo-trainer. 2.5 hours before each trial, subjects consumed a 70 ml dose of 

concentrated beetroot juice containing either 0.45 g of dietary nitrate, or with the nitrate content 

removed (placebo). 1 hour before each trial, subjects consumed a capsule containing either 5 mgkg
1

 

of caffeine or maltodextrin (placebo). There was a significant effect of supplementation on power 

output (p = 0.001), with post hoc tests revealing higher power outputs in caffeine (205  21 W) versus 

nitrate (194  22 W) and placebo (194  25 W) trials only. Caffeine-induced improvements in power 

output corresponded with significantly higher measures of heart rate (caffeine: 166  12 vs. placebo: 

159  15 b·min
-1

; p = 0.02), blood lactate (caffeine: 6.54  2.40 vs. placebo: 4.50  2.11 mmol·L
-1

; p 

< 0.001), and respiratory exchange ratio (caffeine: 0.95  0.04 vs. placebo: 0.91  0.05; p = 0.03). 

There were no effects (p ≥ 0.05) of supplementation on cycling cadence, ratings of perceived exertion, 

V̇O2, or integrated electromyographic activity. The results of this study support the well-established 

beneficial effects of caffeine supplementation on endurance performance. In contrast, acute 

supplementation with dietary nitrate appears to have no effect on endurance performance and adds 

nothing to the benefits afforded by caffeine supplementation. 

 

Key words: Ergogenic aids; nitric oxide; nitrite; endurance exercise.   
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INTRODUCTION 

Nitrate supplementation, via natural (beetroot juice) and pharmacological (nitrate salts) 

methods, is an emerging area of research due to its potential to improve endurance performance. 

Many, though not all (4,5,13,36), studies have reported a reduction in the oxygen cost of exercise 

following nitrate supplementation (1,2,11,28,29,30,33). Correspondingly, several studies have 

reported improvements in time-to-exhaustion (1,2,28) and time-trial (6,11,27) protocols; with 

improvements in the latter of 1.2 – 2.8% in events lasting from 6 – 27 mins (11,27). Mechanisms to 

explain these performance enhancements, though unresolved, are suggested to result from a 

bioconversion cascade from nitrate, via nitrite, to nitric oxide leading to improvements in mechanical 

(1) and/or mitochondrial-coupling efficiency (29). As such, and despite several contradictory findings 

(4,5,12,13,31,33,36,43), acute nitrate supplementation in the form of concentrated beetroot juice is 

currently marketed to athletes as a means of enhancing endurance performance. 

 

In contrast to the above, the effects of caffeine supplementation on endurance performance 

are more clearly defined (10,20); with doses of 3 – 6 mg∙kg
-1

 producing positive effects (1.2 – 4.2%) 

in time trial events lasting 5 – 60 mins (8,9,26,32,39,42). Although the effects of caffeine were 

originally purported to emanate from a glycogen-sparing mechanism of action, the absence of a 

corroborative change in respiratory exchange ratio (RER), combined with evidence of significant 

effects in events where glycogen availability would not be a limiting factor (20), led researchers to 

consider alternative explanations. At present, although a small peripheral effect via enhanced calcium 

mobilisation remains a possibility (40), the key mechanism by which caffeine is believed to enhance 

endurance performance is via a central mechanism involving an antagonism of adenosine receptors 

and leading to increases in neurotransmitter release, motor unit firing rates, and pain suppression (25); 

with particular support for the latter (40). Given the apparent differences in their mechanisms of 

action (peripheral [nitrate] versus central [caffeine]) and the fact that caffeine has been shown to have 

no scavenging effects on nitric oxide, at least in rodents (38), it is possible that the two supplements 
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combined could have a greater effect on endurance performance than either supplement alone. The 

aim of this study was therefore to examine the acute supplementation effects of dietary nitrate, 

caffeine, and their combination on subsequent 20 km time-trial performance in well-trained athletes. 

 

METHODS 

Experimental Approach to the Problem 

 In this investigation, subjects were required to complete six trials consisting of a 

familiarization trial (Trial 1), a stepwise incremental trial (Trial 2), and four supplementation trials 

(Trials 3-6). The stepwise incremental trial was used to provide descriptive data, and to enable time-

trial performance to be evaluated relative to standard physiological parameters. The supplementation 

trials followed a Latin-square design and were double-blind, randomized, and counterbalanced. 

Subjects were instructed to maintain their normal diet throughout the testing period, to follow the 

same diet for 24 hours prior to each trial, to avoid food and drink in the hour before each trial, and to 

refrain from strenuous exercise for 24 hours before each trial. Subjects were provided with lists of 

caffeine- and nitrate-rich foods and instructed to abstain from consumption of these for 24 hours and 

48 hours, respectively, prior to each trial. A questionnaire was used to investigate the possible effect 

that normal caffeine consumption may have on the results of the investigation. Subjects were provided 

with low-nitrate bottled drinking water (Buxton Still, Nestlé Waters UK Ltd, Buxton, UK) to assist 

with adherence to the dietary restrictions. In addition, subjects were instructed to refrain from using 

anti-bacterial mouthwash for 48 hours prior to each trial in order to avoid disruption of nitrate-

reducing bacteria in the entero-salivary circulation (19). 2.5 hours before each of the supplementation 

trials, subjects consumed a 70 ml dose of concentrated beetroot juice (Beet IT Sport Shot; James 

White Drinks Ltd., Ashbocking, Suffolk, UK) containing either 0.45 g (~ 7.3 mmol) of dietary nitrate, 

or, as supplied specifically by the manufacturer for research purposes, with the nitrate content 

removed (placebo: ~ 0.01 mmol nitrate). 1 hour before each trial, subjects consumed a gelatine 

capsule containing either 5 mgkg
1

 of caffeine (Sigma-Aldrich, Steinheim, Germany) or placebo 
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(maltodextrin: My Protein, Manchester, UK). The supplementation trials therefore consisted of four 

conditions: placebo (placebo + placebo), nitrate (nitrate + placebo), caffeine (caffeine + placebo), and 

caffeine + nitrate. 

 

Subjects 

Fourteen well-trained, competitive, female athletes (cyclists and triathletes) volunteered for 

the study which was approved by St Mary’s University Ethics Committee. Prior to testing, subjects 

received written and verbal instructions regarding the nature of the investigation and completed a 

training history questionnaire, which indicated that all had been actively involved in sport for 

approximately 13 years and that, at the time of the investigation, time spent training each week was 

10.7  2.2 hours. Prior to commencement, all subjects completed a health-screening questionnaire and 

provided written informed consent. Means  standard deviation for age, height, body mass, and body 

fat, of the subjects were: 31  7 years, 1.69  0.07 m, 61.6  6.0 kg, and 24.9  4.3%, respectively.  

 

Procedures 

All trials were performed at approximately the same time of day ( 1 hr) in an air-conditioned 

laboratory maintained at a temperature of 19C. In all trials, subjects exercised on a racing bicycle 

(Claud Butler San Remo, Claud Butler, Brigg, UK) seated on a motor-braked turbo trainer (Tacx 

Fortius, Wassenar, Netherlands), which has been shown to have very good test-retest reliability 

(Coefficient of variation: 1.6%) for 20 km time-trial performance (37). The bicycle was fitted with 

clipless pedals and subjects cycled using their own cycling shoes. Rear tyre pressure was maintained 

at 100 psi and the trainer was calibrated before each trial in accordance with the manufacturer’s 

instructions. Prior to every familiarization trial, the saddle height was adjusted for each subject and 

noted for future replication.    



Dietary nitrate and caffeine on cycling  6 

 

 

Each stepwise incremental trial began at 100 W and increased by 20 W increments until blood 

lactate was > 4 mmol∙L
-1

. The duration of each increment was 3.5 minutes, and a 20 μl capillary blood 

sample was obtained in the last 30 s of each increment for the evaluation of blood lactate via an 

automated analyser (Biosen C-Line, EKF Diagnostic, Ebendorfer Chaussee 3, Germany). After a five 

minute passive rest period, subjects completed a second incremental test, again starting at 100 W and 

increasing by 20 W increments; however, for this phase of the trial the duration of each increment was 

only 1 minute. The trial was terminated when subjects reached volitional exhaustion, at which time a 

final blood lactate measurement was obtained. Oxygen uptake (V̇O2) was monitored (breath-by-

breath) throughout using an on-line gas analyser (Jaeger Oxycon Pro, Hoechberg, Germany). The 

analyser was calibrated before each trial using oxygen and carbon dioxide gases of known 

concentrations (Cryoservice, Worcester, UK) and the flowmeter was calibrated using a 3-litre syringe 

(Viasys Healthcare GmbH, Hoechberg, Germany). During the trials subjects breathed room air 

through a facemask (Hans Rudolph, Kansas City, MO, USA) that was secured in place by a head-cap 

assembly (Hans Rudolph, Kansas City, MO, USA). V̇O2max was determined as the highest 30 s 

average V̇O2 recorded during the trial provided that at least two of the following criteria had been 

met: 1) A plateau in V̇O2; as determined by an increase of less than 2 mlkg
-1
min

-1
 over the previous 

stage; 2) A respiratory exchange ratio  1.15; 3) A heart rate within 10 bmin
-1

 of age predicted 

maximum; 4) A blood lactate concentration  8 mmolL
-1

. 

 

The familiarization and supplementation trials began with subjects completing a 5 minute 

warm-up at 100 W, followed by a 5 minute period of passive rest. Subjects then completed a 20 km 

time-trial against a resistance designed to replicate outdoor, level-gradient, cycling conditions. All 

measures of elapsed time were removed from the testing environment and the only data visible to the 

subjects throughout each time-trial was the distance completed. Verbal encouragement was provided 

throughout. Subjects were free to change gears throughout familiarisation; however, the gearing and 
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cadence typically chosen were noted and used to standardise subsequent warm-up performance and 

the starting intensity for subsequent time-trials. After the start of each supplementation time-trial, 

subjects were free to change gears if they wished. Power output, distance completed, and cadence 

were recorded at 1 Hz throughout each time-trial. Expired air was monitored, breath-by-breath, for the 

evaluation of V̇O2 and RER. Heart rate was monitored at 5 s intervals using a heart rate monitor 

(Polar s610, Polar Electro Oy, Kempele, Finland). Ratings of perceived exertion (RPE) were recorded 

at 5 km intervals using a 15-point scale (7).   

 

5 minutes before the start of each supplementation trial, a venous blood sample was drawn 

from a branch of the basilic vein, collected in lithium-heparin tubes (Vacutainer, Becton Dickinson, 

New Jersey, USA), mixed, and immediately centrifuged at 3000 rpm for 10 minutes at 4C. 

Subsequently decanted plasma samples were frozen at -80C until analyzed for nitrate/nitrite and 

caffeine content using chemiluminescence and high-performance liquid chromatography, 

respectively. Analysis of plasma nitrate and nitrite content via chemiluminescence was performed 

using the same procedures outlined by Peacock et al. (36). 

 

Prior to the supplementation trials, subjects lay supine on an inclined couch while pre-gelled 

disposable hypoallergenic 1 cm snap-electrodes (Performance Plus, Vermed, VT, USA), were located 

over the belly of the vastus lateralis of the right leg for the evaluation of muscle activity using 

integrated electromyography (iEMG). Positioning of the electrodes was made using SENIAM 

(Surface Electromyography for the Non-Invasive Assessment of Muscles) guidelines. Skin surfaces 

were shaved, if necessary, and swabbed with alcohol prior to electrode placement. Electrodes were 

placed 2.5 cm apart, parallel to the direction of muscle fibres, with a reference electrode located above 

the tibia. The position of the electrodes was outlined with indelible pen in order to replicate electrode 

placement in subsequent trials. EMG data were sampled at 1000 Hz using a data acquisition system 

(Biopac MP150, Biopac Systems Inc. CA, USA). Data were sampled for 30 s midway through each 
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warm-up and in the final minute before the end of each 5 km interval during each time-trial. The raw 

data was band-pass filtered (10 – 500 Hz), rectified, and integrated over each 30 s time period. iEMG 

data from each time-trial were normalised to the warm-up data to allow for any subtle movements in 

electrode placement between trials.  

 

The influence of supplementation on tissue oxygenation was evaluated using a continuous 

wave near-infrared spectroscopy (NIRS) system (PortaMon, Artinis Medical Systems, Zetten, The 

Netherlands), which uses two wavelengths of light (842 and 762 nm) to measure concentration 

changes in oxyhemoglobin ([HbO2]) and deoxyhemoglobin ([HHb]), as well as providing an index of 

tissue saturation (TSI). The midpoint between the light source (optode) and the receiver was located 

over the belly of the left vastus lateralis using the same procedure for electrode placement outlined 

above, with the device aligned parallel to the direction of the muscle fibres. Prior to location, the area 

beneath the device was shaved, if necessary, swabbed with alcohol, and covered with a 6 × 7 cm 

transparent adhesive dressing (Tegaderm, 3M, MN, USA) to limit movement and the risk of sweat 

interfering with the device. The device was secured in place with 50 mm lightweight elasticated 

adhesive bandage (Tiger Tear, Tiger Tapes, Havant, UK) and covered with a black, light-absorbing 

cloth to minimize the risk of extraneous light interfering with the signal. Data were sampled 

continuously at 10 Hz at rest, during the warm-up, and throughout each time-trial.  

 

Statistical Analyses 

All statistical analyses were conducted using the Statistical Package for the Social Sciences 

(SPSS for Windows, SPSS Inc., Chicago, IL). Measures of centrality and spread are presented as 

means ± standard deviation. V̇O2 data from each time-trial were filtered to eliminate values that were 

outside four standard deviations of the midpoint of a rolling 20 breath mean (attributed to ‘noise’), 

integrated, and averaged to provide mean responses for each trial and each 5 km split. The onset of 
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blood lactate accumulation (OBLA), from the incremental trials, was identified using software 

developed for the purpose (34). The effects of supplementation on pre-test measures of plasma nitrate, 

nitrite, and caffeine were evaluated using one-way ANOVAs. Two-way (supplement × 5 km split) 

ANOVAs were used to determine the effects of supplementation and 5 km splits on 20 km time-trial 

performance measures (power output, time, and cadence) and physiological responses (heart rate, 

blood lactate, V̇O2, RPE, and RER). The possibility that any effects of caffeine supplementation on 

performance were influenced by habitual caffeine consumption was investigated by deriving 

correlations between estimated daily caffeine consumption and caffeine-induced changes (relative to 

placebo) in 20 km time-trial performance. The effects of supplementation on iEMG activity during the 

warm-up and during each time-trial were evaluated using one- and two-way (supplement × 5 km split) 

ANOVAs, respectively. Finally, the effects of supplementation on NIRS data at rest, during warm-up, 

and during each time-trial, were determined using one-way ANOVAs.  was set at 0.05 for all 

analyses. Violations to assumptions of sphericity were adjusted using the Greenhouse-Geisser 

correction factor. Significant interactions were followed-up using post hoc tests with Bonferroni 

adjustments for multiple comparisons. The above analyses provided 95% confidence limits for all 

estimates. 

 

RESULTS 

Plasma Analyses 

The results of the plasma nitrate, nitrite, and caffeine analyses are presented in Table 1. There 

were significant effects of supplementation on pre-trial plasma concentrations of nitrate (F(1.8,22.9) = 

21.11; p < 0.001), nitrite (F(2.0,26.4) = 12.88; p < 0.001), and caffeine (F(1.5,19.6) = 29.21; p < 0.001), 

confirming subject compliance with supplementation guidelines and dietary restrictions. Post hoc 

tests revealed significantly elevated caffeine concentrations in the caffeine-supplemented conditions 

and significantly elevated nitrate and nitrite concentrations in the nitrate-supplemented conditions. 
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The only exception to the above was the absence of a significant difference in plasma nitrite 

concentration between the caffeine + nitrate and the caffeine trials (p = 0.09).  

 

Performance Responses 

V̇O2max(cycling) of the subjects was 3.21  0.35 L∙min
-1

 (52.3  4.9 ml∙kg
-1

∙min
-1

) and OBLA 

occurred at a power output of 205.6  24.1 W. The effects of supplementation on power output during 

the time-trials are presented in Figure 1A, with effects on time and cadence presented in Table 2. 

There was a significant effect of supplementation on power output (F(3,39) = 6.91; p = 0.001) and time 

(F(3,39) = 6.81; p = 0.001) during the time-trials, but no effect on cadence (F(3,39) = 0.88; p = 0.46). Post 

hoc analyses revealed that significant effects of supplementation on power output and time were only 

observed between caffeine and nitrate, and caffeine and placebo trials. In effect, caffeine 

supplementation resulted in significantly higher power outputs than nitrate (mean difference: 10.4 W; 

95% likely range: 2.3 – 18.4 W) and placebo (mean difference: 10.3 W; 95% likely range: 0.8 – 19.8 

W), with effects translating to corresponding reductions in 20 km completion time (mean difference 

[caffeine vs nitrate]: 42.4 s; 95% likely range: 5.7 – 79.1 s; [caffeine vs placebo]: 45.1 s; 95% likely 

range: 3.8 – 86.5 s). Moreover, although the effects of caffeine + nitrate on power output and time 

were not significantly different from those of caffeine (p = 1.00), they were not significantly different 

from nitrate (p = 0.21) and placebo (p = 0.12) conditions. The correlation between the improvement in 

power output, relative to placebo, following caffeine supplementation and estimated typical daily 

caffeine consumption (249  131 mg.d
-1

) was -0.20 (95% likely range: -0.66 – 0.37).  

 

Irrespective of the form of supplementation, there was a significant main effect of 5 km split 

on power output (F(1.3,17.5) = 13.79; p < 0.001) and time (F(1.4,17.6) = 15.39; p < 0.001) across the time-

trials; though once again, there was no effect on cadence (F(1.2,16.1) = 0.84; p = 0.40). Post hoc analyses 

revealed that subjects produced a significantly greater power output and a correspondingly faster time 
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in the final 5 km of each time-trial in comparison with each of the other 5 km splits. No significant 

differences were observed in power output or time for any of the remaining 5 km split comparisons; 

moreover, there were no significant supplement × 5 km split interactions for measures of power 

output (F(5.2,67.0) = 1.69; p = 0.15), time (F(5.0,64.6) = 2.12; p = 0.075), or cadence (F(4.6,59.9) = 0.57; p = 

0.71). 

 

Physiological Responses 

Heart rate 

Heart rate increased progressively throughout the 20 km time-trials (F(1.7,21.9) = 104.04; p < 

0.001), with significantly greater values at each 5 km split (see Figure 1B). There was also a 

significant effect of supplementation on heart rate (F(3,39) = 11.95; p < 0.001); post hoc analyses 

revealing that values were significantly higher in caffeine versus placebo (mean difference: 6.5 b∙min
-

1
; 95% likely range: 0.9 – 12.1 b∙min

-1
), caffeine + nitrate versus placebo (mean difference: 8.0 b∙min

-

1
; 95% likely range: 3.2 – 12.8 b∙min

-1
), and caffeine + nitrate versus nitrate (mean difference: 5.2 

b∙min
-1

; 95% likely range: 1.3 – 9.2 b∙min
-1

) trials. There was no supplement × split interaction for 

heart rate (F(3.9,50.5) = 1.88; p = 0.13). 

 

V̇O2 

There was a significant effect of 5 km split on V̇O2 (F(1.5,19.2) = 13.53; p < 0.001), with values 

increasing between the first two 5 km splits (mean difference: 0.16 L∙min
-1
; 95% likely range: 0.08 – 

0.24 L∙min
-1
), but with no significant differences between the 5-10, 10-15, and 15-20 km splits (see 

Table 3). There was, however, no effect of supplementation on V̇O2 (F(3,39) = 1.39; p = 0.26), and no 

supplement × split interaction (F(3.9,50.3) = 1.18; p = 0.32).  

 

Respiratory exchange ratio   
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The pattern of the RER response to the time trials is presented in Figure 1C. There was a 

significant effect of 5 km split (F(1.2,15.9) = 23.51; p < 0.001) on RER, with significant differences 

between all comparisons apart from that between the 5-10 and 15-20 km splits. There was also a 

significant effect of supplementation (F(3,39) = 6.61; p = 0.001), with post hoc tests revealing 

significantly higher RER values for caffeine versus placebo (mean difference: 0.033; 95% likely 

range: 0.002 – 0.063) and caffeine versus nitrate (mean difference: 0.034; 95% likely range: 0.001 – 

0.064) trials only. There was no significant supplement × split interaction (F(4.0,52.0) = 1.08; p = 0.38) 

for RER. 

 

Ratings of perceived exertion 

There was a significant effect of 5 km split on RPE during the time trials (F(1.6,21.3) = 144.75; p 

< 0.001). Post hoc comparisons revealed a progressive increase in RPE throughout the time-trials with 

significant differences between all contrasts (see Table 3). There was, however, no significant effect 

of supplementation (F(3,39) = 1.62; p = 0.20) and no supplement × split interaction (F(9,117) = 0.82; p = 

0.60). 

 

Blood lactate 

Blood lactate responses to the time-trials are presented in Figure 1D. There was a significant 

effect of 5 km split (F(1.6,20.7) = 23.94; p < 0.001), with mean values increasing throughout the time-

trials, and with post hoc analyses revealing significant differences between all contrasts apart from 

those between 0-5 and 5-10 km, and 5-10 and 10-15 km splits. There was also a significant effect of 

supplementation (F(2.0,26.1) = 21.67; p < 0.001), with post hoc tests revealing significantly higher blood 

lactate values in caffeine versus nitrate (mean difference: 2.28 mmol∙L
-1

; 95% likely range: 0.84 – 

3.73 mmol∙L
-1

), caffeine versus placebo (mean difference: 2.04 mmol∙L
-1

; 95% likely range: 0.90 – 

3.18 mmol∙L
-1

), caffeine + nitrate versus nitrate (mean difference: 2.74 mmol∙L
-1

; 95% likely range: 

1.03 – 4.45 mmol∙L
-1

), and caffeine + nitrate versus placebo (mean difference: 2.50 mmol∙L
-1

; 95% 
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likely range: 1.14 – 3.85 mmol∙L
-1

). The supplement × split interaction was not significant (F(9,117) = 

1.94; p = 0.053).  

 

Tissue oxygenation 

The effects of supplementation on NIRS-derived measures of tissue oxygenation at rest, 

during warm-up, and during the time-trials are presented in Table 4. There were no significant effects 

of supplementation on any of the measures apart from [HHb] (F(3,39) = 5.34; p = 0.004) during the 

time-trials. Post hoc analyses revealed significantly lower values for [HHb] in the caffeine + nitrate 

versus the nitrate trial only (mean difference: 3.90; 95% likely range: 0.84 – 6.96). 

 

iEMG 

There were five instances where electrodes became detached during the trials. As a result, 

iEMG responses during the time-trials are based on a sample size of n = 10. There was no significant 

effect of supplementation on the level of iEMG activity during warm-up (F(3,39) = 0.33; p = 0.81) or 

during the time-trials (F(3,27) = 0.59; p = 0.63) (see Table 5). There was, however, a significant effect 

of 5 km split (F(1.4,12.5) = 6.75; p = 0.016), with the final 5 km split producing higher levels of activity 

(relative to warm-up) than the 5-10 km (mean difference: 11.1%; 95% likely range: 0.6 – 21.6%) and 

10-15 km (mean difference: 10.0%; 95% likely range: 2.9 – 17.2%) splits. There was no supplement × 

split interaction for iEMG activity (F(3.4,30.9) = 1.97; p = 0.13).   

 

DISCUSSION 

The aim of this study was to examine the acute supplementation effects of dietary nitrate, 

caffeine, and their combination on subsequent 20 km time-trial performance in well-trained, 

competitive athletes. Relative to placebo, the results showed a significant effect of caffeine, but no 

effect of nitrate. Moreover, while performance following caffeine + nitrate was not significantly 



Dietary nitrate and caffeine on cycling  14 

 

different from the caffeine only condition, it was not significantly different from the nitrate and 

placebo conditions. 

 

The pre-trial plasma nitrate and nitrite concentrations observed in the caffeine and placebo 

conditions are commensurate with values previously reported for the same level of dietary nitrate 

restriction (30). Moreover, the increases in plasma nitrate and nitrite concentrations, relative to 

placebo, are consistent with those reported following similar acute nitrate dosing strategies (12,28). 

Nevertheless, nitrate supplementation had no effect on time-trial performance. Apart from the 

findings of Lansley et al. (28), and the final three of six 500 m rowing repetitions (no overall effect) 

used by Bond et al. (6), previous research, using various modes of exercise and time-trial durations 

(4.5 – 138 mins), have also found no significant effect of acute nitrate supplementation on endurance 

performance (12,13,33,36,43). Since the nitrate dosing strategies used by Lansley et al. (28) and Bond 

et al. (6) fall within the range used by the aforementioned investigations, and since all the studies 

listed used well-trained subjects, it is difficult to provide an explanation for these discrepancies. 

 

Previous research has generally, but not always (4,5,13,36), reported a reduced oxygen cost of 

submaximal exercise following acute or chronic nitrate supplementation (1,2,11,27,29,30,33). In those 

studies that have examined time-trial performance, several have failed to evaluate performance 

relative to V̇O2 (6,11,12,13,36). Of those that have, Muggeridge et al. (33) reported a reduction in 

V̇O2, despite no change in performance; Lansley et al. (28) found no change in V̇O2 despite an 

increase in performance; and Wilkerson et al. (43), despite finding no change in V̇O2 or performance, 

found an increase in power output relative to V̇O2. In the present study, subjects completed the nitrate 

supplemented time-trials at a mean V̇O2 of approximately 83% of V̇O2max (~ 95% of OBLA). As such, 

it is possible that the absence of an effect of nitrate on V̇O2 could be due to the intensity of the 

protocol. Indeed, Larsen et al. (30) found that nitrate supplementation only reduced V̇O2 at 

submaximal intensities of ≤ 80 V̇O2max. Of course, it is also possible that the nitrate dose delivered 
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was insufficient to produce an effect. However, since plasma nitrate and nitrite concentrations were 

significantly elevated, relative to placebo, prior to each time-trial, and since the nitrate dose 

administered was only slightly less (~ 1 mmol) than the dose recently reported to optimise the effect 

of acute nitrate supplementation on submaximal V̇O2 and a time-to-exhaustion task (44), this 

suggestion seems unlikely.              

 

As with nitrate, post-supplementation plasma caffeine concentrations were similar to values 

previously reported for the same dosing strategy (18). Moreover, the effect of caffeine 

supplementation on time-trial performance adds to the considerable body of previous research 

supporting a positive effect of caffeine on endurance exercise (10,20). Although research into the 

effects of caffeine on time-trial performance, particularly in well-trained athletes, is less substantive; it 

generally, but not always (14,22) corroborates the results of the present study (8,9,32,39,42). 

Nevertheless, the increase in power output was not accompanied by a change in cadence, suggesting 

that the effect was due to an increase in force production rather than an increase in the frequency of 

each pedal stroke. However, this response was not reflected in an increase in iEMG activity. Since the 

key mechanism by which caffeine is believed to enhance exercise performance is via the antagonism 

of adenosine receptors, leading to increases in neural drive and pain suppression (25); the absence of 

an effect on iEMG suggests that the procedure may lack the necessary sensitivity to detect changes of 

the magnitude observed in the present study.  

 

Although differences in protocol design make direct comparisons difficult, many of the 

physiological responses that accompanied caffeine supplementation are consistent across studies. For 

instance, caffeine has consistently been shown to alter perceptual responses either, as in the present 

study, by allowing a greater amount of work to be performed at the same perception of effort, or by 

reducing the perception of effort for the same exercise intensity (16). Similarly, several studies that 

have observed a caffeine-induced increase in performance have, as in the present study, also reported 
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a corresponding elevation in heart rate (8,26,39). While the suppressive effect of caffeine on RPE is 

most likely due to caffeine’s antinociceptive effects (25); the increase in heart rate is most likely 

reflective of the caffeine-induced increase in power output coupled with a progressive increase in 

cardiovascular drift. While it is also possible that caffeine exerted a direct effect on heart rate, 

research into the effects of caffeine on fixed-intensity submaximal exercise generally shows no effect 

(24,26,39). 

 

Given the normally strong positive association between heart rate and V̇O2 at submaximal 

intensities, it was surprising that the significant effect of caffeine on heart rate was not reflected in a 

corresponding effect on V̇O2. However, caffeine did have a significant effect on blood lactate, 

suggesting that the caffeine-induced increase in time-trial performance was due to an increased 

contribution from anaerobic metabolism. While this suggestion provides a fitting explanation for the 

above responses, Graham et al. (21) could not attribute caffeine-induced increases in blood lactate to 

an increase in lactate release from working muscles. Although further research is required to resolve 

this issue, the caffeine-induced increase in blood lactate, in the absence of any change in V̇O2, 

provides an explanation for the observed increased in RER via an increased buffering of associated 

hydrogen ions; although, it is difficult to resolve why this effect was not observed in the caffeine + 

nitrate trial or in other performance-based studies (9,24).  

 

Typical daily caffeine consumption of the athletes in the present study was similar to that of 

the general population (> 200 mg∙d
-1

) (17). Though there is some evidence that caffeine habituation 

may reduce the effects of supplementation (3), the fact that the relationship between habitual daily 

caffeine consumption and the caffeine-induced increase in power output was small, adds support to 

the majority of studies that report findings to the contrary (15,18,41). 
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Despite the significant effect of caffeine on time-trial performance, the absence of a 

significant effect when caffeine was combined with dietary nitrate suggests a possible negative 

interaction between the supplements. Indeed, the lack of a significant difference in plasma nitrite 

concentration between the caffeine + nitrate and the caffeine conditions adds some credence to this 

idea. However, the effects on time-trial performance were similar between caffeine and caffeine + 

nitrate conditions; moreover, relative to placebo, heart rate and blood lactate responses for the 

combined condition were similar to those of caffeine, suggesting that the magnitude of this effect is 

small. Considering the substantial differences between the timings of nitrate and caffeine 

administration, it seems unlikely that any negative interactive effects occurred pre-absorption; 

however, since possible interactions between caffeine and nitrate in blood do not appear previously to 

have been investigated, further research is needed to confirm and explain this finding. 

 

Although the caffeine + nitrate condition failed to significantly enhance time-trial 

performance, it did, relative to the nitrate condition, result in a significant reduction in [HHb]. It is 

difficult to reconcile this effect, particularly given the lack of a corresponding significant effect with 

caffeine, and the absence of a difference in [HHb] between the caffeine + nitrate and the placebo 

conditions. Bailey et al. (2) observed a significant reduction in [HHb] amplitude during moderate 

intensity exercise coupled with an increase in [HbO2] at rest and during moderate intensity exercise 

following chronic (6.2 mmol·d
-1

 for 6 days) nitrate supplementation. In contrast, the results obtained 

at rest and during warm-up in the current study, albeit using an acute dosing strategy, failed to show 

the same responses. However, Bailey et al. (2) observed no effect of nitrate on NIRS-derived indices 

of muscle oxygenation during ‘severe’ exercise, again supporting the idea that the lack of an effect of 

nitrate in most time-trial studies (12,13,33,36,43) is due to the intensity of the protocols.       

 

The present study used competitive female athletes; first, because they were well-trained, and 

secondly, because there is a lack of research in this population. The busy training schedules of the 
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athletes, combined with the need to allow for sufficient recovery between trials, meant that possible 

circa-mensal effects could not be controlled. However, while there is some evidence to the contrary, 

and despite several methodological issues and a lack of research using well-trained athletes, many 

studies have found no effect of the menstrual cycle on cardio-respiratory measures or exercise 

performance (23,35). As such, and given the randomized order of supplement administration, this was 

not considered to be a major limitation to the investigation.                 

 

PRACTICAL APPLICATIONS 

The results of the present study support the well-established beneficial effects of caffeine 

supplementation on endurance performance. In contrast, acute supplementation with dietary nitrate, in 

the form of a commercially available sport-specific beetroot supplement, had no effect on 20 km 

cycling time-trial performance or any associated physiological responses. For those athletes inclined 

to take combinations of supplements to enhance endurance performance, the results of this study 

suggest that acute supplementation with dietary nitrate adds nothing to the ergogenic benefits of 

caffeine supplementation and, though further research is required to confirm, may even have an 

antagonistic effect. 
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Table 1. The effects of dietary nitrate, caffeine, and their combination on plasma 

concentrations of nitrate, nitrite, and caffeine prior to a 20 km cycling time-trial. Values are 

means  standard deviation. 

  Plasma concentration  

Supplement Nitrate (μmol∙L
-1

) Nitrite (nmol∙L
-1

) Caffeine (μg∙ml
-1

) 

Placebo 48.2  21.6
a,c 

91.7  22.6
a,c

  0.32  0.46
b,c 

Nitrate 350.0  156.4
d 

296.8  140.4
d 

0.29  0.37
d,e 

Caffeine 41.4  14.5
f 

103.4  53.4
 

4.70  3.01
 

Caffeine + Nitrate 192.5  181.7
 

206.3  132.1
 

4.83  2.89
 

Note: Superscripted letters indicate significant (p < 0.05) differences between: 
a
Placebo vs 

Nitrate; 
b
Placebo vs Caffeine; 

c
Placebo vs Caffeine + Nitrate; 

d
Nitrate vs Caffeine; 

e
Nitrate vs 

Caffeine + Nitrate; 
f
Caffeine vs Caffeine + Nitrate. 

 

Table 5. The effects of dietary nitrate, caffeine, and their combination on the level of 

integrated electromyographic activity, relative to a fixed intensity warm-up (100 W), during a 

20 km cycling time-trial. Values are means  standard deviation. 

  iEMG activity (%)  

Supplement 0-5 km 5-10 km 10-15 km 15-20 km 

Placebo 139.5  25.9 148.2  39.9 152.4  38.0 164.5  43.2 

Nitrate 138.5  41.2 132.8  36.4 131.6  38.4 147.3  48.5 

Caffeine 148.3  41.7 150.1  38.6 148.4  37.2 158.2  39.1 

Caffeine + Nitrate 148.9  50.9 144.5  58.6 147.6  61.7 150.1  60.4 

Note: iEMG = integrated electromyography. 
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Table 2. The effects of dietary nitrate, caffeine, and their combination on performance time and cadence during a 20 km cycling time-trial. 

Values are means  standard deviation. 

   Time (minutes)    Cadence (rpm)   

Supplement 0-5 km 5-10 km 10-15 km 15-20 km 0-20 km 0-5 km 5-10 km 10-15 km 15-20 km 0-20 km 

Placebo 9.06  0.48 8.91  0.49 8.84  0.45 8.55  0.38 35.37  1.70
a 

97.7  8.2 99.0  8.7 97.6  8.8 97.3  10.7 97.9  8.6 

Nitrate 9.01  0.45 8.90  0.43 8.82  0.40 8.59  0.36 35.33  1.50
b 

96.8  4.7 98.0  5.3 96.1  6.9 95.5  8.1 96.6  5.8 

Caffeine 8.84  0.43 8.67  0.34 8.64  0.34 8.46  0.30 34.62  1.26 97.8  8.0 98.3  8.6 97.4  9.3 96.8  10.8 97.6  8.8 

Caffeine + Nitrate 8.82  0.38 8.73  0.36 8.70  0.39 8.51  0.32 34.76  1.31 98.2  6.4 99.3  7.1 98.8  8.1 98.3  10.3 98.7  7.4 

Note: rpm = revolutions per minute. Superscripted letters indicate significant (p < 0.05) differences between: 
a
Placebo vs Caffeine; 

b
Nitrate vs Caffeine 

 

Table 3. The effects of dietary nitrate, caffeine, and their combination on oxygen uptake and ratings of perceived exertion during a 20 km cycling time-trial. 

Values are means  standard deviation. 

  Oxygen uptake (L∙min
-1

)  RPE  

Supplement 0-5 km 5-10 km 10-15 km 15-20 km 0-20 km 0-5 km 5-10 km 10-15 km 15-20 km 

Placebo 2.49  0.47 2.62  0.44 2.64  0.35 2.77  0.44 2.63  0.41 13.5  1.5 15.1  1.5 16.5  1.7 18.6  1.0 

Nitrate 2.53  0.33 2.69  0.33 2.68  0.34 2.77  0.35 2.67  0.32 13.0  1.8 15.1  1.5 16.6  1.3 18.3  1.3 

Caffeine 2.62  0.33 2.84  0.35 2.80  0.37 2.83  0.32 2.77  0.32 13.5  1.5 15.5  1.6 17.0  1.7 18.9  1.2 

Caffeine + Nitrate 2.56  0.46 2.69  0.49 2.72  0.41 2.79  0.36 2.69  0.42 13.7  1.9 15.4  2.0 17.0  1.5 18.5  1.2 

Note: RPE = rating of perceived exertion. 

 

Table 4. The effects of dietary nitrate, caffeine, and their combination on tissue oxygenation (located at the vastus lateralis) during a 20 km 

cycling time-trial as derived from near-infrared spectroscopy. Values are means  standard deviation. 
  Rest   Warm up   20 km time-trial  

Supplement TSI (%) [HbO2] [HHb] TSI (%) [HbO2] [HHb] TSI (%) [HbO2] [HHb] 

Placebo 70.2  3.0 2.10  2.57 0.38  1.68 62.7  4.4 -6.71  3.46 6.67  4.48 59.1  5.4 -5.61  5.94 11.01  5.51 

Nitrate 70.9  4.1 0.63  1.15 0.33  1.24 63.1  4.8 -6.42  4.11 7.22  4.16 60.2  5.8 -4.85  5.16 11.64  5.52
a 

Caffeine 70.1  2.2 -0.82  3.53 0.47  2.37 64.1  2.8 -7.90  3.62 5.76  3.72 59.5  4.9 -5.98  4.77 9.34  4.78 

Caffeine + Nitrate 70.5  1.6 -0.48  2.29 -0.33  1.44 65.0  3.1 -5.86  2.76 4.61  3.66 61.2  4.4 -7.77  7.48 7.74  4.22 

Note: TSI = tissue saturation index; [HbO2] = oxyhemoglobin concentration change; [HHb] = deoxyhemoglobin concentration change. Units for [HbO2] and 

[HHb] are arbitrary. Superscripted letter indicates significant (p < 0.05) difference between: 
a
Nitrate vs Caffeine + Nitrate.
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Figure 1. The effects of dietary nitrate, caffeine, and their combination on power output (A), heart rate 

(B), respiratory exchange ratio (C), and blood lactate (D), during a 20 km cycling time-trial. Values 

are means; bars are standard deviations. Closed circles () represent mean responses during each trial. 

Superscripted letters indicate significant (p < 0.05) differences between: 
a
Placebo vs Caffeine; 

b
Placebo vs Caffeine + Nitrate; 

c
Nitrate vs Caffeine; 

d
Nitrate vs Caffeine + Nitrate.   
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