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Abstract—Determining the best partitioning structure of a
Coding Tree Unit (CTU) is one of the most time consuming
operations in HEVC encoding. Specifically, it is the evaluation of
the quadtree hierarchy using the Rate-Distortion (RD) optimiza-
tion that has the most significant impact on the encoding time,
especially in the cases of High Definition (HD) and Ultra High
Definition (UHD) videos. In order to expedite the encoding for
low delay applications, this paper proposes a Coding Unit (CU)
size selection and encoding algorithm for inter-prediction in the
HEVC. To this end, it describes (i) two CU classification models
based on Inter N×N mode motion features and RD cost thresh-
olds to predict the CU split decision, (ii) an online training scheme
for dynamic content adaptation, (iii) a motion vector reuse
mechanism to expedite the motion estimation process, and finally
introduces (iv) a computational complexity to coding efficiency
trade-off process to enable flexible control of the algorithm. The
experimental results reveal that the proposed algorithm achieves
a consistent average encoding time performance ranging from
55% – 58% and 57% – 61% with average Bjøntegaard Delta
Bit Rate (BDBR) increases of 1.93% – 2.26% and 2.14% – 2.33%
compared to the HEVC 16.0 reference software for the low delay
P and low delay B configurations, respectively, across a wide
range of content types and bit rates.

Index Terms—HEVC, CU size, low-delay, motion classification,
RD optimization, video coding

I. INTRODUCTION

THE recent developments in the Consumer Electronic
(CE) technologies, and the content capturing capabilities

of these devices have made multimedia the most frequently
exchanged type of content over the modern communication
networks. Moreover, the rapidly increasing mobile video data
traffic, including the High Definition (HD) and Ultra High
Definition (UHD) content captured by CE devices, (forecast
to reach three-fourth of the mobile data traffic in 2019 [1]),
present challenges such as the need for greater compression
efficiency, energy efficiency and speed. In this context, the
High Efficiency Video Coding (HEVC) [2] addresses the first
of these requirements through the vastly superior performance
exhibited over its predecessor H.264/AVC. However, the in-
creased complexity of the features in the HEVC architecture
significantly increase the demand for computational time and
energy [5]; a non-trivial bottleneck for resource-constrained
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CE devices such as smart phones and camcorders. Efficient en-
coder designs that expedite the encoding process are therefore
crucially important for the realization of high frame rate and
real-time video communication applications in CE devices.

Although HEVC is essentially based on a hybrid coding
architecture similar to that of H.264/AVC, it is accompanied by
an assortment of novel coding features such as efficient predic-
tion modes, filtering modes, parallelization tools, and flexible
coding structures (e.g., Coding Units (CU), Prediction Units
(PU), Transform Units (TU), etc.) [2]. The wide range of block
sizes and combinations (i.e., 8×8 to 64×64) that this entails is
one of the most important contributors towards the encoder’s
improved efficiency, yet at the same time, is also a major
source of the complexity within the HEVC architecture [4],
[5]. This is mainly due to the brute force Rate-Distortion (RD)
optimization required for the combinations of coding modes
that determines the best coding configuration. For example, an
average encoding time increase of 43% is reported in [4], due
to a simple increase of the maximum CU size from 16×16
to 64×64. Therefore, the recent literature has predominantly
proposed mechanisms to reduce the complexity of the RD
optimization that selects the best coding structure. In this
context, the state-of-the-art fast encoding solutions generally
utilize the depth correlation of spatial and temporal blocks,
RD cost statistics of the CUs and the Inter 2N×2N prediction
mode, feature-based offline and online training approaches,
etc. [8]- [23], to determine the optimum CU size1. Hence, the
selection of the CU size now becomes a prediction, whose
effectiveness will determine the output quality and the bit rate
of the encoded content. However, the vast differences in video
characteristics, and the availability of additional information
in the encoding chain itself, have not been fully investigated
nor have they been exploited in these prediction approaches
in order to realize a consistent encoding time saving across
a wide range of content types and quality settings. Thus, the
potential exists to develop implementation-friendly encoding
algorithms that can effectively trade-off the coding efficiency
in order to gain a reduction of the computational complexity.

To this end, this paper proposes a CU size prediction
mechanism for low-delay HEVC video encoding based on
the following contributions. First, (i) two independent content-
adaptive decision making models are proposed to predict
the optimal CU size; a dynamic motion feature-based model
created by evaluating the Inter N×N mode motion and RD

1From the implementation perspective of the encoder, the CU size predic-
tion boils down to a decision of whether a particular CU should be split into
smaller CUs or not, i.e., the CU split decision referred to in the literature.



Fig. 1. The CU partitioning structure captured for a part of a frame in the
“Kimono” sequence.

cost characteristics, and a heuristic RD cost threshold-based
model. Thereafter, (ii) a window-based feature selection pro-
cess is introduced to each model for independent, content-
specific updating, which ensures the framework remains robust
and adaptable to varying conditions such as scene changes.
Finally, (iii) the Inter N×N mode motion vector reuse for
further encoding complexity reduction, and (iv) the inclusion
of a complexity control parameter to enable the flexibility
of trading-off the proposed algorithm’s complexity reduction
for coding efficiency, are investigated. The simulation results
reveal that the proposed algorithm achieves a significant and a
consistent reduction of the encoding time compared to the HM
16.0 [26] implementation and the state-of-the-art algorithms
with minimal impact on the RD performance for a variety of
content types and quality levels.

The remainder of the paper is organized as follows. Section
II provides an overview of the prior work found in the litera-
ture. The motion feature-based CU classification model and the
RD cost threshold-based CU classification model are described
in Section III. The resulting CU size prediction algorithm and
the encoding framework are presented in Sections IV and V,
respectively, and are followed by the results and discussion in
Section VI. Finally, Section VII concludes and discusses the
potential for future improvements.

II. BACKGROUND AND RELATED WORK

A. Background

HEVC utilizes a block-based encoding architecture similar
to H.264/AVC, albeit with a wider range of block sizes. In the
main profile of HEVC, for example, a Coding Tree Unit (CTU)
is partitioned into multiple CUs ranging from 8×8 to 64×64
in size (Fig. 1 illustrates an example partitioning structure for
a typical video frame) [4], and contain multiple PUs and TUs
that maintain prediction and transform information. Although
this greatly enhances the flexibility of the architecture itself,
the analysis of encoder implementations however reveal that
the addition of these novel features produces a high coding
gain to the detriment of computational complexity [5].

Rate-Distortion (RD) optimization, the process of determin-
ing the optimum coding modes and structure for a given con-
tent (which leads to the highest attainable coding efficiency in
the encoder), uses a Lagrangian cost function to parameterize
the encoding efficiency. This cost function is expressed as,

minimize
p

{
D(p) + λR(p)

}
, p ∈ P (1)

where λ ≥ 0 is the Lagrange multiplier, p is a coding parame-
ter combination from the set of all the possible coding options

P , and D(p), R(p) are the distortion and rate associated with
the selected set of coding parameters, respectively [6]. The
process of selecting the optimum set of coding parameters,
using the Lagrangian cost function in (1), is considered to
be a major source of complexity in encoder implementations,
due to the large number of possible combinations of the
CU sizes, PU modes and other coding parameters [5]. The
complexity increase in HEVC, with respect to both inter- and
intra-prediction, therefore directly impacts the encoding per-
formance; thus, the recent literature predominantly investigate
mechanisms to minimize the number of RD evaluations and
the encoding time, while retaining the coding performance.
Moreover, minimizing the complexity associated with the
coding structure determination and the motion estimation in
inter-prediction is seen as a more pressing requirement as it
encompasses a larger portion of the encoding time [5], [7].

B. Related Work

Reducing the computational complexity associated with
inter-prediction in the HEVC architecture can be attempted
for a range of operations, such as motion estimation, coding
structure determination, filtering, etc. In fact, the complexity
analysis presented in [7] suggests that optimizing the motion
estimation alone only leads to a minimal reduction of the
encoding time. However, the optimization of the different
operations are not mutually exclusive, and could be utilized
in conjunction with coding structure determination methods
to achieve significant reductions of the encoding time. In this
context, a summary of state-of-the-art is presented in the Table
I to illustrate the operational basis of each algorithm.

Optimizing the PU level mode decision is one of the more
popular complexity reduction methods found in the recent
literature. Thus, in addition to the approaches summarized
in Table I, this can also encompass methods that use spatio-
temporal correlations and inter-level mode information [10],
RD cost prediction [12], and the dynamic encoder parameter
selection [15]. Furthermore, in the recent past, the SKIP mode
decision has been used extensively to terminate the PU mode
evaluation (Table I). However, the common theme in these
works is the fact that they focus on the PU mode decision
and do not consider the CU size decision (it should be noted
that they can still be used in conjunction with a CU size
selection algorithm); thus, every CU depth level must be
evaluated in order to determine the optimum CU size. In
practice, experimental results [13] suggest that the potential
exists for further reduction of the encoding complexity than
what has already been achieved.

Crucial to this problem is the optimal selection of the CU
size in the coding hierarchy; hence, Table I also summarizes
the relevant state-of-the-art CU size selection algorithms and
discusses their merits and demerits. Here, it is observed that
these CU size selection algorithms which predominantly rely
on the statistics gathered from the evaluation of the Inter
2N×2N, SKIP, or other PU modes, can be enhanced further.
This is especially true in the case of textured sequences
with complex motion where high quality is required; an area
where existing implementations show some deficiency, and



TABLE I
A SUMMARY OF THE STATE-OF-THE-ART QUADTREE STRUCTURE OPTIMIZATION SCHEMES USED FOR FAST HEVC ENCODING

Reference Algorithm Description Comments

Gweon et al. [8] Uses the Coded Block Flag (CBF) to skip
the evaluation of remaining PU modes.

The complexity reduction achieved is limited since only PUs are being considered
and the lower likelihood of the CBF condition being satisfied in complex sequences.

Vanne et al. [9]

Optimizes the PU mode selection between
Symmetric (SMP) and Asymmetric Parti-
tions (AMP). The method selectively skips
PU mode evaluations based on the merge
and SKIP modes.

Complexity is reduced with respect to [8] due to the early determination of PU
modes that can be skipped. However, the complexity reduction is less significant
when the number of skipped PU modes are lower. The performance is seen to
degrade for complex and textured content which generally results in fewer merge
and SKIP mode selections. A similar behavior is observed at lower QPs.

Sampaio et al. [11]
A Motion Vector Merge (MVM) algorithm
that evaluates the Inter N×N mode to de-
termine which SMP PU modes to evaluate.

The computational complexity reduction is limited due to the smaller number of
PU evaluations that are skipped.

Yang et al. [14]
Early Skip Mode Detection (ESD) assesses
the SKIP mode selection of a CU and deter-
mines when to skip the remaining modes.

The approach is more suited for less complex sequences encoded at higher QPs
where the SKIP mode is more likely to be the preferred coding mode.

Shen et al. [16]
Utilizes the neighboring and co-located CU
information to determine and skip unneces-
sary CU depth levels.

RD performance experiences a drastic degradation for highly textured and complex
motion sequences, due to sub-optimum decisions derived from the spatially adjacent
CUs. Hsu et al. [22] therefore suggest encoding intermediate frames using the
traditional RD optimization, which reduces the coding losses and error propagation,
albeit increasing the encoding time.

Lee et al. [13]

Employs RD cost statistics of Inter 2N×2N
mode evaluations, and the status of SKIP
and merge modes, to determine the CU early
termination depths. A SKIP Mode Decision
(SMD) algorithm makes use of the SKIP
mode selection statistics to skip both PU
modes and CU depth levels.

The algorithm demonstrates good RD performance and computational complexity
reductions. However, a large variance in the achievable complexity reduction is
observed with respect to the QP and content types. Use of higher QPs and encoding
of less complex contents results in the best performance due to a greater prevalence
of SKIP and merge modes. Moreover, the evaluation of the current depth level
becomes futile in the event the CU requires further splitting, such as in the case of
low QP encoding of complex content.

Shen et al. [17]
CU split decisions are calculated using a
Bayesian decision rule based on a feature
set collected from the Inter 2N×2N mode. The threshold comparison values (which are not adapted to the QP or to the content)

and decision tree topology derived from offline training is less adaptable to changing
content; thus, more dynamic video sequences and sequences with scene changes
exhibit degraded RD performance. Furthermore, the early termination conditions
evaluated at the end of each CU depth results in a reduction of the encoding time
performance at high bit rates.

Shen et al. [18]
CU early termination decisions based on
an offline Support Vector Machine (SVM)
trained algorithm.

Correa et al. [19] Early CU termination using the offline
trained decision trees and threshold values.

Xiong et al. [20]
Uses Pyramid Motion Divergence (PMD)
features calculated from the optical flow of
downsampled frames for CU size selection.

The optical flow calculation within the encoding loop, that is used to extract motion,
can be both time consuming and resource intensive [21].

is a scenario that must be addressed to operate at a wide
range of bit rates. Moreover, a content adaptive operation is
crucially important to cater for the diversity of the content;
thus, the capacity for dynamic training and content-specific
feature extraction also becomes a necessity to improve the
general performance of the algorithms.

III. CU CLASSIFICATION FOR SPLIT
LIKELIHOOD MODELLING

The CU sizes resulting from the splitting decisions attained
through the RD optimization are highly dependent on the
nature and the complexity of the content. Therefore, predict-
ing the CU size beforehand, using a set of pre-determined
features, becomes challenging due to this dynamic nature of
the problem. In this context, it becomes evident that the early
determination of the CU size requires a modelling of the
CU split likelihoods of that particular content using a set of
content-specific features. The selection of appropriate features
that accurately model the CU split decision, and are also
easy to extract from the encoding chain, is therefore crucially
important. Two dynamic content-specific techniques that can
be used for this purpose are described next.

A. Motion Feature-Based CU Classification

The first model, based on the motion feature-based CU
classification approach [23], [24], attempts to represent the
CU split likelihood as a function of three parameters given by

f(F) := f(α, β, ω), (2)

where α, β, and ω represent a motion classification, an Inter
N×N RD cost category and the CU size, respectively, and f
denotes a probabilistic model that determines the outcome of
the CU split decision and is described in Section IV.

First, when observing the partitioning behavior of CUs
during inter-prediction, it can be noticed that blocks with
similar motion tend to utilize larger CUs, whereas blocks
with complex motion tend to utilize smaller CUs [11], [20],
[25]. Attempting to classify these characteristics, from the
information available within the encoding chain itself, there-
fore becomes attractive due to both its simplicity and its
minimal impact on the complexity. To this end, this paper
proposes an initial Inter N×N mode evaluation (skipping the
traditional PU evaluation order [3]) to collect the necessary
motion information for each CU. The motion of the CU is
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Fig. 2. CU categorization based on motion characteristics. Equal motion
vectors are identified by the same colour/pattern. Here, α5 denotes all
orientations of the category where three motion vectors are equal and one
differs.

TABLE II
AVERAGE SPLIT LIKELIHOOD (%) OF CUS IN MOTION CATEGORIES†

Sequence α0 α1 α2 α3 α4 α5 α6 α7 α8

Hall CIF 43 49 48 51 58 55 39 52 59
Highway CIF 18 35 34 47 49 41 59 44 45
Container CIF 30 55 56 47 48 55 50 47 58
Kimono HD 7 17 21 27 32 19 38 26 30
ParkScene HD 52 48 50 50 55 54 56 49 55
City HD 47 52 52 49 60 58 64 54 61

† A typical HD sequence would on average result in approximately 100
occurrences of each motion category per frame.

classified thereafter based on the similarity2 of the resulting
four motion vectors of the constituent blocks [23]. This results
in a CU being classified into one of nine categories depicted
in Fig. 2 and denoted by αi i ∈ {0, 1, ..., 8}. Here, the motion
vectors of the k ∈ {0, 1, 2, 3} blocks are given by

MVk = (mvk, rPOCk), (3)

where rPOCk is the reference Picture Order Count (POC)
number of the reference frame of the motion vector mvk.

Next, analyzing the split likelihood (i.e., the ratio between
the number of CUs that are split and the total number of
CUs) in Table II of a CU classified as described above, it
can be seen that textural diversity becomes important. The
motion category alone no longer sufficiently models the split
likelihood of a CU; thus, additional features are necessary
to realize a more robust model. The Inter N×N RD cost γ
can be a second parameter that describes the split likelihood.
However, in practice, the range of γ is quite large, and may
make the statistical analysis of individual RD costs less useful
especially in the case of very rare large γ values. Therefore,
the square-root of the RD cost is adopted instead, and is
consolidated into one of 200 bins with a bin size ∆ of 5.
This results in a RD cost category β given by,

β =

{⌊√
γ

∆ + 1
2

⌋ √
γ ≤ 200∆

200 otherwise.
(4)

2Two motion vectors are considered to be equal when each others horizontal
and vertical components are equal and point to the same reference picture.

Finally, the CU size ω can be used as a third parameter that
describes the CU split likelihood. The relationship between
αi, β and ω, and the motion-based feature F in (2), however
remains complex and content dependent as illustrated in Fig.
3. For example, it can be observed that each αi exhibits diverse
CU split likelihoods for different β in Fig. 3(a) and ω in Fig.
3(b), while larger β favours CUs with larger ω to be split in
Fig. 3(c). Thus, although the motion feature-based approach
possesses the necessary flexibility to model the dynamic nature
of the content, a separate decision making process (described
in Section IV-A) is still required.

B. RD Cost Threshold-Based CU Classification

In contrast to the motion feature-based approach, the CU
split likelihood can also be modelled in a partly heuristic
fashion. This second model investigates its relationship with
respect to a general distribution of the Inter N×N mode RD
cost γ, the CU size ω and the Quantization Parameter QP .

First, observing multiple video sequences reveals that the
CU splitting behavior can be modelled by two Gaussian
distributions; a CU split and non-split likelihood distribution
[13], [28]. Fig. 4(a) illustrates an example of these with
respect to γ for a particular CU size and QP. Crucially, these
distributions reveal the existence of three regions within the
range of γ that demarcate the CUs that are split, the CUs
that are not-split and a third region where the decision is
ambiguous. The generalized behavior of these distributions
is illustrated in Fig. 4(b), and can be used to classify the
CUs based on two RD cost thresholds γ ≥ HThspt and
γ ≤ HThnspt, where HThspt and HThnspt are the CU split
and non-split thresholds, respectively (adaptively determining
these thresholds using the mean γ values of the CU split and
non-split Gaussian distributions is described in Section IV-B).

To this end, the distribution of HThspt and HThnspt is
analyzed for sequences encoded using the low delay P config-
uration and QP ∈ {22, 27, 32, 37} in HM16.0. Despite some
variations, from the results observed in Fig. 5, it is evident that
an exponential curve can parameterize the behavior of these
two RD cost thresholds. Thus, generalized RD cost thresholds
can be obtained, which are given by

HThspt =


2347× e0.1248×QP , ω = 64

851.2× e0.1228×QP , ω = 32

279.9× e0.1227×QP , ω = 16

(5)

HThnspt =


736.2× e0.1378×QP , ω = 64

225.4× e0.1468×QP , ω = 32

57.72× e0.1607×QP , ω = 16

. (6)

Table III summarizes the R-squared measure of the
goodness-of-fit obtained for HThspt and HThnspt in (5) and
(6). The modelled curves and the data illustrated in Fig. 5
suggest that the proposed models for HThspt and HThnspt
are good representations in general, yet, are not particularly
accurate, especially at higher QP values given the content
specificities. Obtaining these content specific thresholds is
however crucially important for an accurate optimal CU size
prediction. In essence, threshold values in (5) and (6) could be
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Fig. 3. Distribution of normalized proportion (%) of CUs that are split across β, motion category (α) and CU size (ω) for 200 frames in “City (720p)” video
sequence when encoded with QP=27 using low delay P main configuration in HM 16.0. Results depict the CU split likelihoods for the different combinations
of the parameters α, β, and ω in the feature vector F.

(a) (b)

Fig. 4. (a) CU split and non-split likelihood distributions of the “ParkScene
HD” video sequence for QP=32 using the low delay P configuration in HM
16.0. (b) A representation of the HThspt and HThnspt RD cost thresholds
that identifies the CU split, CU non-split and ambiguous regions.

TABLE III
R2 GOODNESS-OF-FIT OF THE SPLIT AND NON-SPLIT THRESHOLDS

CU Size HThspt HThnspt

64 0.827 0.782
32 0.703 0.906
16 0.780 0.882

used as initialization parameters during the preliminary stages
of the encoding, and can later be adapted with content specific
data as described in Section V.

IV. FAST CU SIZE SELECTION

This section describes how the two independent CU split
likelihood models in Section III can be used in a complemen-
tary fashion, to determine if a CU should be split or not, all
the while adapting to the specific content being encoded.

A. Motion Feature-Based CU Size Selection

Applying the feature-based CU classification model, the
split probability of a CU in the nth frame can be defined as

Ps,n(F) =
D1
act(F)

∣∣
n

D1
act(F)

∣∣
n

+D0
act(F)

∣∣
n

, (7)

where Dη
act(F)

∣∣
n

is the number of CUs with a feature vector
F, within the given frame that are either split (η = 1) or
not-split (η = 0), based on the actual split decision obtained
for the CUs by the RD optimization. Thus, Ps,n can be
considered a frame-wise statistic (calculated at the end of
each encoded frame) of the optimal split decision computed

from the statistics accumulated in Dη
act(F)

∣∣
n

that is obtained
for each feature vector during the training phases described
in Section V-B3. However, since this statistic can vary over
time due to changes in the underlying content, a snapshot of
the actual split probability is obtained through a windowed
averaging process across the split probabilities calculated for
the individual frames (i.e., Ps,n(F)). Mathematically, this can
be expressed as

Ps(F)
∣∣
n

=
1

W̃

n−1∑
t=0

Ps,t(F)H(t− n), (8)

where the window function H(t) is given by

H(t) =

{
1 + t

W 0 ≥ t ≥ −W
0 otherwise,

(9)

and W̃ represents the area under the curve of H(t). The
window function and its effective length W are crucial in
terms of the content adaptability, as it enables the predicted
CU split decision to be biased to the most recent W frames.
Therefore, by appropriately selecting W , the prediction can be
made content adaptive and less susceptible to scene dynamics.

The outcome of the decision of whether to split or not-split
a CU is now obtained by comparing (8) with an empirically
determined threshold T , such that the decision for the nth

frame is given by

Dfs

∣∣
n

=

{
1 Ps(F)

∣∣
n
≥ T

0 otherwise
. (10)

The threshold T therefore acts as a switch that either splits
or does not split the CUs. Empirical observations reveal that
the value of T impacts both the bit rate and quality, where a
smaller value of T generally results in more CUs being split,
while a larger T results in less splitting. In this context, T and
the window length W can be considered as design parameters
that need to be empirically determined and preset for a desired
trade-off of the quality and the bit rate.

3It should be noted that, in order to gather the statistics of the actual splitting
behavior of the content being encoded, the RD optimization in (1) can not
be completely bypassed. Thus, the outcome of the split decision must be
evaluated using an appropriate balance of either the two models presented in
this paper or the traditional RD optimization approach. Precisely how this is
implemented to achieve the fast coding objective, is described in Section V-B.
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Fig. 5. CU split and non-split thresholds and the fitted exponential curves with respect to QP of 6 different HD video sequences. The top and bottom rows
correspond to the CU split and non-split thresholds, respectively. The y-axis depicts each threshold with respect to the Inter N×N RD cost, (γ).

B. RD Cost Threshold-Based CU Size Selection

In the RD cost threshold-based CU classification approach,
the Inter N×N RD cost γ is compared to the HThspt and
HThnspt thresholds for the ω and QP relevant to each CU.
The resulting split decision Dhs of the nth frame can therefore
be expressed as

Dhs

∣∣
n

=

{
1 γ ≥ HThspt
0 γ ≤ HThnspt

. (11)

However, as described in the previous section, HThspt and
HThnspt need to be made adaptive in order to become
content-aware, and a heuristic process can be used to adapt
the generic HThspt and HThnspt thresholds in (5) and (6).

First, in order to adapt the split and not-split thresholds to
the content, the RD cost statistics of the actual split decision
(similar to the feature-based model in (7)) are analyzed in
terms of the mean and standard deviation of these thresholds
for a particular CU size ω and Quantization Parameter QP .
Adopting a window-based approach to maintain the content
adaptability as before, the mean and standard deviation statis-
tics during the nth frame for the split RD cost threshold can
be expressed as

µspt
∣∣
n,ω,QP

=
1

W

W−1∑
t=0

E
[
γspt(n− t)

∣∣
ω,QP

]
(12)

and

σspt
∣∣
n,ω,QP

=

√√√√ 1

W

W−1∑
t=0

E

[(
γspt(n− t)

∣∣
ω,QP

− µspt
)2
]
,

(13)
respectively. E(·) represents the expectation operating on the
applicable CUs in that frame, and γspt(·)

∣∣
ω,QP

represents the
RD cost of the CUs that are split with a CU size of ω and a

Quantization Parameter QP . The RD cost threshold statistics
for the not-split scenario, µnspt

∣∣
n,ω,QP

and σnspt
∣∣
n,ω,QP

, can
be obtained in a similar fashion.

Thus, the two thresholds themselves are made content
adaptive by applying the following;

HThspt
∣∣
n,ω,QP

=
{
µspt + τ × σspt

} ∣∣
n,ω,QP

(14)

and

HThnspt
∣∣
n,ω,QP

=
{
µnspt − τ × σnspt

} ∣∣
n,ω,QP

. (15)

The parameter τ acts as a governor that controls the adaptation
of the model via the adaptation and training process described
in Section V-B, and is an empirical design parameter that
can be used to trade-off the computational complexity for the
coding efficiency in the proposed encoding algorithm.

V. PROPOSED FAST ENCODING FRAMEWORK

In this section, computing the ultimate CU split decision,
using the two independent decisions in the previous section,
is described. This is followed by a mechanism to exploit the
Inter N×N mode motion characteristics obtained during the
CU split likelihood modelling, to supplement the CU size
selection algorithm and further expedite the encoding process.

A. Joint CU Split Decision Prediction
The approach to using the two independent decisions de-

scribed in Section IV forms the basis of the proposed fast
encoding algorithm. Thus, when obtaining the joint decision,
two distinct categories exist; one where both independent split
decisions concur, and another where they differ. Hence, for the
former category, the joint split decision during the nth frame
predicted by the encoding framework can be expressed as

CUη
∣∣
n

=

{
1 Dfs

∣∣
n

= 1 ∧Dhs

∣∣
n

= 1

0 Dfs

∣∣
n

= 0 ∧Dhs

∣∣
n

= 0,
(16)



where Dfs

∣∣
n

and Dhs

∣∣
n

are the two independent decisions
obtained for the applicable F, γ, ω and QP of each CU. The
second category of decisions, where the models differ, can
now be used to initiate the adaptation of the framework to
enhance its robustness to different contents.

B. Model Adaptation and Training

Following from the discussion of the joint split decision
prediction, it is crucial that the models are able to adapt;
thus, some RD evaluation becomes essential to calculate the
actual CU split statistics in Section III. The proposed algorithm
therefore consists of multiple training phases that facilitate
the gathering of these statistics, such that the expected per-
formance gains are not compromised. These are described in
detail below.

1) Initial Training: Both split likelihood models described
in Section III require some initial training4 to gather content
specific data at the beginning of a video sequence. In this
work, the first four frames, i.e., n = 1, . . . , 4, are used for
this statistical information gathering. During this phase, the
CU split decisions are obtained via the traditional RD opti-
mization; thus, the two models are initialized with sufficient
content specific data. However, these models may diverge
from the actual content due to changes in the scene, making
the accumulated statistics less relevant with time. Hence,
the models must be continually refreshed, via intermediate
training, as described next.

2) Intermediate Training: Intermediate training of the pro-
posed framework can be split into three categories; training
where no data exists for the features associated with a CU,
training where the two models’ decisions differ, and training
for modelling efficiency improvements.

The first type of intermediate training is triggered when the
actual information required to compute Ps(F)

∣∣
n

does not exist
(e.g., a situation where the feature F has not been encountered
within the window length W ). Similarly, the RD optimization
is followed in the event that Dfs

∣∣
n

in (10) and Dhs

∣∣
n

in (11)
contradict each other. In both cases, the additional information
obtained regarding the actual splitting behaviour will result
in the refinement of both split likelihood models, thereby
improving the accuracy of the subsequent decisions of similar
CUs.

The third and most important intermediate training phase is
triggered by RD costs where HThnspt < γ < HThspt (see
Fig. 4(b)), and the CU split decision of the RD cost threshold-
based model Dhs

∣∣
n

is undefined as per (11). Controlling the
size of this region will result in a trade-off of the output quality
for the reduction of the computational complexity. Hence, in
addition to facilitating the statistics gathering, the complexity
control parameter τ (introduced for this purpose in (14) and
(15)) affords a degree of flexibility when implementing the
overall algorithm. Here, a larger τ will expand this region,
allowing more decisions to be taken by the RD optimization,
resulting in better quality. A smaller τ on the other hand will

4The RD cost threshold-based model can still utilize the generic values of
the HThspt and HThnspt thresholds in (5) and (6), respectively, until such
content specific statistics are accumulated.

reduce the number of the RD optimizations and will result in
improvements to the encoding time performance.

C. Motion Vector Reuse in Motion Estimation

This subsection describes how the motion vectors computed
during the Inter N×N mode evaluation can be reused to further
expedite the encoding process during the subsequent PU level
evaluations that repeatedly occur for each CU.

Consider the four constituent motion vectors and reference
frames returned by the initial Inter N×N mode evaluation in
(3). These motion vectors identify the motion category of a
CU, αi, which interestingly has a structural relationship with
the PU modes as illustrated in the Fig. 6. This relationship can
be exploited to skip the motion estimation when a particular
PU mode is being evaluated for a CU. For example, when a
CU possesses the motion category α0 (i.e., all four motion
vectors are equal and point to the same reference picture), the
motion vector MV0 available in (3) can be reused for the Inter
2N×2N mode, thereby skipping the motion estimation phase
for that PU mode. However, not all PUs can be identified in
this fashion; thus, some PUs require motion estimation, e.g.,
the PUs denoted by “ME” and the PU modes that are not
illustrated in Fig. 6 will require the usual motion estimation.

Hence, this capability to reuse the motion information
extracted during the CU size prediction emerges as a direct
secondary benefit of the initial Inter N×N mode evaluation.
As a result, the proposed framework is supplemented with this
feature to further expedite the encoding process.

D. The Overall Fast Encoding Algorithm

The performance improvements of the fast encoding algo-
rithm proposed in this paper can be described as a result of two
distinct operations; the content-adaptive CU size prediction in
Section V-A and the motion reuse operation in Section V-C,
that both exploit the initial Inter N×N mode evaluation. A
high level flow diagram of the resulting algorithm, identifying
the major decision making components and the operations of
the individual blocks, is summarized in Fig. 7.

At an implementation level, if the CU split decision is in
the negative, the CU is encoded at the selected depth level.
However, if it is positive, the encoding cycle evaluates the
next depth level of the CU. During the first N frames for
the sequence, and whenever the CU split decision can not
be predicted, the traditional RD optimization is triggered via
the initial and intermediate training processes described in
Section V-B. The statistics calculated during these periods are
simultaneously used to update and refine the split likelihood
models as described earlier. The shaded area in the Fig. 7
depicts the PU mode selection operation. Here, the available
PU modes of the CU are evaluated in the traditional evaluation
order [26], and the best PU mode is selected using an RD
optimization. However, the motion estimation phase for a
subset of PUs is skipped and the Inter N×N motion vectors
are reused where appropriate as described in Section V-C.
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VI. EXPERIMENTAL RESULTS AND DISCUSSION

The following section presents the experimental results
of the proposed content-adaptive fast CU size selection and
encoding algorithm for low delay HEVC video encoding. The
RD and encoding time performance of the proposed algorithm
are compared with several state-of-the-art algorithms in the
literature. These include the HM 16.0 [26] reference imple-
mentation, the CU size selection method proposed by Shen et
al. [16], the fast encoding algorithms proposed by Lee et al.
[13], the fast block partitioning algorithm proposed by Lu et al.
[29], two versions of PU mode decision algorithms proposed
by Vanne et al. [9], and the offline data mining approach to
CU early termination proposed by Correa et al. [19].

A. Simulation Configurations and Performance Metrics

The algorithms are evaluated for a range of HD and UHD
video sequences composed of both natural and synthetic

content ranging from simple to highly complex motion with
diverse spatial and temporal characteristics. Table IV summa-
rizes the experimental setup and encoding configurations5.

The impact on the RD performance is evaluated using the
Bjøntegaard Delta Bit Rate (BDBR) [27] and the average
percentage encoding time saving, ∆T , is evaluated for the
proposed and state-of-the-art algorithms by comparing the
implementations of the respective algorithms with the HM
16.0 reference software [26]. In this context, ∆T is given by,

∆T = 100× THM − Tρ
THM

, (17)

where THM , is the encoding time of HM16.0 and Tρ is the
encoding time required for each fast encoding approach.

5The CU classification models proposed in this paper are based on the
motion features extracted from the preceding video frames. Adopting the same
approach for the Random Access configuration must also consider the impact
of future frames and is therefore outside the scope of this work.



TABLE IV
SIMULATION SETUP AND CONFIGURATIONS

Configuration Parameter Value

QPs 22, 27, 32, 37
Encoding Configurations Low Delay P Main, Low Delay B Main
HEVC software version 16.0
Video sequence types HD, UHD
Frame rates HD: 30 fps, UHD: 50 fps
Number of frames 200
Machine Intel Core i5, 8GB RAM, Ubuntu 14.04 LTS
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Fig. 9. The effect of the complexity control parameter τ (when W = 30)
on the coding efficiency and the encoding time reduction of the proposed
encoding algorithm.

B. Results and Performance Analysis

The window length W and the complexity control τ pa-
rameters defined in Section IV will naturally affect the perfor-
mance of the proposed algorithm. This section first discusses
how they can be selected and their the impact, and is followed
by an analysis of the overall performance and implications of
using the proposed fast coding framework.

1) Window Length and Complexity Control Parameter Se-
lection: The experimental results illustrate the performance
impact of W on ∆T and BDBR in Fig. 8 for HD sequences.
Here, the value of the complexity control parameter is set
as τ = 0, which results in HThspt and HThnspt being
exactly similar to the mean γ of the CU split, and non-split
Gaussian distributions (as seen in Fig. 4 the mean values are
already good approximations for these thresholds). It can be
observed that the BDBR improves with smaller window sizes,
while ∆T increases with increasing window size and vice-
versa. Intuitively, this is due to less training being required
for long W , yet longer window lengths also suggest less
adaptability and sub-optimal quality. Evidently, the opposite
is true when the W is shorter, where a smaller window size
eventually increases the amount of training required, thus,

resulting in a decrease in ∆T as well as BDBR. An empirically
determined window size of W = 30 that both provides
comparable average BDBR increases to that of the state-of-the-
art algorithms and also facilitates the adequate accumulation
of statistical data (in general, an average of approximately 25
training occurrences are observed for a typical feature vector),
is used in the analysis in the remainder of this discussion.

The experimental results illustrated in Fig. 9 for different
τ show that ∆T tends to increase with a corresponding
increase of the BDBR. This is due to the fact that when the
middle region is smaller, split decisions of more CUs become
incorrect due to fewer RD optimization occurrences, which
negatively impacts BDBR but improves ∆T . Naturally, when
the region becomes larger the opposite is true, and is reflected
in Fig. 9. Hence, the performance results of the proposed
algorithm discussed in the remaining sections use τ = 0,
which together with the previously selected W , corresponds to
BDBR increases comparable to the state-of-the-art solutions.

In addition, as discussed in Section IV-A, the threshold
value T in (10) decides the portion of CUs that will be
decided to split, for a given feature vector F. In this context,
an empirically determined value of T (T = 0.6) is used as the
threshold, by considering it’s impact on the RD efficiency.

2) Overall Performance of the Proposed Algorithm: The
performance of the proposed algorithm is presented in the
Tables V - VII for the low delay P and low delay B con-
figurations. These results first address the impact of only the
CU size selection aspect (described in Section V-A and V-B)
denoted by SI. Then in SII the impact of including the motion
vector reuse from the Inter N×N mode evaluation (described
in Section V-C) is evaluated. The following discussion further
analyzes these results in terms of the variations seen for
different content types, QPs and other relevant attributes.

a) Performance Variation with QP: Examining the en-
coding time performance results illustrated in the Table V
for a subset of sequences representing diverse content types
and QPs (QP = 22, 27, 32, 37), a variation in ∆T with the
corresponding bit rate of the video sequences can be observed.
For example, ∆T tends to increase with the decreasing bit
rates (i.e., increasing QP) for the proposed as well as the
state-of-the-art algorithms. In general, this behaviour can be
explained as follows. Typically, when encoding a CU at larger
QPs, larger CUs and prediction modes such as SKIP and merge
modes are favoured; thus, the algorithms that early terminate
a CU at smaller depths and early detect SKIP/merge modes,
demonstrate an increased ∆T compared to smaller QPs that
yield smaller CUs and fewer SKIP mode PUs.

However, interestingly, the variation of ∆T with the QP is
relatively large for the methods proposed by Lee et al. [13],
Shen et al. [16] as well as Correa et al. [19]. This is due to the
evaluation of the CU Early Termination (ECUT) and CU Skip
Estimation (CUSE) conditions [13] that require the encoder
to evaluate the current CU prior to determining whether the
CU should be split further. Similarly, the verification of the
decision trees introduced in [19] is performed as the final
operation at a particular depth level, and results in a similar
behavior. Here, video sequences that tend to use smaller
CUs when using a lower QP will result in the algorithm



TABLE V
ENCODING TIME SAVING WITH RESPECT TO THE QUANTIZATION PARAMETER AND THE CONTENT

Quantization Parameter (QP)
22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37

Algorithm Kimono Musicians Dancer (Synthetic) Traffic Poznan
AM, HT (∆T%) LM, HT (∆T%) AM, LT (∆T%) HM, HT (∆T%) LM, LT (∆T%)

Proposed SI 53 52 53 52 50 50 52 52 47 51 55 55 51 52 55 58 50 61 63 64
Proposed SII 55 57 55 56 52 53 55 57 50 53 58 59 53 55 58 62 53 64 67 69
Lee et al. [13] 27 35 44 53 30 39 47 55 32 45 55 62 31 45 56 63 35 60 68 72
Shen et al. [16] 39 41 43 46 44 44 45 47 44 47 49 53 56 56 55 57 66 67 68 69
Lu et al. [29] 29 29 27 26 33 32 32 32 27 28 29 30 22 22 23 24 32 30 30 31
Vanne et al. S14 [9] 25 33 40 46 31 36 41 47 33 41 48 53 34 43 49 56 37 47 58 59
Vanne et al. S25 [9] 46 51 49 52 42 46 50 61 49 53 59 63 43 49 53 57 49 60 64 62
Correa et al. [19] 24 48 60 62 27 42 46 58 33 57 64 65 23 50 61 65 19 61 64 68

The sequence categories (i.e., LM, AM, HM, LT, HT) are defined as follows. LM: Low Motion, AM: Average Motion, HM: High Motion,
LT: Low Texture, HT: High Texture.

TABLE VI
OVERALL PERFORMANCE OF THE PROPOSED ALGORITHM (LOW DELAY P)

Sequence

Proposed
SI

Proposed
SII

Lu et al.
[29]

Lee et al.
[13]

Shen et al.
[16]

Vanne et al.
S14 [9]

Vanne et al.
S25 [9]

Correa et al.
[19]

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

Musicians 1080p 51 2.60 55 2.90 32 2.13 43 2.34 45 2.56 39 0.05 50 1.20 43 5.65
Band 1080p 56 1.78 59 1.82 40 0.68 47 1.10 51 3.60 42 1.08 57 1.51 57 10.2
Kimono 1080p 52 1.27 56 1.37 28 0.47 40 1.06 42 1.27 36 0.48 49 1.13 49 4.05
Parkscene 1080p 49 3.00 53 3.10 26 2.33 45 2.34 49 3.94 42 0.78 47 1.38 53 16.86
Dancer 1088p 52 1.32 55 1.69 29 3.90 49 0.56 48 1.49 44 0.39 56 1.10 55 12.64
GT Fly 1088p 52 1.68 54 1.74 34 3.65 50 1.03 42 2.43 41 2.29 57 4.38 50 7.84
Beergarden 1080p 55 1.00 58 1.01 16 0.54 48 1.40 58 5.65 43 0.94 46 1.53 47 3.89
Poznan 1088p 59 1.05 63 1.20 31 0.73 59 0.89 68 6.26 50 1.32 59 1.91 53 6.50
City 720p 54 1.76 58 2.38 21 1.11 52 1.30 59 1.71 48 1.01 51 2.38 58 18.33
Traffic 1600p 54 4.02 57 4.20 23 4.11 49 2.50 56 6.87 44 0.79 51 2.01 50 8.24
Men-Plants 2160p 59 2.08 62 2.48 41 2.03 51 1.80 64 2.84 45 0.72 50 1.85 56 5.01
Park-Buildings 2160p 60 2.59 62 2.60 29 1.10 55 1.69 58 3.23 49 1.78 52 2.81 54 1.76
Men-calendar 60 1.08 63 2.89 50 3.30 54 1.05 58 2.88 50 1.83 56 1.96 56 6.45
Average 55 1.93 58 2.26 30 2.00 49 1.46 53 3.44 44 1.03 52 1.93 52 8.26

unnecessarily evaluating the upper CU depth levels before
early termination. In contrast, the proposed algorithm predicts
the CU split decision prior to the encoding of a CU; thus, the
unnecessary evaluations of larger CUs are avoided. This leads
to far less performance variation between QPs, and suggests
that the proposed algorithm is suitable for encoding videos
across a wider range of bit rates unlike the existing approaches.

b) Performance Variation with the Content: It can be
observed that all the state-of-the-art algorithms demonstrate
a relatively large encoding time reduction for less textured
sequences such as “Poznan Street” (Table VI and VII). This
increase in ∆T is mainly due to the skipping of rarely used
CU depth levels [16] and the ECUT methods that have been
employed [13], [29]. Hence, the less complex the content (less
textured and simple motions), the more likely it becomes that
they will be encoded with larger CUs, causing the ECUT to
exhibit an increased ∆T . In addition, static or content with
simple motions can exploit the CU depth range estimation
algorithms in [16] to skip the unnecessary CU depth levels.

However, in the case of more textured sequences with
average or low motions (e.g., “Kimono”, “Musicians” etc.,)
much smaller CU sizes are required; thus, the ECUT checks
at upper depth levels becomes ineffectual, leading to a much

lower ∆T . Moreover, the skipping of the rarely used CU
depth levels in [16] eventually leads to relatively high cod-
ing losses, especially in the case of sequences that exhibit
multiple localized motions (i.e.,“Poznan Street”). The depth
range estimations in this case often become less accurate, and
the errors in these are propagated across the frame to further
deteriorate the coding efficiency.

That said, the method proposed by Shen et al. performs
reasonably well even with sequences that generally exhibit
uniform motion across the frame (e.g., “Kimono”), to the
detriment of the encoding time performance. In contrast to this
approach, the proposed framework exhibits a performance that
varies much less with the content. The effect of the content’s
complexity therefore appears trivial to the proposed algorithm,
due to its early prediction of the CU split decision prior to
the actual encoding of the CU. Furthermore, the proposed
algorithm only evaluates the selected CU depth level, thus,
the encoding time consumed for unnecessary CU depth level
evaluation is avoided, and proves to be an advantage over the
prevailing state-of-the-art encoding solutions when encoding
a wider range of video sequences.

However, for sequences such as “Traffic”, which has fast
moving objects through out the sequence, the proposed method



TABLE VII
OVERALL PERFORMANCE OF THE PROPOSED ALGORITHM (LOW DELAY B)

Sequence

Proposed
SI

Proposed
SII

Lu et al.
[29]

Lee et al.
[13]

Shen et al.
[16]

Vanne et al.
S14 [9]

Vanne et al.
S25 [9]

Correa et al.
[19]

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

∆T
(%)

BDBR
(%)

Musicians 1080p 53 1.96 57 2.03 29 0.90 43 1.71 44 1.21 37 0.68 51 1.89 48 19.54
Band 1080p 57 2.08 61 2.20 37 1.10 49 1.20 53 1.35 40 0.76 52 1.18 49 9.11
Kimono 1080p 55 2.73 59 2.81 24 0.96 40 4.55 43 1.42 38 0.82 51 1.72 33 4.56
Parkscene 1080p 52 2.34 55 2.48 26 0.67 46 1.78 49 1.29 44 0.68 54 0.72 46 15.16
Dancer 1080p 54 1.87 57 2.13 29 3.56 50 1.31 48 1.20 42 0.20 55 2.16 49 11.8
GT Fly 1080p 53 1.35 57 1.72 37 5.48 46 3.46 42 0.98 32 0.41 53 2.90 36 7.09
Beergarden 1080p 56 1.71 61 1.18 12 0.23 48 1.10 55 4.98 36 0.61 52 1.08 48 12.22
Poznan 1088p 62 1.18 67 1.27 30 1.01 60 1.02 66 5.74 51 0.37 57 0.99 51 7.24
City 720p 52 1.44 56 2.16 20 1.00 48 1.59 48 0.97 30 0.53 52 3.19 28 6.65
Traffic 1600p 57 3.50 60 3.87 22 1.00 50 1.97 52 4.47 29 0.44 48 1.48 42 7.50
Men-Plants 2160p 62 3.00 66 3.10 32 2.01 54 2.27 50 1.37 33 0.10 48 1.66 58 15.52
Park-Buildings 2160p 63 1.49 66 2.02 21 1.16 59 2.58 54 2.37 31 0.74 56 1.77 58 5.1
Men-calendar 2160p 63 3.17 67 3.40 43 4.93 57 1.50 58 1.37 32 0.62 54 1.98 59 19.14
Average 57 2.14 61 2.33 28 1.84 50 2.00 51 2.20 36 0.53 52 1.74 47 10.81

and the state-of-the-art algorithms demonstrate a relatively
large BDBR in the range of 4%. This suggests that the complex
motions and rapidly changing content have caused the decision
making algorithms to make fewer efficient decisions compared
to the sequences with average motion complexity. One of the
solutions envisioned in this case is to reduce the window size
W to increase the content adaptability of the proposed algo-
rithm. In this context, the proposed algorithm is sufficiently
flexible in its design parameters to cater for the diversities
of the video sequences. In addition to the joint utilization of
the two independent models, the complexity control parameter
coupled with the intermediate training phases provide a more
attractive training solution for the proposed framework in
contrast to the use of fully RD optimized training frames at
pre-defined intervals as proposed by Lee et al. in [13].

c) PU Level Complexity Reduction: The impact of skip-
ping PU modes is illustrated in the Tables VI and VII, for two
algorithms proposed by Vanne et al. [9]. The algorithm S14

which skips a limited number of PU modes in each CU depth
level based on the selection of SKIP or merge modes, results
in a smaller complexity reduction, whereas the algorithm
S25 produces greater complexity reductions to the detriment
of the coding efficiency. Generally, the BDBR increase is
relatively small in PU level optimization algorithms that skip
the evaluation of asymmetric or certain symmetric partitions,
as is the case here. This is due to the higher tendency of
the RD optimization based PU mode selection preferring the
selection of the Inter 2N × 2N mode over the remaining
PU modes at each CU depth level. However, the intermittent
increases in the BDBR seen in the tables with respect to certain
sequences stem from the ignorance of the remaining PU modes
which eventually lead to the selection of less efficient CU
and TU structures. Moreover, PU skip decisions derived based
on the selection of SKIP and merge modes in [9], results
in an increased ∆T for less complex sequences encoded at
lower quality levels (ref. Table V), whereas the opposite is
true when the sequences are encoded at higher quality levels.
In contrast, the proposed algorithm maintains a consistent
encoding time reduction (≈ 50%) across all quality levels

due to its SKIP/merge mode agnostic decision making models
which perform the CU split decision prediction.

d) Content Adaptability and Online Training: The con-
tent adaptability and the effectiveness of the online training
used in the proposed algorithm are further corroborated when
comparing its performance with that of the offline trained
algorithm proposed by Correa et al. in [19], whose BDBR ex-
ceeds 10% for some sequences due to its fixed thresholds and
decision trees [19], [30]. These coding losses emphasize the
inherent drawback of using offline trained algorithms, QP and
content agnostic RD cost thresholds, and rigid decision tree
topologies [30] on previously unseen data sets. Furthermore,
the disregard for the ambiguous regions, which often exist in
the CU split/non-split statistical distributions [30] (see Fig.
4), eventually lead to the less efficient split decisions in [19];
thus, degrades the RD performance. Consequently, retraining
the algorithm to the new data sets is a potential solution, yet
this may become a time consuming and tedious process.

In contrast, a relatively constant BDBR increase is observed
for the proposed algorithm as a result of its content adaptive
nature. For example, the content adaptability features of the
proposed algorithm ensure that the data upon which the CU
split decisions are made always correspond to the content
being encoded. Moreover, the experimental results further
reveal that the content adaptive approaches introduced in the
proposed algorithm are far more effective in capturing the
content specific information, as oppose to the state-of-the-art
approaches which typically rely on spatial and co-located CU
statistics [16] for content adaptation.

e) Motion Estimation Complexity Reduction: The effect
of the proposed fast CU selection method when supplemented
by the motion vector reuse to optimize the PU level motion
estimation, is presented under “Proposed SII” in Tables VI
and VII. In this case, the experimental results demonstrate an
additional average encoding time saving of 3% and 4% for
the low delay P and low delay B configurations, respectively.
However, BDBR increases of 0.37% and 0.19% for the two
configurations are exhibited in comparison to the “Proposed
SI”, due to the skipping of certain motion estimations.



Finally, it should be noted that the computational cost of the
training phases and the decision making stages are all included
in the encoding performance results that are reported in this
paper. Therefore, it is evident that the additional complexities
introduced by the proposed algorithm are negligible in com-
parison with the significant time saving that can be achieved
by incorporating these algorithms into the encoding cycle.

VII. CONCLUSION

This paper proposes a content adaptive fast CU size selec-
tion algorithm for HEVC based low delay video encoding.
In this context, two CU split likelihood models (based on
a motion feature-based and a RD cost threshold-based CU
classification approaches) are introduced to model the CU
split and non-split decisions. These models are dynamically
generated and are continuously adapted using initial and inter-
mediate training phases, such that they independently predict
the split decision for a given CU. Moreover, the possibility of
reusing motion vectors identified during the modeling stage,
for motion estimation in the remaining PU modes, is also
investigated to supplement the proposed algorithm.

One major conclusion to be drawn from this analysis is that
the initial evaluation of the Inter N×N mode provides motion
and complexity properties of the underlying CU, which can be
used to classify a CU, in order to model the split likelihood.
Furthermore, the use of two independent models facilitates
the split decision refinement as well as the identification
of when the models require training dynamically during the
encoding cycle. The window based approach used in the model
adaptation and decision making ensures that the resultant
split decisions are content-adaptive and less susceptible to
the dynamic variations such as scene changes; a non-trivial
advantage over the state-of-the-art methods.

In conclusion, the simulation results for the proposed CU
size selection and encoding algorithm reveal an average en-
coding time saving of 58% and 61% for the low delay P and
low delay B configurations, respectively. Moreover, the exper-
imental results reveal that the proposed encoding algorithms
can achieve a relatively uniform average encoding time saving
across a wide range of QPs and content ranging from low
to highly complex textures and motion characteristics, due to
its SKIP/merge mode agnostic early CU size prediction. The
capacity of the proposed algorithm to maintain a consistent
performance, in terms of both the encoding time saving as well
as BDBR increase (which is 2.29 % on average), across diverse
content types and QPs is especially notable when considering
the performance fluctuations observed in the state-of-the-art
solutions. The future work will focus on extending algorithm
to the remaining coding structures (i.e., PUs and TUs) and
other configurations in order to further expedite the encoding
process with minimal impact on the coding efficiency.
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