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Effect of shoulder angle variation on1

sEMG-based elbow joint angle estimation2

Zhichuan Tang*, Hongchun Yang, Lekai Zhang, Pengcheng Liu3

Abstract4

For the decade now, surface electromyogram (sEMG) signal has been extensively applied in joint5

angle estimation to control the prostheses and exoskeleton systems. However, the sEMG signal patterns6

can be severely affected by shoulder angle variations, which restricts its applications to a practical use.7

In our study, we evaluate the effect of shoulder angle variations on elbow angle estimation performance.8

This adverse effect increases mean root mean square (RMS) error by 14.85◦ in our experiment. Then,9

four estimation methods are proposed to solve this problem: (1) using a training set including all shoulder10

angles’ training data to train model; (2) adding two shoulder muscles’ sEMG as additional inputs; (3)11

a two-step method using arm muscles’ sEMG and two shoulder muscles’ sEMG; and (4) a two-step12

method using arm muscles’ sEMG and measured shoulder angle value by a motion sensor. 13 subjects13

are employed in this study. The experimental results demonstrate that the mean RMS error is reduced14

from 21.36◦ to 12.85◦ in method one, 9.84◦ in method two, 7.67◦ in method three, and 6.93◦ in method15

four, respectively. These results show that our methods are effective to eliminate the adverse effect of16

shoulder angle variations and achieve a better elbow angle estimation performance. Furthermore, this17

study is helpful to develop a natural and stable control system for prostheses and exoskeleton systems.18
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I. INTRODUCTION21

As a non-invasive technology, surface electromyogram (sEMG) signal can be used for an22

interaction way between people and environment efficiently and friendly in daily life [1]. Since23

sEMG directly shows the real-time activity level of muscles [2], [3], many previous studies24

applied sEMG in joint angle estimation to control the prostheses and exoskeleton systems [4],25

[5], [6], [7], [8], [9], [10], [11]. The overall control architecture of these applications can be26

generalized as: (1) preprocessing the sEMG signals to remove the noise or artifacts, (2) extracting27

various types of features, (3) feeding these features into a trained estimation model to identify28

an angle, and (4) conveying a control signal transformed from the output of the model to the29

device.30

Most studies on sEMG-based joint angle estimation to control the prostheses and exoskeleton31

systems mainly aim to obtain a better off-line estimation performance according to algorithm32

improvement in feature extraction and estimation process [12], [13], [14], [15]. Some methods33

can achieve a extremely good estimation performance (higher than 95% accuracy) [16]. However,34

previous efforts towards sEMG-based joint angle estimation were under predefined experimental35

setting [17]. Some external factors, like limb position variations [18], force variations [19], [20],36

electrode displacements [21] and electrode locations [22], can affect the sEMG signals collection37

and make a worse estimation performance in practical use. Besides, the elbow angle estimation38

performance may be affected by the shoulder angle variations significantly. For example, in the39

experimental state, the arm sEMG signals are always collected at a predefined shoulder angle40

for each subject, which is easy to perform repeatable contractions and acquire stable training41

data [23]; in practical use, more unpredictable shoulder angles may happen due to the various42

upper-limb movements in daily life, which degrades the estimation performance deriving by43

physiological variations of muscles. Some researchers have turned their attention to investigate44

the impact of upper-limb position on performance of sEMG-based pattern recognition systems.45

Scheme et al. [18] used the training data and testing data from the same or different limb46

positions to train sEMG-based classification models, and found that limb position variations47

led to a significant increase of sEMG classification error from 6.9% to 35.0%. Jiang et al.48

[24] demonstrated that changing arm position adversely influences the prediction performance49

of kinematics from sEMG, and the experimental results showed the intra-position R2 values50

were significantly higher than the corresponding inter-position values (p < 0.001). However,51
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few studies have investigated the performance of elbow angle estimation if the shoulder angle52

changes.53

In a traditional way, elbow angle can be estimated using sEMG signals from several arm54

muscles [25], [8], [26]. But since shoulder angle information cannot be acquired from sEMG55

of these arm muscles directly, it is difficult to deal with the adverse effect of shoulder angle56

using a traditional sEMG-based estimation method. The similar limitation also happens in the57

effect of arm position on sEMG-based gesture recognition. Several studies have focused on58

the additional inputs and novel estimation scheme. Geng et al. [27] used sEMG sensors and a59

mechanomyogram (MMG) sensor to solve the effect of limb position on motion classification60

for real-time prostheses control, and achieved a maximum increase of completion rate from61

81.4% to 94.3%. Park et al. [28] applied the ensemble-learning method to propose a position-62

independent decoding model to estimate the likelihood of different arm positions, which could63

successfully decode four wrist movements in different arm positions. In addition, not many64

efforts aimed to solve the effect of shoulder angle on elbow angle estimation. Fougner et al. [23]65

used sEMG sensors and two accelerometers to eliminate the effect of arm position and shoulder66

angle on sEMG pattern recognition, but like most previous studies, this study mainly focused on67

different arm positions (only three different shoulder angle were considered). Boschmann et al.68

[29] applied a high density electrode array to reduce the shoulder angle effect in distinguishing69

different hand and wrist movements, but this method using an electrode array (including 9670

sEMG sensors) cost too much.71

In this paper, we firstly evaluate the adverse effect of shoulder angle variations on elbow angle72

estimation. For solving this problem, we propose four methods:73

1) Method one: using a training set including all shoulder angles’ training data to train model.74

2) Method two: adding two shoulder muscles’s sEMG as additional inputs. Shoulder angle value75

can be estimated by shoulder muscles’s sEMG. This lets the estimation model include more76

kinds of training data, and increases the input vectors’ space dimensionality.77

3) Method three: a two-step method using arm muscles’ sEMG and two shoulder muscles’78

sEMG. There are two steps in this method: in step 1, the shoulder muscles’ sEMG data are79

classified to get a specific shoulder angle; in step 2, the corresponding pre-trained model in80

the evaluation stage using the same shoulder angle’s training data is used for elbow angle81

estimation.82

4) Method four: a two-step method using arm muscles’ sEMG and measured shoulder angle83
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Fig. 1. Experimental setup (a) and electrode position (b). Shoulder angle is represented by α1. Elbow angle is represented by

α2. The angle between motion sensor’s z-axis and natural coordinates’ z-axis is represented by α3. The motion sensor was used

to measure the shoulder angle in Method four, which was placed about 10cm from the elbow joint on the midline of the upper

arm. The goniometer was made by ourselves to acquire the actual elbow angle. It consists of a potentiometer, two metal bars,

a rotation axis and four belts.

value by a motion sensor. There are two steps in this method: in step 1, the motion sensor84

data are classified to get a specific shoulder angle; in step 2, the corresponding pre-trained85

model in the evaluation stage using the same shoulder angle’s training data is used for elbow86

angle estimation.87

II. METHODS88

A. Subjects89

13 male able-bodied subjects (age range: 26±3 years, height range: 172±6cm, weight range:90

65±5kg) were volunteered to participate in our experiment. The ethical committee of Zhejiang91

University reviewed our experimental protocol and approved it. All subjects were informed not92

to perform any intense movements to avoid fatigue on the day of experiment, and they all signed93

the informed consents prior to the experiment.94
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Fig. 2. Five different shoulder angles (α1) in the sagittal plane, i.e., 0◦, 45◦, 90◦, 135◦ and 180◦, respectively.

TABLE I

THE DIFFERENT CONDITIONS IN TEN TRIALS

Trial Shoulder angle Speed

Run1 A1:0◦ V1: constant elbow angular velocity of 90◦/s (0.5Hz)

Run2 A1:0◦ V2: constant elbow angular velocity of 45◦/s (0.25Hz)

Run3 A2:45◦ V1: constant elbow angular velocity of 90◦/s (0.5Hz)

Run4 A2:45◦ V2: constant elbow angular velocity of 45◦/s (0.25Hz)

Run5 A3:90◦ V1: constant elbow angular velocity of 90◦/s (0.5Hz)

Run6 A3:90◦ V2: constant elbow angular velocity of 45◦/s (0.25Hz)

Run7 A4:135◦ V1: constant elbow angular velocity of 90◦/s (0.5Hz)

Run8 A4:135◦ V2: constant elbow angular velocity of 45◦/s (0.25Hz)

Run9 A5:180◦ V1: constant elbow angular velocity of 90◦/s (0.5Hz)

Run10 A5:180◦ V2: constant elbow angular velocity of 45◦/s (0.25Hz)

B. Experimental Procedure95

When subjects arrived, one experimenter helped them attach the sensors (sEMG sensors,96

motion sensor and goniometer) on the right arm and ensured that the signals were normal97

according to the signal check procedures from Konrad [30]. The signal check procedures included98

the skin impedance test (impedance range keeps in 1-5Kohm) and the visual inspection of99

the raw EMG baseline (the average noise level should be located at 1-3.5 microvolts, and the100

baseline should remain at the zero line). Then, subjects sit on a chair to perform flexion-extension101
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movements of elbow in the sagittal plane (Fig. 1(a)). The elbow angle range (α2) was from 0◦ to102

90◦. 0◦ represented full extension, and 90◦ represented full flexion. The forearm was supinated103

throughout the experiment.104

During the experiment, the subjects performed flexion-extension movements of elbow under105

five different shoulder angles (α1) in the sagittal plane, i.e., 0◦, 45◦, 90◦, 135◦ and 180◦,106

respectively (as shown in Fig. 2). For each shoulder angle, subjects performed sixty trials (one107

flexion-extension movement is called a trial) continuously at two speeds. Each subject needed108

to perform ten runs under different shoulder angles and speeds (Table I), forming a total dataset109

of 60 trials × 5 shoulder angles × 2 speeds × 13 subjects. For each trial, the arm and elbow110

moved smoothly in a constant speed, and no delay at two ends (0◦ to 90◦). Subjects followed the111

beeps of a metronome to perform the elbow movements at different speeds [31], and finished112

one trial between two beeps.113

There was a resting period of 4-6 minutes between two runs to avoid fatigue. If subjects felt114

too fatigued to continue the flexion-extension movements during one run, they could stop the115

experiment and have a rest. Besides, one experimenter watched the targeted muscles’ median116

frequency (MF) during the experiment. Muscle fatigue can result in a decline of MF [32], [33].117

The two measures were effective to avoid fatigue for all sEMG records. The whole experiment118

lasted about 70 minutes per subject.119

C. Data Acquisition120

To estimate the elbow angle in this experiment, sEMG signals were collected from four121

arm muscles (biceps brachii, triceps brachii, brachioradialis and anconeus). Biceps brachii and122

triceps brachii are the agonistic muscles in elbow flexion movement and extension movement,123

respectively; brachioradialis and anconeus are the synergistic muscles in elbow flexion movement124

and extension movement, respectively [34]. To estimate the shoulder angle in Method two and125

Method three, sEMG signals were collected from two shoulder muscles, i.e., middle deltoid126

and upper trapezius [35], [36]. These four muscles’ sEMG signals were collected by four EMG127

MyoScan-Z sensors (T9503Z, Thought Technology Ltd., Canada). The sensor measures raw128

sEMG signals with a range from 0 up to 2000µV. Input impedance is greater than 10GΩ in129

parallel with 10pF, CMRR is greater than 130dB, and input/output gain equals 500. Before130

attaching the electrodes, we used alcohol and conductive gel to clean the skin and improve the131

contact between electrodes and skin [30], respectively. Then, the electrodes of the sEMG sensors132
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were placed on the targeted muscles of the right arm for each subject. One sensor included three133

electrodes: positive, negative and ground. The inter-electrode distance was 2cm. The electrode134

position is shown in Fig. 1(b). sEMG signals were sampled at 1024Hz and were filtered at135

5-350Hz with a band-pass filter. And a 50-Hz notch filter was applied to remove the power-line136

interference.137

One motion sensor with a 3-axis accelerometer and 3-axis gyroscope (MPU6050, InvenSense138

Inc., California) was used to measure the shoulder angle variation in Method four. For this139

sensor, the range of angular velocity is ±2000◦/s, and the range of acceleration is ±16g. The140

placement of the motion sensor is shown in Fig. 1(a). The angular velocity data are given by141

a 16-bit analog-to-digital converter in motion sensor, and then the angular acceleration data are142

obtained by143

Acc = lim
∆t→0

∆ω

∆t
(1)

where ∆ω is angular velocity’s change in one time interval of ∆t. The shoulder angle α1 is144

calculated by145

α1 = α3 + 90◦ = tan−1

(√
Acc2

x + Acc2
y

Accz

)
+ 90◦ (2)

where α3 represents the angle between motion sensor’s z-axis and natural coordinates’ z-axis,146

Accx is the angle acceleration of motion sensor’s x-axis, Accy is the angle acceleration of motion147

sensor’s y-axis, and Accz is the angle acceleration of motion sensor’s z-axis. The range of α1148

is from 0◦ to 180◦, and the range of α3 is from −90◦ to +90◦.149

One goniometer made by ourselves wearing on the subject’s right arm was applied to collect the150

elbow angle’ actual value to compare with the predicted value. The structure of this goniometer151

referred to some previous studies ([37], [38], [8]), including a potentiometer (RV30YN30S,152

TOCOS, Japan), two metal bars, a rotation axis and four belts. The shaft of the potentiometer153

is fixed on the rotation axis. When the rotation axis moves in one angle, the potentiometer’s154

shaft moves in a same angle, resulting in an output of the corresponding voltage [39]. The actual155

elbow angle α2 can be calculated by156

α2 =
Uout

Umax

θmax (3)
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where Uout is the output voltage, Umax is the input voltage, and θmax is the maximum angle which157

the shaft of the potentiometer can move. According to the testing, the angle range is 0− 120◦,158

and the accuracy is 0.1◦. To avoid affecting the natural arm movement, the four flexible belts are159

adjustable to match different subjects. The light weight of the goniometer (0.185kg) minimizes160

the effect on the EMG signals as much as possible.161

To synchronize with the sEMG data, all angle data were sampled at 1024Hz.162

D. Feature Extraction163

To extract features from all data, they were segmented by an overlapped windowing technique164

[40]. Each time window had a length of 50ms and was overlapped by 25ms.165

Many time-domain methods of feature extraction were developed for sEMG-based applications166

[41], [42]. Four of them, i.e., root mean square (RMS), zero crossing (ZC), mean absolute value167

(MAV) and waveform length (WL), were utilized in our study. RMS provides the amplitude168

information of sEMG signals. It can be calculated by169

RMS =

√√√√ 1

N

N∑
i=1

X2
i (4)

where Xi is the ith sEMG signal value and N is the number of time points. MAV stands for170

the signal energy as below171

MAV =
1

N

N∑
i=1

|Xi| (5)

ZC is the total zero crossing times occurring in a time window, which can describe the frequency172

characteristic in time domain. It is presented in173

ZC =
N−1∑
i=1

φ(∆i) (6)

φ(∆i) =

1 if Xi ×Xi+1 < 0 and |Xi −Xi+1| ≥ ZCthreshold

0 otherwise
(7)

where ZCthreshold is a threshold to reduce noises caused by zero crossings in calculation. WL174

represents the waveform complexity of the sEMG signals, which can be calculated by175
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WL =
N∑
i=1

[Xi −Xi−1] (8)

In each time window, the shoulder angle from the motion sensor and the elbow angle from176

the goniometer were averaged by177

α1 =
1

N

N∑
i=1

(α1)i (9)

α2 =
1

N

N∑
i=1

(α2)i (10)

where α1 is the average shoulder angle, α2 is the average elbow angle, (α1)i is the ith shoulder178

angle value and (α2)i is the ith elbow angle value.179

E. Estimation180

Support vector regression (SVR) can transform the training data into a high-dimension feature181

space [43]. It was used to learn the mapping model between sEMG and elbow angle in this study.182

The inputs of SVR model were sEMG features, and the output of SVR model was corresponding183

elbow angle. The radial based function (RBF) was used in model training as the kernel function184

to map the input x into a higher dimensional space:185

K(x, xi) = exp

(
− 1

2σ2
‖x− xi‖2

)
(11)

where σ is the scale factor, and exp is the exponential function. After the model training, the186

sEMG-angle mapping model was constructed.187

In the evaluation stage, to demonstrate the effect of shoulder angle variation on elbow angle188

estimation performance, we trained the SVR models using data from one shoulder angle and189

tested in all shoulder angles under each speed (totally ten models for each subject). The inputs of190

SVR models were sEMG features of four arm muscles, and the output was corresponding elbow191

angle. For all models, 80% data were selected randomly as training data for model training, and192

20% data were utilized as testing data for model testing. In model training, the training data193

were separated into ten folds (9 folds for training and 1 fold for testing) to perform 10-fold194
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Fig. 3. The estimation scheme of four proposed methods. Method One: using a training set including all shoulder angles’

training data; Method two: adding two shoulder muscles’s sEMG as additional inputs; Method three: a two-step method using

arm muscles’ sEMG and two shoulder muscles’ sEMG; Method four: a two-step method using arm muscles’ sEMG and measured

shoulder angle value by a motion sensor.

cross-validation. For each speed, intra-angle estimation performance (training and testing data195

from one same shoulder angle) and inter-angle estimation performance (training and testing data196

from different shoulder angles) were evaluated.197

For resolving the effect of shoulder angle variation, we proposed the following four methods198

(as shown in Fig. 3):199
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1) Method One - using a training set including all shoulder angles’ training data: Under200

each speed, the inputs of SVR models were four arm muscles’ sEMG, and the output was201

corresponding elbow angle. A training set including all five shoulder angles’ training data202

(randomly 80% data) was used for SVR model training. A testing set including all five shoulder203

angles’ testing data (remaining 20% data) was used for SVR model testing. 10-fold cross-204

validation was used in model training.205

2) Method Two - adding two shoulder muscles’s sEMG as additional inputs: Shoulder muscle-206

s’s sEMG can estimate the shoulder angle, which increases the space dimensionality of estimation207

algorithm. Under each speed, the inputs of SVR models were four arm muscles’ sEMG and two208

shoulder muscles’ sEMG, resulting in a feature vector:209

 [(RMSj)N , (MAVj)N , (ZCj)N , (WLj)N ]arm, j = 1...4

[(RMSk)N , (MAVk)N , (ZCk)N , (WLk)N ]shoulder, k = 1...2

 (12)

where j and k are the number of electrodes, and N is the number of time points. The output210

was the corresponding elbow angle. A training set including all five shoulder angles’ training211

data (randomly 80% data) was used for SVR model training. A testing set including all five212

shoulder angles’ testing data (remaining 20% data) was used for SVR model testing. 10-fold213

cross-validation was used in model training.214

3) Method Three - a two-step method using arm muscles’ sEMG and two shoulder muscles’215

sEMG: Under each speed, in step 1, shoulder muscles’ sEMG were classified to recognize a216

specific shoulder angle (0◦, 45◦, 90◦, 135◦ and 180◦). Multi-Layer perceptron neural network217

(MLP) was used to the classifier in this step due to its good robustness and performance in218

extensive sEMG-based applications [44]. MLP can learn nonlinear functions through weights219

adjusting to minimize the output error. A training set including all five shoulder angles’ training220

data (randomly 80% data) was used for the training of MLP classifier. A testing set including all221

five shoulder angles’ testing data (remaining 20% data) was used for the testing of MLP classifier.222

10-fold cross-validation was used in model training. After the model training, we obtained a223

specific shoulder angle from the shoulder muscles’ sEMG. In step 2, the corresponding pre-224

trained model in the evaluation stage using the same shoulder angle’s training data was used for225

elbow angle estimation.226

4) Method Four - a two-step method using arm muscles’ sEMG and measured shoulder angle227

value by a motion sensor: Under each speed, in step 1, motion sensor data were classified228
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to recognize a specific shoulder angle (0◦, 45◦, 90◦, 135◦ and 180◦) using an MLP classifier.229

A training set including all five shoulder angles’ training data (randomly 80% data) was used230

for the training of MLP classifier. A testing set including all five shoulder angles’ testing data231

(remaining 20% data) was used for the testing of MLP classifier. 10-fold cross-validation was232

used in model training. After the model training, we obtained a specific shoulder angle from the233

motion sensor data. In step 2, the corresponding pre-trained model in the evaluation stage using234

the same shoulder angle’s training data was used for elbow angle estimation.235

We used root mean square (RMS) error to evaluate the estimation performance of SVR models236

of evaluation stage and four methods. The RMS error between predicted angle and actual angle237

can be obtained by238

RMSEm =

√√√√ 1

n

n∑
m=1

[(α
′
2)m − (α2)m]2 (13)

where n is the number of testing data, (α
′
2)m is the predicted angle, and (α2)m is the actual239

angle. Then, we used the relative magnitude of the angle error to the actual angle to compare240

the four methods further. The relative magnitude (%error) can be calculated by241

%errorm =
1

n

n∑
m=1

(∣∣(α′2)m − (α2)m
∣∣

(α2)m

)
(14)

III. RESULTS242

All data of 13 subjects were processed using MATLAB (MathWorks, Inc., USA). The sEMG243

and actual angle of one flexion-extension trial from five shoulder angles of one subject at V1244

are shown in Fig. 4. A one-way ANOVA with a 0.05 significance level was used to evaluate the245

shoulder angle main effect on muscles’ sEMG. There is a significant main effect of shoulder angle246

for the sEMG of biceps brachii (F = 7.364, p = 0.004), triceps brachii (F = 6.588, p = 0.011),247

anconeus (F = 2.946, p = 0.041), middle deltoid (F = 4.226, p = 0.027) and upper trapezius248

(F = 6.782, p = 0.009). To further clarify this effect, the Tukey post-hoc test was applied and249

shows that A1 (0◦) is significantly different from the other four shoulder angles for the sEMG of250

these six muscles (all p < 0.05). The sEMG of arm muscles and shoulder muscles are changed251

with the change of the shoulder angle, i.e., the increase of the shoulder angle results in the252

amplitude decrease of biceps brachii and the amplitude increase of triceps brachii, anconeus,253
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Fig. 4. The sEMG and actual elbow angle of one flexion-extension trial from five shoulder angles of one subject at V1 (90◦/s).

middle deltoid and upper trapezius. There is no significant main effect of shoulder angle for the254

sEMG of Brachioradialis (F = 0.952, p = 0.138). Brachioradialis has no obvious change across255

five shoulder angles.256

A. Results in Evaluation Stage257

Totally ten different shoulder angle-specific SVR models (5 shoulder angles × 2 speeds) were258

trained for each subject. For each model, the training data were from one shoulder angle, and259

the testing data were from all shoulder angles. The results (confusion matrix) are shown in Fig.260

5(a). The value of each entry in confusion matrix stands for the RMS error (mean±sd) of the261

corresponding training shoulder angle (vertical axis) and testing shoulder angle (horizontal axis)262

across all subjects and speeds. Darker color indicates larger RMS error. The RMS errors of the263

main diagonal represent the intra-angle cases (training and testing data from one same shoulder264

angle), and the RMS errors of the off-diagonal represent the inter-angle cases (training and testing265

data from different shoulder angles). For each training shoulder angle (each row of the confusion266

matrix), a one-way ANOVA with a 0.05 significance level was used to evaluate the main effect of267
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Fig. 5. RMS error (mean±sd◦) resulting matrices. Darker color indicates larger RMS error. (a): the value of each entry in

confusion matrix stands for the RMS error (mean±sd◦) of the corresponding training shoulder angle (vertical axis) and testing

shoulder angle (horizontal axis) across all subjects and speeds; (b): speed specific matrices broken out from (a).

shoulder angle variation on elbow angle estimation performance, resulting in totally 5 ANOVAs.268

Each ANOVA includes 5 levels, i.e., one intra-angle case and four inter-angle cases. There is269

a significant main effect of shoulder angle variation on elbow angle estimation performance270

for all ANOVAs ((F = 10.532, p = 0.001), (F = 7.043, p = 0.008), (F = 4.376, p = 0.020),271

(F = 7.643, p = 0.006) and (F = 9.890, p = 0.002), respectively). The Tukey post-hoc test was272

applied and shows that the intra-angle case is significantly different from the inter-angle cases273

for all ANOVAs (all p < 0.05). In A1 ANOVA, A1-A5 is significantly different from the other274

cases (all p < 0.05); in A2 ANOVA, A2-A5 is significantly different from the other cases (all275

p < 0.05); in A4 ANOVA, A4-A1 is significantly different from the other cases (all p < 0.05);276

in A5 ANOVA, A5-A1 is significantly different from the other cases (all p < 0.05). As shown277

in the matrix, training data from A5 and testing data from A1 or vice versa leads to the poorest278

results (36.45◦ and 35.93◦, respectively). Similarly, the results of A1-A4, A4-A1, A2-A5 and279

A5-A2 (31.88◦, 32.39◦, 34.38◦ and 32.47◦, respectively) are poor as well, although better than280

A5-A1 and A1-A5. In addition, if the difference between training shoulder angle and testing281

shoulder angle is larger, the estimation performance is poorer, e.g., the RMS errors gradually282
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Fig. 6. RMS error (mean±sd◦) resulting matrices under five shoulder angles. Darker color indicates larger RMS error. The

value of each entry in five matrices stands for the RMS error (mean±sd◦) of the corresponding training speed (vertical axis)

and testing speed (horizontal axis) across all subjects.

increase from A1-A1 to A1-A5. The mean intra-angle RMS error is 6.51◦, which is much lower283

than the mean inter-angle RMS error (22.02◦) and the mean overall RMS error (21.36◦). This284

adverse effect increases mean RMS error by 14.85◦ between mean intra-angle RMS error and285

mean overall RMS error.286

To further demonstrate the shoulder angle effect on elbow angle estimation under different287

speeds, two speed specific matrices stemming from the matrix of Fig. 5(a) are shown in Fig.288

5(b). Fig. 6 illustrates the similar resulting matrices as those in Fig. 5(b), but the value of each289

entry in five matrices stands for the RMS error (mean±sd) of the corresponding training speed290

(vertical axis) and testing speed (horizontal axis) across all subjects. Fig. 5(b) and Fig. 6 show291

the effect of different speeds on the elbow joint estimation performance. There is a significant292

difference (p < 0.05) between two speed matrices in Fig. 5(b) through the t-test with a 0.05293

significance level, and the color of entries under V1 is darker than those under V2. The RMS294

errors of inter-speed are larger than those of intra-speed in five matrices shown in Fig. 6 (the295

total mean inter-angle RMS error is 9.80◦ and the total mean intra-angle RMS error is 6.51◦).296

B. Results in Four Methods297

In Method one, a training set including all shoulder angles’ training data was used to train298

model. We built different training combinations with training data of different shoulder angles299

into five groups to analyze the effect of the amount of training data on estimation performance.300

For each group, the estimation model was trained by training data from different amount of301

shoulder angles (one, two, three, four or five), and was tested by testing data from all five302

shoulder angles. All groups’ mean RMS errors at two speeds across all subjects are shown in303
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Fig. 7. All groups’ mean RMS errors at two speeds across all subjects. For each group, the estimation model was trained by

training data from different amount of shoulder angles (one, two, three, four or five), and was tested by testing data from all

five shoulder angles.

Fig. 7. For each speed, a one-way ANOVA with a 0.05 significance level was used to evaluate304

the main effect of the amount of training data on estimation performance. There is a significant305

main effect of the amount of training data on elbow angle estimation performance for two306

ANOVAs ((F = 3.243, p = 0.039) and (F = 2.842, p = 0.044), respectively). The mean RMS307

error decreases gradually from Group 1 trained by one shoulder angle to Group 5 trained by308

five shoulder angles at each speed. This result demonstrates that adding more training data from309

different shoulder angles can lead to a better estimation performance. The SVR model of Group310

1 (training data from one shoulder angle) has a poorest estimation performance.311

In Method two, two shoulder muscles’ sEMG were used as additional inputs for the SVR312

models. In the step 1 of Method three and Method four, under each speed, the two shoulder313

muscles’ sEMG and the motion sensor data were classified to get a specific shoulder angle,314

respectively. By using an MLP classifier, the shoulder angle classification error was 3.3% in315

Mehthod three and 0% in Method four. Then, the corresponding pre-trained model in the eval-316
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TABLE II

THE RMS ERRORS (MEAN±SD◦) OF FOUR METHODS AT TWO SPEEDS ACROSS ALL SUBJECTS

Method one (mean±sd) Method two (mean±sd) Method three (mean±sd) Method four (mean±sd)

V1 13.83 ± 1.20 9.96 ± 1.33 8.31 ± 1.93 8.01 ± 1.83

V2 11.87 ± 1.15 9.71 ± 2.01 7.03 ± 1.44 5.84 ± 0.93

Total 12.85 ± 1.39 9.84 ± 1.89 7.67 ± 0.91 6.93 ± 1.53

Fig. 8. The curves of predicted and actual angle, the value of r and the correlation diagram of four methods using testing data

of one same flexion-extension trial at V1 and A1 from one subject.

uation stage using the same shoulder angle’s training data was used for elbow angle estimation317

in step 2 of the two methods. Table II shows the mean RMS error of the four methods at two318

speeds. Fig. 8 shows the curves of predicted and actual angle, the correlation diagram and the319

values of Pearson correlation coefficient (r) of four methods using testing data of one same320

flexion-extension trial at V1 and A1 from one subject. If r is closer to 1, it means the error321

between predicted and actual angle is smaller. According to Table II and Fig. 8, we find that322
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TABLE III

THE %errorS (MEAN±SD%) OF FOUR METHODS AT FIVE SHOULDER ANGLES AND TWO SPEEDS ACROSS ALL SUBJECTS

Method one (mean±sd) Method two (mean±sd) Method three (mean±sd) Method four (mean±sd)

A1 24.68 ± 1.43 16.25 ± 4.93 12.65 ± 1.73 11.87 ± 2.33

A2 21.50 ± 3.34 15.93 ± 1.29 12.08 ± 1.30 11.99 ± 2.87

V1 A3 23.85 ± 3.98 17.48 ± 3.81 12.83 ± 4.33 12.98 ± 1.99

A4 23.60 ± 2.43 14.31 ± 2.43 11.15 ± 4.09 11.31 ± 1.73

A5 24.20 ± 5.22 18.11 ± 1.43 11.34 ± 3.24 13.55 ± 3.99

A1 23.16 ± 3.95 17.46 ± 2.76 12.81 ± 2.30 10.46 ± 3.54

A2 22.58 ± 4.32 18.36 ± 5.17 13.71 ± 2.48 12.93 ± 3.42

V2 A3 21.56 ± 2.04 16.31 ± 3.89 11.13 ± 2.98 11.34 ± 3.28

A4 20.81 ± 2.76 16.13 ± 3.41 10.98 ± 1.79 11.31 ± 2.95

A5 25.04 ± 3.02 17.75 ± 4.03 11.63 ± 3.44 12.14 ± 2.55

Total 23.09 ± 1.44 16.81 ± 1.24 12.03 ± 0.93 11.96 ± 0.91

Method four achieves a better estimation performance (mean RMS error at V1, mean RMS error323

at V2, total mean RMS error and the value of r are 8.01◦, 5.84◦, 6.93◦ and 0.9203 respectively)324

than the other three. Additionally, four methods’ RMS errors are all lower than evaluation stage’s325

RMS error (21.36◦) using training data from one single shoulder angle and testing data from all326

shoulder angles. According to the t-test with a 0.05 significance level, all methods’ RMS errors327

have a significantly difference with evaluation stage’s RMS error (all p < 0.05).328

Furtherly, we used the relative magnitude (%error) of the angle error to the actual angle to329

compare the four methods. If %error is closer to 0, it means the predicted angle is closer to the330

actual angle. The %errors (mean±sd) of four methods at five shoulder angles and two speeds331

across all subjects are shown in Table III. For four methods, the results of %error are similar332

to those of RMS error. Method four has a lower total mean %error (11.96%) than the other333

three, which means that Method four achieves a best estimation performance. Method three has334

a slightly higher total mean %error (12.03%), which is very close to Method four.335
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IV. DISCUSSION336

To evaluate the effect of shoulder angle variation on elbow angle estimation performance, we337

trained estimation models using training data from one shoulder angle and tested them using338

testing data from all shoulder angles. Fig. 5(a) shows that the mean intra-angle RMS error339

(6.51◦) using training and testing data from one same shoulder angle is much lower than the340

mean inter-angle RMS error (22.02◦) using training and testing data from different shoulder341

angles. This result implies that shoulder angle variations can affect the elbow angle estimation342

substantially. The possible reasons of this fact are: (1) Variation in muscle recruitment. When343

arm is stabilized in a specific shoulder angle, this will lead to the displacement of muscles344

due to different force of gravity, and alter the nature of the sEMG of arm muscles [16]. (2)345

Electrode shift. The electrodes may shift during use because of the changes in muscle shape,346

length and position [23]. Hargrove et al. [45] found a 1-cm shift of four electrodes attached347

on the arm caused an increase of classification error from 5% to 40%. And (3) the change of348

the lever arm of musculotendon and the change of the muscle’s force-length relationship [23].349

Therefore, training the control system of a prosthesis or exoskeleton using data from a single350

shoulder angle is insufficient due to the requirement in complex movements in daily life. Shoulder351

angle variation can induce a significant difference between the experiment in the laboratory and352

practical use. The ideal conditions (predefined experimental setting) will not always happen in353

practical use.354

To solve this problem, we proposed four methods in our study. In Method one, the total355

mean overall RMS error is reduced from 21.36◦ to 12.85◦ according to use a training set356

including all shoulder angles’ training data. Using training data from multiple shoulder angles357

to train model will require more time for collecting training data. For example, according to the358

experimental procedure of this study, if we add the training data of another angle, each subject359

needs add about 11 minutes (60 trials × 2 speeds × 3 second (average movement time per360

trial) + 5 minutes (average resting time per run)). Therefore, we hope to use the training data361

from as few shoulder angles as possible. However, the mean RMS error increases along with362

the reduction of shoulder angles (from Group5 to Group1) at each speed. This result shows363

that adding more training data from different shoulder angles can lead to a better estimation364

performance. The SVR model of Group 1 (training data from one shoulder angle) has a poorest365

estimation performance. In Method two, the total mean overall RMS error is reduced from 21.36◦366
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to 9.84◦ by using two shoulder muscles’ sEMG as additional inputs for the SVR models. The367

better estimation performance in Method two than in Method one is because additional inputs368

increases the input vectors’ space dimensionality. In step 1 of Method three and Method four,369

the two shoulder muscles’ sEMG and the motion sensor data were classified to get a specific370

shoulder angle, respectively. Then, the corresponding pre-trained model in the evaluation stage371

using the same shoulder angle’s training data was used for elbow angle estimation in step 2 of372

the two methods. A further reduction of the total mean RMS error of two methods is from 9.84◦373

to 7.67◦ and to 6.93◦, respectively. Additionally, these two methods have a lower total mean374

%error (12.03% and 11.96%, respectively) than Method two. These results show that Method375

three and Method four have a better estimation performance than Method two. The reason is that376

the estimation performance of Method two is still influenced by inter-angle cases (testing data377

from different shoulder angles). In Method three and four, because of the nearly zero (3.3%)378

and zero classification error in step 1, the estimation process in step 2 is same as the intra-379

angle cases resulting in a much lower mean RMS error than that of the inter-angle cases. The380

better estimation performance in Method four than in Method three indicates that, to classify381

the shoulder angle, using a motion sensor is better than using shoulder muscles’ sEMG. That is382

because shoulder muscles’ sEMG also can be affected by variation in muscle recruitment and383

electrode shift in different movements like arm muscles’ sEMG. The estimation performance of384

all four methods is better than that of evaluation stage. To compare with the first three methods385

which only use sEMG data to train model, Method four based on sensor fusion technology386

(sEMG and motion sensor) has a better estimation performance.387

Additionally, the effect of different speeds on elbow angle estimation performance is found.388

As shown in Fig. 5(b), the color of entries under V1 is darker than those under V2 (darker389

color indicates larger RMS error); as shown in Fig. 6, the RMS errors of inter-speed are larger390

than those of intra-speed in five matrices (the total mean inter-speed RMS error is 9.80◦ and the391

total mean intra-speed RMS error is 6.51◦). Some previous studies have started paying attention392

to the speed effect on joint angle estimation. Hashemi et al. [46] estimated elbow angle by393

sEMG signals of flexion/extension runs during constant velocity and varying velocity. Minimum394

%RMS errors of 8.3% and 33.3% were achieved in the two conditions, respectively. Zhang et al.395

[47] used EMG signals to estimate the hip, knee and ankle joint angles, and there was a 1.98◦396

difference between mean RMS error of fast and slow speed under two loads. The reason of397

speed effect is that the higher speed increases the neuronal firing activity and therefore results in398
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the change of muscle activity and sEMG [48]. This brings the nervous system into an unstable399

functional state and motion state to cause a weak estimation performance.400

The sEMG signals are easily influenced by fatigue, resulting in a negative effect on estimation401

performance [49], [50]. In our experiment, we set a resting period between two runs to address402

this problem, and used subjective stop and MF test to ensure data without fatigue. It is suggested403

that fatigue needs to be tested and monitored in sEMG-based application although we do not404

focus on the fatigue effect in this study.405

According to the current results, the four methods are applicable to elbow angle estimation for406

normal persons. However, upper-limb prostheses and exoskeletons are always used by patients407

after neurological injury or elderly. So the proposed methods need to be applied and verified in408

these people. This will be discussed in our future research.409

V. CONCLUSION410

In our study, we firstly evaluated the effect of shoulder angle variations on elbow angle411

estimation performance. To solve this problem, we proposed four methods: (1) using a training412

set including all shoulder angles’ training data to train model; (2) adding two shoulder muscles’413

sEMG as additional inputs; (3) a two-step method using arm muscles’ sEMG and two shoulder414

muscles’ sEMG; and (4) a two-step method using arm muscles’ sEMG and measured shoulder415

angle value by a motion sensor. The four methods reduced the mean RMS error significantly.416

These results show that our methods are effective to eliminate the adverse effect of shoulder417

angle variations and achieve a better elbow angle estimation performance. Furthermore, this418

study is helpful to develop a natural and stable control system for prostheses and exoskeleton419

systems.420
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