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Abstract 

This paper studies the dynamic frictional interactions of the underactuated vibro-driven capsule systems with the 

viscoelastic property. Frictional dynamics of the capsule systems is an active research domain, while the online 

implementation and control of the friction models are still intractable tasks. This paper investigates the frictional 

characteristics of the capsule systems in the dynamic regime, including particularly the non-reversible drooping 

and hysteresis. Firstly, the frictional interaction dynamics is modelled and characterized using a combined 

physics-based and analytical-based approach. Subsequently, the qualitative changes in the capsule dynamics and 

friction-induced vibrational responses that triggered by multiple control parameters are discussed. It is found that 

the capsule dynamics is mainly periodic, and the motion velocity of the capsule systems can be controlled by 

appropriate tuning of the control parameters around the identified control points. Simulation results have a good 

agreement with the experimentally observed frictional characteristics. The effectiveness of the proposed method 

is verified in terms of satisfaction of the energy requirements and quenching of the friction-induced vibrations. It 

is also found that the frictional interaction dynamics of the capsule systems can be predicted for a wide range of 

vibrational behaviours. Finally, the importance of a concrete understanding and accurate description of the 

dynamic friction at the sliding substrate is highlighted. 
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1. Introduction 

During the past decade, autonomous micro-mechanical systems have become an active research topic 

in both robotics and control communities. Various systems have been studied, for instance, the rigid 

body with two internal masses (Bolotnik and Figurina, 2008), the two-body system (Chernous’ko, 

2011), the capsubot (Huda and Yu, 2015a; Liu et al., 2018a, 2018b), the vibro-impact capsule systems 

(Liu et al., 2018c, 2017; Zhan and Xu, 2015; Zhang et al., 2014a). These systems move by generating 

the internal autogenetic forces and overcoming the external environmental resistance. Equipped with 

hermetic structure and smooth surface, they have extensive applications, for instance, in engineering 
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diagnosis, medical endoscopy, disaster rescues and seabed exploration. Irrespective of the complex 

gear case and external protruding components, they are simple in mechanical structure and prone to 

control, which shed light on the design of the dynamical model of autonomous and bionic-robotic 

systems. The rectilinear locomotion is based on the principle that an internal vibro-driven mass moves 

and interacts with the system body and overcomes the environmental resistant forces. Capsule 

systems are designed with this principle to work in vulnerable media and restricted space, for instance, 

minimally invasive diagnosis inside a human body and pipeline inspection into a narrow tube. The 

dynamics of a mobile system with an internal acceleration-controlled mass based on the stick-slip 

effect was studied in (H. Fang and Xu, 2011). The issue of trajectory tracking control of an 

underactuated capsubot system was studied in (Huda and Yu, 2015), which proposed a two-stage 

motion control strategy through acceleration profiles. A vibro-driven capsule system was proposed in 

(Liu et al., 2014, 2016) and the issues of motion generation and dynamic interactions with the 

environment were studied. The capsule systems require high fidelity, which makes precise modelling 

and prediction of the frictional interactions is a nontrivial but intractable task. Conventionally, friction 

is considered as an instable factor that needs to be eliminated or compensated through the design of 

control systems. Robust friction models are required in some practical engineering problems. 

However, friction plays a pivotal role in the locomotion of the self-propelled capsule systems. For the 

vibro-driven system considered in this paper, the dynamic coupling between the driving mechanism 

and the capsule are utilized to generate desirable stick-slip motions. Hence, accurate predictions of the 

dynamic interactions in the sticking, presliding and pure sliding regimes become crucial. 

Various friction models have been proposed in the literature through investigation in the physical 

phenomena. These models have different numbers of parameters to be identified and controlled. 

Basically, there are three indexes (Al-Bender and Swevers, 2008) for evaluating the friction model: 1) 

simple for online utilization; 2) sophisticated to describe all frictional characteristics; and 3) having a 

limited number of parameters to be identified. As a simplified friction model, the Coulomb model 

describes the friction as a function of relative velocity between two bodies in contact 

(Armstrong-Hélouvry et al., 1994), and it has been widely used for studying capsule systems such as 

in (Chernous’ ko, 2002; Fang and Xu, 2011; Huda and Yu, 2015; Li et al., 2006; Liu et al., 2013b). 

Some significant studies on stick-slip motions of a single-module vibro-driven motion system have 

been reported in (Fang and Xu, 2013; H. B. Fang, 2010). Towards a capsule endoscope inside an 

intestine, an analytical frictional resistance model was studied in (Kim et al., 2007), the contact 

geometry and viscoelasticity of the lubricants on the intestine surface was considered to reveal the 

intestine characteristics, e.g., stress relaxation that results in lower frictional force with a decreasing 

capsule speed. Coulomb frictions, viscous friction and viscoelastic deformation of the intestinal wall 

were used in (Zhang et al., 2012) to study a capsule system inside an intestine, and the experiment 

results verified the friction model then the robot moves with a lower speed at 20mms-1. These findings 

reveal that the low-speed stick-slip locomotion is a plausible motion pattern for the capsule system, 

and the friction characteristics are dominated by the intestine’s villus-like structure and viscoelasticity. 



However, for specific applications of the capsule systems, an accurate representation of the dynamic 

frictional interaction is required to capture several dynamic phenomena that have been observed in the 

experiments. Nevertheless, the static friction models solely consider the variations in velocities 

between the two bodies in frictional contact, while the hysteretic loops and the drooping frictional 

characteristics in the regime with lower relative velocity are not captured. Therefore, this paper 

models and analyses the dynamic interactions through the dominating components of the friction, 

including the static friction, presliding, breakaway force, stick-slip motion, the Stibeck effect, friction 

memory and the hysteretic effect. 

The drooping characteristic arises with dynamic frictional contact, and it is typically represented as a 

function of the relative velocity of the bodies in contact. In this regard, the friction is a single-valued 

function, which means it is driven by the reversible drooping to follow the same path in the 

deceleration stage (DS) and the acceleration stage (AS). However, the experimental observations are 

not always aligned with the consideration above, particularly in the unsteady environmental 

conditions such as the oscillations in relative velocity. Therefore, some engineering investigations 

have revealed that the frictional dynamics can be multi-valued, which means the friction force travels 

along different paths during the DS and the AS, and forms a non-reversible curve as reported in 

(Becker and Mahin, 2013; Biswas and Chatterjee, 2014; Neis et al., 2011; Outirba and Hendrick, 2014; 

Stefański et al., 2006; Wojewoda et al., 2008). The main reason for this phenomenon is the temporal 

lag between the variations of the friction force and the relative velocity. In the literature, both the 

clockwise (i.e. the friction force for the AS is greater than that for the DS) and the anticlockwise 

drooping loops have been observed in the pure sliding regime in engineering applications. Moreover, 

the hysteretic loops have been experimentally observed in the presliding regime based on the 

compliance property between the asperities induced by the spring-like behaviour as described in 

(Casini et al., 2012; Giannini et al., 2011). As a result, there is velocity overshooting during the 

initiation of stick-slip motion between the bodies in contact. 

Single-degree-of-freedom (DOF) mass-spring-damper systems resting on a moving belt are 

well-adopted in literature to explore the friction-induced vibrations and experimentally observed 

friction characteristics (Hetzler et al., 2007; Saha et al., 2015). A majority of researches study on 

2-DOF tangential-wise (typically linearly along the motion direction) vibrations as reported in (H. B. 

Fang and Xu, 2011; Huda and Yu, 2015; Liu et al., 2013b; Zhan and Xu, 2015) or the norm-wise 

vibrations as presented in (Chowdhury and Helali, 2008) w.r.t. the substrates in contact. These works 

form the main concept for self-propelled micro-robotic systems. However, the combined (nonlinear) 

norm-wise and tangential-wise vibrations that could generate bidirectional locomotion which has not 

been widely reported in the literature. It sheds light on a generalized significance for the studies on 

capsule systems. It is also noted that towards the nonlinear friction, there are several seminal studies 

in the literature (H. Fang and Xu, 2011; Fang and Xu, 2012). These works mainly focused on the 

qualitative changes induced by the control parameters with different friction models. 

This paper considers the capsule systems which utilize combined tangential-wise and norm-wise 



vibrations to generate the underactuated locomotion. The nonlinear connection of the pendulum and 

the vibrational actuator is characterized via a torsional spring and a viscous damper. Viscoelastic 

property is a promising feature for bio-inspired and soft robots, which enables efficient locomotion 

through natural oscillations. Many animals are capable of considerably reducing their metabolic cost 

of running through efficient utilization of the viscoelastic properties of muscles, tendons, and bones 

distributed in their bodies (Alexander et al., 1985) and limbs (Dimery et al., 1986; McMahon, 1985). 

The study on the relations between viscoelastic parameters and the system performance is beyond the 

scope of the work here and will be reported in due course. Motivated by the experimental findings in 

the literature, this paper studies the frictional forces described by the LuGre model (De Wit et al., 

1995) (LM) and the Exponential model (Armstrong-Hélouvry et al., 1994) (EM). In the literature, 

only few works have reported the dynamic frictional interactions between the capsule system and the 

substrate. Towards this end, the non-reversible frictional characteristics (e.g., drooping and hysteresis) 

are studied. The dynamic interactions are firstly modelled using a combined physics-based and 

analytical-based approach. Then, this paper identifies the frictional limits for the static friction, the 

presliding regime and the pure sliding regime. Dynamic analysis of the friction-induced vibrational 

responses is then conducted, and the qualitative variations laws induced by the control parameter are 

identified. The analytical and numerical results have good agreements with the seminal findings in the 

literature. The proposed work is an advisable benchmark to exploit the challenges in friction 

compensation and online control of underactuated micro-robotic systems. The rest of the paper is 

organized as follows. The mathematical modelling of the capsule system and frictional interactions 

are provided in Section 2. Analysis of dynamic frictional interactions is presented in Section 3. Finally, 

conclusions are outlined in Section 4. 

2. Mathematical modelling 

2.1 System description 

The 2-DOF capsule model is considered as shown in Fig. 1, which contains a pendulum and a 

platform merged with a rigid massless capsule shell. A vibration actuator is mounted on the platform 

at the pivot and connected with the pendulum. The movable pendulum is linked with the capsule body, 

and it is driven by a prescribed and harmonically excited force generated by the actuator. The actuator 

model is simplified here, and the interconnection between the pendulum and the capsule is 

represented by a torsional spring and a viscous damper. ݈ and ݉ are the length and mass of the 

pendulum, ܯ is the mass of the platform. ݔ and ߠ  denote the absolute displacements of the 

capsule and the driving pendulum. ݇ and ܿ represent the coefficients of the stiffness and damping, 

respectively. It is assumed that the sliding friction force ܨ௖ between the capsule and the substrate is 

applied along the X-axis.  

The motion principle of the capsule system is based on the interactions between the centripetal forces 

excited by the vibration actuator and the friction forces at the substrate. The system is propelled over a 

surface rectilinearly through the interactions with the friction. Elastic potential energy is accumulated 



and released in accordance with the contraction and relaxation of the torsional spring. The rotating 

pendulum drives the capsule to move bidirectionally via the dynamic couplings. The capsule motion 

begins with a static state, and it starts to move when the resultant force applied horizontally exceed 

the threshold of the static friction at the surface in contact. The sticking phase dominates the system 

when the threshold is not reached. And once the condition is met, the capsule starts to move with the 

fast motion, which is termed as the pure sliding phase. The capsule model is developed to exploit 

advisable friction control approaches through the stick-slip effects. As a result, optimal forward 

motions can be generated, in which the capsule and the driving pendulum synchronize their motions 

harmoniously.  
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Fig.1. Schematic of the vibro-driven underactuated encapsulated system. 

2.2 Dynamic model 

Let the centre of the platform be the origin of the coordinate, ݔ௕  and ݕ௕  denote the absolute 

displacements measuring the deflection of the geometric centre of the ball referenced from the medial 

axis in horizontal and vertical direction, respectively. The configuration of the ball and its derivative 

are obtained as ݔ௕ ൌ ݔ െ ௕ݕ ,ሻߠሺ݊݅ݏ݈ ൌ ሶ௕ݔ ,ሻߠሺݏ݋݈ܿ ൌ ሶݔ െ ሶ௕ݕ ሻ andߠሺݏ݋ሶܿߠ݈ ൌ െ݈ߠሶ݊݅ݏሺߠሻ. Using 

the Euler-Lagrange’s method, dynamics of the capsule system excited by harmonic force are 

described as 

ௗ

ௗ௧

డ௅ሺ௤೔,௤ሶ ೔ሻ

డ௤ሶ ೔
െ డ௅ሺ௤೔,௤ሶ ೔ሻ

డ௤೔
൅ ௜ܨ ൌ ܳ݅  ݅ ൌ 1,2.                     (1) 

where ݍଵ  and ݍଶ  denote the angular position ߠ  and capsule displacement ݔ ,௜ݍሺܮ , ሶ௜ሻݍ ൌ

,݅ݍ൫ܧ ሶݍ ݅൯ െ ܸሺݍ௜ሻ is the Lagrangian function, ܧ and ܸ denote the kinetic energy and potential 

energy, ܨ௜ describes the friction and resistant forces, ܳ௜ is the generalized externally applied force 
or moment. Details of the variables above are listed as follows: 

ܧ ൌ
ଵ

ଶ
ሶݔܯ ଶ ൅

ଵ

ଶ
݉ ൤ቀݔሶ െ ሻቁߠሺݏ݋ሶܿߠ݈

ଶ
൅ ቀെ݈ߠሶ݊݅ݏሺߠሻቁ

ଶ
൨ , ܸ ൌ

ଵ

ଶ
ଶߠ݇ ൅ ሻߠሺݏ݋݈ܿ݃݉ , and ܳଵ ൌ

ଵܨ ሻ. It is noted thatݐߗሺݏ݋ܿܣ ൌ ሶߠܿ  denotes the viscous friction induced by the actuator, ܨଶ ൌ ଴ܰϜ is 
the friction force between bodies in contact (with ଴ܰ denoting the normal load and Ϝ describing the 

friction force per normal load unit). ܣ and ߗ are the amplitude and frequency of the harmonic force. 

݃ is the gravitational acceleration. Therefore, the equations of motion are derived as 



݈݉ଶߠሷ െ ሷݔሻߠሺݏ݋݈ܿ݉ െ ሻߠሺ݊݅ݏ݈݃݉ ൅ ߠ݇ ൅ ሶߠܿ ൌ  ሻ                (2)ݐߗሺݏ݋ܿܣ

െ݈݉ܿݏ݋ሺߠሻߠሷ ൅ ሺܯ ൅݉ሻݔሷ ൅ ሶߠሻߠሺ݊݅ݏ݈݉ ଶ ൅ ଴ܰϜ ൌ 0                  (3) 

We introduce a characteristic time scale using natural frequency ߱௡ ൌ ඥ݃/݈ and a characteristic 

length ݔ଴ ൌ ݃/߱௡ଶ, the following non-dimensional motions of the equation are given as 

′′߆ െ ′′ሻܺ߆ሺݏ݋ܿ െ ሻ߆ሺ݊݅ݏ ൅ ߆ߩ ൅ ′߆߭ ൌ  ሺ߱߬ሻ                  (4)ݏ݋݄ܿ

െܿݏ݋ሺ߆ሻ߆′′ ൅ ሺߣ ൅ 1ሻ	ܺ′′ ൅ ଶ′߆ሻ߆ሺ݊݅ݏ ൅ ݂ܰ ൌ 0                   (5) 

where ߆  and ܺ  represent the configuration variables with respect to ߠ  and ݔ  in the 

non-dimensional space. Accordingly, the non-dimensional quantities are defined as 

ܺ ൌ ߣ ,଴ݔ/ݔ ൌ ߩ ,݉/ܯ ൌ ݇/ሺ݈݉ଶ߱௡ଶሻ, 

߭ ൌ ܿ/ሺ݈݉ଶ߱௡ሻ, ݄ ൌ ߱ ,ሺ݈݉ଶ߱௡ଶሻ/ܣ ൌ ܰ ,௡߱/ߗ ൌ ଴ܰ/ሺ݈݉߱௡ଶሻ 

It is noted that the prime (	′	) in the equations above represents the derivatives in non-dimensionalized 

space ߬ ൌ ߱௡ݐ, and ݂ is Eq. (5) denotes the friction force under the non-dimensionalized relative 

velocity of the surfaces in contact. 

Remark 1: In the normalized coordinate, the physical meanings of the control parameters can be 

captured as follows: ߣ represents the mass ratio, ߩ and ߭ respectively denote the dimensionless 

spring and damping coefficients, ݄ and ߱ are dimensionless excitation amplitude and frequency. 

2.3 Modelling and characterization of friction force dynamics 

2.3.1 The physics-based analysis 

Typically, friction arises at the physical interface between the contacting surfaces of different bodies 

in relative motions. It is assumed that the substrate is composed of a great number of tiny contacts on 

the surface irregularities, and the limit for a spring-like microscopic part of the contacting area is far 

larger than that for the bulk object. It can be concluded that the surfaces may have relative motion 

within a sufficiently small distance and without destroying the transitory connections. Also, the 

stretched irregularities gradually exert the elastic force to predominate the resisting friction force. It is 

noted that the above conclusion has different forms of interpretation, which is governed by the relative 

velocity between the bodies in contact. The reason behind is that the bonds may remain undisrupted 

for a period. The duration of the period is equivalent to the maximum extension of the 

micro-connections divided by the average velocity (McMillan, 1997). For the velocity near zero, the 

hysteretic effect may appear from the tiny movement between the two bodies in the phase of sticking, 

which is also named as micro-slip. The increasing number of connections being disrupted during a 

period can be associated with an increased friction force at a sufficiently fast average velocity. Hence, 

characteristics of the nonlinearity near zero relative velocities are the most significant to introduce the 

hysteretic effect. This is originated from the random distribution and size of asperities between the 

bodies in contact. 

The capsule model rests on the horizontal plane, as shown in Fig. 2, and it is driven by a pendulum 

relative to the substrate with a velocity of ܺ′ሺ߬ሻ. For a small driving force in the horizontal direction, it 

is noted that the interface between the capsule and the surface falls into the sticking regime as shown in 

Fig. 2(a). As such, the stiction force results from the tension in conjoint irregularities. The brush-like 



surface illustration represents the evolution of the junction deflections between different asperities, and 

the tension on these connections. Nevertheless, as the driving force increases, the capsule moves with 

the displacement farther than the maximum extension of the connections. From Fig. 2(a), the capsule is 

initially stationary, and the connections are un-tensioned with no friction torque resisting the motion. In 

Fig. 2(b), after a short period of time under the anticlockwise motion of the pendulum, the relative 

velocity of the capsule is appeared to be slightly positive, and the bonds remain intactness. The 

threshold will be met during the sticking phase via opposing torque of the friction force. At this critical 

boundary as depicted in Fig. 2(c), the capsule starts to slip with a kinematic friction force, which is 

characterized by a dramatic decrease. The clockwise motion of the pendulum results into a deceleration 

of the capsule to a slightly positive velocity, while it keeps slipping as the bonds need some time to 

reform (see Fig. 2(d)). The connections are re-built and the sticking phase arrives again when the 

capsule decelerates through ܺ′ሺ߬ሻ ൌ 0 as shown in Figs. 2(e) and (f). Backward motions of the 

capsule follow the argument through Figs. 2(g) to (j). Following the discussions above, Fig. 3 shows 

the curve of friction force as a function of the average velocity of the capsule system. It is noted that 

the sketches in Fig.2 illustrate the motions of the capsule system to show the process and transition of 

sticking, presliding and sliding motion phases, which serves merely as an aid to intuition, please refer 

to (Liu et al., 2015) for detailed motion generation description. 

The arguments above considers that the friction force depends solely on the relative velocity of the two 

bodies in contact (Armstrong-Hélouvry et al., 1994), i.e. ݂ሺ߬ሻ ൌ ݂ሺܺ′ሺ߬ሻሻ, which gives rise to the 

reversible characteristic of the friction force (black solid line) as shown in Fig. 3. The capsule slips 

back onto a lately travelled trajectory where new asperities might have been reformed. The reason 

behind is that a unique value is generated for a given relative velocity during the DS and the AS. For 

dynamic frictional circumstance, however, it is necessary to take into account the state variable(s) 

associated with the average velocity	ܺ′ሺ߬ሻ. The state variable may have different values for one 

particular relative velocity during the AS and the DS since they evolve with time by the description of 

differential equations. The arrows in green depict the different acceleration and deceleration paths that 

the capsule follows, and accordingly, a clockwise hysteretic loop is characterised in the pure sliding 

regime. 

Remark 2: The phenomenon described above introduces the non-reversible characteristic of the friction 

force, which is demonstrated by different friction values during the AS and the DS (blue dashed line in 

Fig. 3). Therefore, the friction-velocity curve follows different paths for the AS and the DS, which 

gives rise to the hysteretic loops. For example, the non-reversible friction characteristic for the forced 

vibrations as shown in Fig. 3. This study aims to fill in the research gaps in modelling and analysing 

the dynamic interactions between the mobile capsule systems and the substrate. 



Untentioned Bristles

x′ = 0(a) Sticking

Tentioned Bristles

(b) Presliding

Breakaway

k

x′ > 0(c) Sliding

Untentioned Bristles

k

Tentioned Bristles

(f) Sticking

Breakaway

(g) Sliding

Breakaway

k

Untentioned Bristles Tentioned Bristles

(j) Presliding

x′ = 0+

x′ = 0+(d) Sliding

(e) Sliding x′ = 0 x′ = 0-

x′ < 0 (h) Sliding x′ = 0-

(i) Sliding x′ = 0 x′ = 0+

Breakaway

 

Fig.2. Schematic of the capsule motions with interface deformation. 



 

Fig.3. Schematic of the reversible (black solid line) and non-reversible (blue dashed line) 

characteristics of the friction forces. 

2.3.2 Friction models 

Two friction models (the LM and the EM) are employed as the first approximations to describe the 

tribological interactions between the capsule and the locomotion substrate in the tangential direction. 

Surface asperities are used in the LM to model the damped spring-like bristles between the bodies in 

contact. As a result, the micro-slip during the small displacement (the presliding) and the Sticbeck 

effect in massive displacement (the pure sliding) are revealed in the model. The external 

environmental force governs the bristles’ deformation and reformation. As a result, the friction force is 

determined by a linear viscous term and the resultant deflection of the bristles. In this regard, an 

internal variable ߦመ is introduced which is the average bristle deflection. Hence, the friction force ݂ 

features two state variables, and ݂ ൌ ௅݂ெ൫ߦመ, ܺ′൯ is described as 

௅݂ெ൫ߦመ, ܺ′൯ ൌ መߦ଴ߜ ൅ ′መߦଵߜ ൅  ଶܺ′                         (6)ߜ

where ߜ଴ and ߜଵ describe the stiffness and damping coefficients of the bristle, respectively. ߜଶ 

represents the viscous part of the resistant force. ߦመ is the average bristle deflection, and the evolution 

of the average bristle deflection is governed by 

′መߦ ൌ ܺᇱ ቂ1 െ
క෠

ԭሺ௑ᇲሻ
 ሺܺᇱሻቃ                           (7)݊݃ݏ

where ԭሺܺ′ሻ ൌ
ே

ఋబ
௖ߟൣ ൅ Δି݁ߟሺ௑ᇱ/௩ೞሻ

ഀ
൧  dominates the Stribeck effect, ݒ௦  denotes the critical 

Sticbeck velocity, Δߟ ൌ ௦ߟ െ ௖ߟ ௖ߟ ,  describes the minimum level of the Coulomb friction, ߟ௦ 
denotes the level of the static friction and ߙ is the parameter of slope to be designed (ԭሺܺ′ሻ is 

referred to as the Gaussian friction model when ߙ ൌ 2). 

The Exponential friction force ݂ ൌ ா݂ெሺܺ′ሻ is introduced as 

ா݂ெሺܺ′	ሻ ൌ ௖ߟൣܰ ൅ Δି݁ߟ൫௔ห௑
ᇲห൯൧݊݃ݏሺܺᇱሻ                     (8) 

We introduce two state vectors in the extended phase spaces containing the internal state vector ߦመ to 



allocate the system dynamics into state-space. For the capsule systems with the LM and the EM, 

respectively, the state vectors are defined as 

S௅ெ ≔ ሺݕଵ, ,ଶݕ ,ଷݕ ,ସݕ ହሻݕ ∈ Ըହൈଵ ≔ ൫߆, ,′߆ ܺ, ܺ′, መ൯ߦ ∈ Ըହൈଵ 

S୉୑ ≔ ሺݕଵ, ,ଶݕ ,ଷݕ ସሻݕ ∈ Ըସൈଵ ≔ ሺ߆, ,′߆ ܺ, ܺ′ሻ ∈ Ըସൈଵ 

Decoupling Eqs. (4) and (5), and combining with Eqs. (6) and (8), a set of first-order differential 

equations in accordance with the defined state vectors above is yielded as 
′ଵݕ ൌ  ଶݕ

′ଶݕ ൌ
1
ܤ
ሾሺߣ ൅ 1ሻ݄ܿݏ݋ሺ߱߬ሻ ൅ ሺߣ ൅ 1ሻሺsinሺݕଵሻ െ ଵݕߩ െ ଶሻݕ߭ െ ଶݕଵሻݕሺݏ݋ଵሻܿݕሺ݊݅ݏ

ଶ െ ܰ ଵ݂ሺݕସሻܿݏ݋ሺݕଵሻሿ 

′ଷݕ ൌ  ସݕ

′ସݕ ൌ
1
ܤ
ሺ߱߬ሻݏ݋ଵሻ݄ܿݕሺݏ݋ܿൣ ൅ ଵሻݕሺ݊݅ݏଵሻ൫ݕሺݏ݋ܿ െ 1ݕߩ െ 2൯ݕ߭ െ ଶݕଵሻݕሺ݊݅ݏ

ଶ െ ܰ ଵ݂ሺݕସሻ൧ 

′ହݕ ൌ ∆ 

(9) 

where ܤ ൌ ߣ ൅ 1 െ ଵሻݕଶሺݏ݋ܿ , and for the capsule system with LM, ଵ݂ሺݕସሻ ൌ ହݕ଴ߜ ൅ ′ହݕଵߜ ൅ ସݕଶߜ , 

∆ൌ ସሺ1ݕ െ
௬ఱ

ԭሺ௬రሻ
ସሻሻݕሺ݊݃ݏ  and ԭ൫4ݕ൯ ൌ

ே

ఋబ
ሺܿߟ ൅ Δ݁ߟെሺݏݒ/4ݕሻ

2
ሻ ; for the capsule system with EM, 

ଵ݂ሺݕସሻ ൌ ሺߟ௖ ൅ Δି݁ߟሺ௔|௬ర|ሻሻ݊݃ݏሺݕସሻ and ∆ൌ 0. 

Remark 3: The additional state ߦመ in S௅ெ is the distinguishing factor that governs the evolution of the 

dynamic friction forces. However, there are limited reports in the literature on how ߦመ manipulates the 
dynamic frictional characteristics (e.g., drooping) of capsule systems during the presliding and the 

pure sliding phases. In this regard, the role of ߦመ will be studied elaborately in this paper. 

2.3.3 Analysis of dynamic frictional limit 

Fig. 4 depicts the microscopic elastic limits for the sticking, presliding and pure sliding phases. It is 

experimentally observed in the literature that the frictional dynamics act like springs at the sticking 

phase. A presliding displacement exists during the sticking phase that can be approximated through a 

linear representation of the static friction as shown in Fig. 4(b). Fig. 4(c) demonstrates the moment of 

a breakaway taking place when the threshold force is met, and at the meantime, the micro-connections 

are disrupted. Conventional studies on the friction-induced capsule dynamics have been reported 

using numerical analysis (Liu et al., 2013b, 2013a) or analytical analysis (H. Fang and Xu, 2011; Fang 

and Xu, 2012). In this paper, non-reversible characteristic of the friction dynamics for the static 

friction, the presliding and the pure sliding phases are studied analytically through the frictional limit, 

and the boundaries are identified. 

 



x′ = 0(a) Sticking (b) Presliding x′ = 0+

k

x′ > 0(c) Sliding

 

Fig. 4. Schematics of the microscopic elastic limit for the sticking, presliding and pure sliding phases. 

From the friction models, it is noted that the friction force begins with strapping the contacting bodies 

by generating slipping motions relative to each other, and only microscopic deformations of the 

substrate occur at this stage. Also, these micro-connections are disrupted when the frictional limit is 

reached. In the quasi-static phase when no macroscopic sliding exists, ԭሺܺ′ሻ in Eq. (7) indicates that 

the bristle deflection evolves proportionally with the internal state variable ߦመ and the friction force. 

The breakaway of bristles (i.e., the sign of ߦመ changes) occurs when ߦመ ൌ ԭ൫ܺ′ሺ߬ሻ൯ is satisfied. As a 

result, the maximum static friction force can be reached under the conditions of ܺ′′ሺ߬ሻ ൌ 0 and 

′መߦ ൌ 0, and accordingly, we have 

ԭሺܺ′ሻ ൌ
ே

ఋబ
ቂߟ௖ ൅ ሺߟ௦ െ ௖ሻ݁ି൫௑ߟ

ᇲ/௩ೞ൯
ഀ
ቃ                        (10) 

where ߟ௦ denotes the maximum static friction during the quasi-static motion regime. 

When the capsule moves with steady-state motion, the rate of deflections of the bristles is contained at 

zero (i.e., ߦመ′ ൌ 0) and relative sliding motions occur between two bodies in contact. Therefore, the 

frictional dynamics are given as 

݂ ൌ ଴ԭሺܺ′ሻߜ ൅ ′ଶܺߜ ൌ ܰ ቂߟ௖ ൅ ሺߟ௦ െ ௖ሻ݁ି൫௑ߟ
ᇲ/௩ೞ൯

ഀ
ቃ ൅  ଶܺ′            (11)ߜ

ப୤

ப௑ᇲ
ൌ െܰߙ

௑ᇲ
ഀషభ

௩ೞഀ
ሺߟ௦ െ ௖ሻ݁ିሺ௑ߟ

ᇲ/௩ೞሻഀ ൅  ଶ                    (12)ߜ

Comparing to the Stribeck velocity ݒ௦, the first term on the right side of Eq. (12) is negligible by 

assuming that the motion of capsule is with sufficiently small or large average velocity. Therefore, it 

is plausible to make a supposition that, during the sliding regime, the average velocity has two offset 

values labelled as ܺ′௟ (lower velocity) and ܺ′௛ (higher velocity). For the velocity values ܺ′ሺ߬ሻ ∈

ሺ0, ܺ′௟ሻ  and ܺ′ሺ߬ሻ ∈ ሺܺ′௛, ܺ′௠௔௫ሻ  (ܺ′௠௔௫  denotes the maximum velocity that the capsule can 

obtain), the friction force is a monotonically increasing function of average velocity. On the other 

hand, for the velocity value ܺ′ሺ߬ሻ ∈ ሺܺ′௟, ܺ′௛ሻ, the friction force decreases monotonically. At the 

offset points ܺ′ሺ߬ሻ ൌ ܺ′௟ and ܺ′ሺ߬ሻ ൌ ܺ′௛, the slope of the friction curve becomes zero. These 

findings will be verified and demonstrated in the numerical analysis. The analytical values of  ܺ′௟ 

and ܺ′௛ can be achieved by solving Eq. (12) and letting ∂f/ ∂X′ ൌ 0, gives 

െܰߙ
௑ᇲ

ഀషభ

௩ೞഀ
ሺߟ௦ െ ௖ሻ݁ିሺ௑ߟ

ᇲ/௩ೞሻഀ ൅ ଶߜ ൌ 0                     (13) 

It is noted that the lower velocity value ܺ′ሺ߬ሻ ൌ ܺ′௟ should be sufficiently small as the velocity is 



extremely low. Let ሺܺᇱ/ݒ௦ሻఈ ൌ 0, we have 

ܺ′௟ ൌ ௦ݒ ቂ
ఋమ௩ೞ

ఈேሺఎೞିఎ೎ሻ
ቃ
ଵ/ሺఈିଵሻ

                          (14) 

On the other hand, for the higher velocity value ܺ′ሺ߬ሻ ൌ ܺ′௛, it is noted that ܺ′௛ stays in adjacency 

of the Stribeck velocity value ݒ௦. Therefore, it can be obtained recursively as 

ቀ௑
ᇲ
೓

௩ೞ
ቁ
௡ାଵ

ൌ ൜ln ൤ቀ
ఈேሺఎೞିఎ೎ሻ

ఋమ௩ೞ
ቁ
ଵ/ሺఈିଵሻ

ቀ௑
ᇲ
೓

௩ೞ
ቁ
௡
൨ൠ
ଵ/ଶ

                  (15) 

3. Numerical analysis of the frictional interaction dynamics 

In this section, the interaction dynamic responses of the capsule models with the LM and the EM are 

first analysed to reveal the nonlinear friction characteristics. Subsequently, the effects of the control 

parameters are studied closely to identify the parameter dependence and the qualitative variation laws 

in capsule dynamics. The Gaussian friction model is adopted in this study as the exponential term in 

LM, i.e., ߙ ൌ 2. The rationality of the parameters chosen in this section is described as follows: 

parameter values of the LM and EM are configured from the dynamic friction studies in literature as 

reported in (Chatterjee, 2007; Olsson et al., 1998; Saha et al., 2015) (ߜ଴ ൌ ଵߜ ,100 ൌ ଶߜ ,10 ൌ 0, 

ܰ ൌ ௖ߟ ,1 ൌ ௦ߟ ,0.15 ൌ ௦ݒ ,0.45 ൌ 0.1 and ܽ ൌ 10); the control parameter values and the initial 

conditions of state variables are selected based on our previous (Liu et al., 2015) and ongoing works on 

identification of the qualitative variation laws induced by the control parameters (ݕଵሺ0ሻ ൌ  ,3/ߨ

ଶሺ0ሻݕ ൌ ଷሺ0ሻݕ ,0 ൌ ସሺ0ሻݕ ,0 ൌ 0 and	ݕହሺ0ሻ ൌ 0.0026). The numerical studies in this section are 

based on the system dynamics in Eq. (9). 

3.1 The friction-induced vibrations 

The time domain dynamic responses of the capsule systems with the EM and the LM are portrayed in 

Figs. 5 and 6, respectively. It is noted that the negative slope characteristic is observed in the figures 

which guarantees the stability of the system. The EM is able to describe the Stribeck effect, while it is 

inherently a static model of the friction which does not interpret the hysteretic behaviour. The LM 

falls into the categories of dynamic models and is capable of predicting the hysteretic loops. The 

friction-induced vibrational responses with the EM and the LM are depicted in Fig. 5. The capsule 

with the LM exhibits similar variation patterns to the one with the EM in angular displacement ߆, 

angular velocity ߆′, capsule displacement ܺ and capsule velocity ܺ′. It is noted that the main 

difference lies into the transitions between the sticking regime and the pure sliding regime. As 

depicted in Fig. 5(d), the relative velocity does not drop down to zero completely during the sticking 

regime, this is affected by the friction’s hysteretic characteristic during the presliding regime. It is 

noted that without the hysteretic behaviour in the EM in the presliding regime, the sticking regime 

exerts a greater influence on the EM than that on the LM, which leads fluctuations of the capsule 

velocity around zero. It is also observed from Figs. 5(c) and 5(d) that higher velocity and larger 

displacement of the systems are obtained for the capsule with the EM than that with the LM, the 

reason behind is that capsule with the EM avoids the energy loss in the hysteretic loop.  



(a) The angular displacements ߆ 

(b) The angular velocities ߆′ 

(c) The capsule displacements ܺ 

(d) The capsule velocity ܺ′ 
Fig. 5. Friction-induced vibrational response of the system with the EM (blue dashed lines) and system 

with the LM (red solid lines), obtained for ߣ ൌ ߩ ,2.5 ൌ 2.0 and ߭ ൌ 1.0. 

   
(a) The internal state variable ߦመ 
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(b) The friction forces ݂ 

 
(c) Enlarged friction forces ܨ 

Fig. 6. Friction-induced vibrational responses of the system with the EM (blue dashed lines) and the 

system with the LM (red solid lines), obtained for ߣ ൌ ߩ ,2.5 ൌ 2.0 and ߭ ൌ 1.0. 

From, Fig. 6, it is observed that the dynamic responses of the internal state variable ߦመ and friction 

force ݂ have a similar variation law. This indicates that ߦመ governs the evolution of ݂. Specifically, 

during the onset of the sticking regime, ߦመ decreases significantly from a certain level and increases 

monotonically until the same level in the opposite direction. The value of the average bristle 

deflection ߦመ changes in both pure sliding and presliding regimes that it firstly decreases in the AS 

and then augments in the DS in a periodic pattern. This is affected by function ݃ሺܺ′	ሻ which 

dominates the evolution of the internal state variable ߦመ. Figs. 6(b) and 6(c) demonstrates sharp 

declines of the friction force and then indicates the onsets of the sticking regime. Subsequently, the 

friction rises monotonically during the sticking regime until it reaches the boundary of the static 

friction. Therefore, the roles of the state variable ߦመ are be concluded as: it manipulates the hysteretic 

behaviour in the presliding and pure sliding regimes, and the characteristic of drooping during the 

pure sliding regime. Interestingly, these findings in friction-induced vibrations coincide with the 

results reported in (Astrom and Canudas-De-Wit, 2008; Chatterjee, 2007; Saha et al., 2015), in which 

several fully-actuated systems are studies. The capsule systems considered in this paper are 

underactuated, and the friction has an indirect mapping to the input, which, in turn, verifies the results 

presented here. 
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(a) The pendulum subsystem 

 

(b) The capsule subsystem 

Fig. 7. Phase plane trajectories of the capsule systems with the EM (blue dashed lines) and the LM (red 

solid lines), obtained for ߣ ൌ ߩ ,2.5 ൌ 2.0 and ߭ ൌ 1.0. 

The phase plane trajectory of the pendulum subsystem (߆ and ߆′) and the capsule subsystem (ܺ and 

ܺ′) are portrayed in Fig. 7. A relatively larger limit cycle is observed for the capsule with the EM than 

that with the LM. The reason behind is the energy loss resulted from the hysteretic behaviour of the 

frictional dynamics with the LM. Several steps are also observed in Fig. 7(a) and 7(b) when the value 

of relative velocity pass through zero, and accordingly, the frictional dynamics becomes quasi-static in 

this phase. It is also observed that slight discontinuities exist associated with imperfect overlaps 

between the beginning and the end of the limit cycle. It is noted that the dynamics shown in Fig.7 are 

not strictly periodic. However, they are constrained to reside within some finite boundaries. As a 

result, dynamic responses in this regime are classified into quasi-periodic motions, and this is due to 

the hysteretic characteristic of the friction. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

'

The Exponential model
The Lugre model

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
X

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

X
'

The Lugre model
The Exponential model

Quasi-periodic
motion

Slipping
motion

Sticking

Presliding

Slipping
motion

Slipping
motion

Presliding

Sticking

Sticking
Sticking

Presliding
Presliding



 

(a) Friction curves

 

(b) Enlarged friction curves 

Fig. 8. Friction forces for the capsule systems with the EM (blue dashed lines) and the LM (red solid 

lines) show the friction characteristics near zero velocity, obtained for ߣ ൌ ߩ ,2.5 ൌ 2.0 and ߭ ൌ
1.0. 

As shown in Fig.8, the hysteretic loops are characterized as the friction which is a function of the 

average velocity of the capsule system. The loop (in blue dash line) for the capsule system with the EM 

does not demonstrate the hysteretic behaviour. This cross-validates the numerical results in Figs. 5 and 

6 that the system with the EM performs oscillations with relatively higher frequency than that with the 

LM. Besides, a lower maximum friction force is obtained for the system with the LM than that with the 

EM, with same set of parameter values, e.g., the stiction force level ߟ௦, the Coulomb friction level ߟ௖, 

and the Stribeck velocity ݒ௦. The reason behind is the dimension reduction of the limit cycle for the 

capsule system with the LM. Moreover, the arrow flows as shown in Fig. 8 depict the variations of the 

friction in accordance with the changes in velocity for the capsule system with the LM. For backward 

and forward motions, it is also noted that the friction force has relatively smaller value in the DS than 

that in the AS during the pure sliding regime. As a result, a clockwise hysteretic loop takes place 

during the pure sliding regime. While the trend is completely different near the zero velocity: the 
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friction force in the AS is smaller than that in the DS. The DS and the AS are portrayed with arrows 

that are in accordance with the decreasing and increasing of the relative velocity of the capsule, 

respectively. It is apparently observed that the hysteretic curves have offset points near the regime of 

zero when the friction changes from small displacement in the AS to massive displacement in the DS, 

respectively.  

During the forward motion stage of the capsule systems, ܯଵ is an identified boundary point between 

the pure sliding and presliding regimes. Precisely, the capsule system escapes from the presliding 

regime and then accesses the pure sliding regime at ܯଵ. Meanwhile, the friction firstly rises to a 

certain level within the boundary of the maximal value of the Exponential friction, and then declines 

monotonously in accordance with the augmenting average velocity, and finally terminals and overlaps 

with the DS. Interestingly, the trajectories of the capsule system with the EM and with the LM almost 

coincide with each other around ܯଵ. It is also found that between ܯଵ and the terminal point, the 

friction force for the DS is always smaller than that for the AS. The trend between ܯଵ and the offset 

point is reversed.  

3.2 Influence of the control parameters 

The solutions and their stabilities play a vital role in the system responses. A proper tuning of the 

control parameters will improve the system performance and avoid undesirable responses. The capsule 

system moves from the origin, so its average velocity is bounded and can reveal the qualitative changes 

in the system responses. The average velocity ܺ′ is plotted as a function of mass ratio ߣ to reveal the 

parameter dependence.  

In this subsection, the mass ratio ߣ is considered as the branching control parameter. The numerical 

results are presented in Fig. 9, the average velocities of the capsule systems with the EM (blue dotted 

line) and the LM (red dotted line) are illustrated and projected as functions of ߣ. The average velocity 

is defined as the average (forward) progression of the capsule systems per period of excitation. 
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Fig. 9. Dynamic responses of the capsule systems with the EM (blue dotted) and the LM (red dotted) 

constructed under variation of the mass ratio λ, obtained for ݄ ൌ 1.8, ߱ ൌ ߩ ,1.0 ൌ 4.0 and 

߭ ൌ 1.2. 
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(a)  ߣ ൌ 0.5                                 (b) ߣ ൌ 2.5 
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(c)  ߣ ൌ 4.0                                 (d) ߣ ൌ 6.0 

Fig. 10. Phase domain trajectories for the pendulum subsystem (yଵ and yଶ) and time domain 

trajectories for the capsule subsystem (progressive velocity yସ), with the LM (red solid lines) and the 

EM (blue dashed lines), obtained for ݄ ൌ 1.8, ߱ ൌ ߩ ,1.0 ൌ 4.0 and ߭ ൌ 1.2. 

From Fig. 9, it is noted that periodic system responses are predicted for ߣ considered in this paper. 

Both curves demonstrate the negative slope characteristic with different magnitudes: the capsule 

system with the EM has a relatively larger negative slope than that with the LM. From the numerical 

results, we can also observe that with both friction models, the average velocities decrease 

monotonically with the increasing of ߣ for ߣ ∈ ሾ0.01, 8.1ሿ. Boundary points at ଵܲ (ߣ ൌ 1.18) and 

ଶܲ (ߣ ൌ 4.36) are identified that separate the performances of capsule systems. Specifically, the 

capsule with the EM obtains a relatively higher velocity than that with the LM before the boundary 

point ଵܲ. For the mass ratio between points ଵܲ and ଶܲ ߣ ∈ ሾ1.18, 4.36ሿ, the trend is reversed: the 

average velocity of the capsule with the EM is lower than that with the LM. However, beyond point 

ଶܲ for ߣ ∈ ሾ4.36, 8.1ሿ, the capsule with the EM overtakes that with the LM again near the zero 

velocity while in the negative direction. As can be observed in Fig. 9, the capsule moves with positive 

velocities for ߣ ൑ 	4.0 and ߣ ൑ 	2.2 with the LM and the EM, respectively. On the other hand, the 

capsule moves with negative speeds are recorded for ߣ ∈ ሾ2.2, 8.1ሿ with the EM and for ߣ ∈

ሾ4.0, 8.1ሿ with the LM. The time domain trajectory of the capsule velocity and phase domain 

trajectory of the driving pendulum are portrayed in Fig. 10. It is recorded that with both the LM and 

EM, the capsules move with larger positive velocities in each period of excitation for ߣ ൑ 	4.0 and 

ߣ ൑ 	2.2. And subsequently, the magnitude of velocity declines dramatically in the positive direction 

as ߣ increases. As a result, the average speeds of the capsules drop down below zero. Therefore, the 

average capsule velocity can be controlled by appropriate tuning of the mass ratio 	ߣ around the 

identified control point ଵܱ at ߣ ൌ 4.0 for the system with the LM, and around the identified control 

point ܱଶ at ߣ ൌ 2.2 for the system with the EM. 



Comparison of the travel distance of the capsule systems under the variation of ߣ is shown in Fig. 11. 

For the capsule systems with the LM and the EM, it is clearly observed that both the travelling 

distance decrease monotonically in accordance with the augmentation of ߣ. Similarly, the amplitude 

of the displacement curves reduces as ߣ increases. On the other hand, towards an increasing mass 

ratio, capsule travelling distance with the EM exerts a more significant decline rate than that of the 

system with the LM. It can be concluded that this is due to the difference in the negative slopes of the 

average velocity curves. 

 

(a) Capsule system with the LM 

 

(b) Capsule system with the EM 

Fig. 11. Time histories of the capsule displacements under the varying mass ratio (λ ൌ
0.8, 2.0	and	4.0), obtained for ݄ ൌ 1.8, ߱ ൌ ߩ ,1.0 ൌ 4.0 and ߭ ൌ 1.2. 

4. Conclusions 

The motion of the vibro-driven capsule systems relies on the inherently nonlinear effects of the 

dynamic frictions. The nonlinear friction forces can trigger dynamic interactions between the systems 

and the substrate in contact. Towards the capsule systems, the dynamic frictional characteristics have 

been studied in this paper. The main difference between the friction models exists in the transitions 

between the sticking and the pure sliding regimes. It is found that the hysteretic characteristic has a 

significant influence on the relative velocity during the presliding regime, and it does not drop down 

to zero entirely during the sticking regime. The role of ߦመ in dominating the drooping characteristic of 
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the friction during the pure sliding regime, and the hysteretic behaviours during the presliding and 

pure sliding regimes have been precisely discussed. The dependence on multi-control parameters has 

been investigated. It is also demonstrated that the interaction models predict periodic responses of the 

system dynamics. Average motion velocity decreases monotonously along with the increasing of the 

mass ratio ߣ and, in turn, a control action can be applied by appropriate tuning of the multi-control 

parameters. The studies on the capsule dynamics also provide the desirability of the LM than the EM 

during most of the evaluations of the system performance. The performance evaluations used for 

comparison of the friction models contain the capabilities of seizing the frictional characteristics that 

have been observed in the experiments, the energy requirements, and quenching of the vibrations 

induced by the friction. 
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