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Abstract This paper studies the dynamics and motion generation of a self-propelled robotic 

system with a visco-elastic joint. The system is underactuated, legless and wheelless, and has 

potential applications in environmental inspection and operation in restricted space which are 

inaccessible to human beings, such as pipeline inspection, medical assistance and disaster 

rescues. Locomotion of the system relies on the stick-slip effects, which interacts with the 

frictional force at the surface in contact. The nonlinear robotic model utilizes combined 

tangential-wise and normal-wise vibrations for underactuated locomotion, which features a 

generic significance for the studies on self-propelled systems. To identify the characteristics 

of the visco-elastic joint and shed light on the energy efficacy, parameter dependences on 

stiffness and damping coefficients are thoroughly analysed. Our studies demonstrate that 

dynamic behaviour of the self-propelled system is mainly periodic and desirable forward 

motion is achieved via identification of the variation laws of the control parameters and 

elaborate selection of the stiffness and damping coefficients. A motion generation strategy is 

developed, and an analytical two-stage motion profile is proposed based on the system 

response and dynamic constraint analysis, followed by a parameterization procedure to 

optimally generate the trajectory. The proposed method provides a novel approach in 

generating self-propelled locomotion, and designing and computing the visco-elastic 

parameters for energy efficacy. Simulation results are presented to demonstrate the 

effectiveness and feasibility of the proposed model and motion generation approach. 

Keywords Self-propelled system, Stick-slip motions, Visco-elastic property, Motion 

trajectory generation, Underactuation 
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1. Introduction 

Effective utilizations of flexible elements into the robotic locomotion have attracted 

significant interests in robotics and control communities. The motivations are diverse, for 

instance, to build up safer interactions with humans [1, 2], to improve the model accuracy of 

the robotic systems [3, 4], to achieve higher level of manoeuvrability, high bandwidth 

mechanical compliance, flexibility, agility, controllability, adaptability, and efficacy in 

fulfilling large scope of tasks in unstructured and hazardous environment [5–14]. 

Extensive endeavours have been devoted to this research domain, for instance, an 

optimization framework was proposed in [15] to design and analyse underactuated biped 

walkers, which are characterized by actuated or passive joints with rigid or non-negligible 

elastic actuation/transmission elements. Visco-elastic models were proposed in [16] for a soft 

robotic mechanism horizontally actuated by two dielectric elastomer actuators. To maximize 

the energy dissipated in transparent laminates under low velocity impact, a genetic algorithm 

was employed in [17] to optimize a model considering thermo-elasto-visco-plastic materials. 

In the presence of hysteresis and friction, the impact on stiffness and damping characteristics 

of elastic robot joints was discussed in [18]. To design an optimal motion trajectory of 

flexible mobile manipulators, Pontryagin’s minimum principle was adopted in [19] and the 

optimal control issue was converted into a two point boundary value problem. There are also 

some significant studies on elastic robots as in [20–22]. However, for mobile systems, it is 

intractable that how to achieve a systematic way of utilizing the system dynamics in the 

forms of optimally synthesized trajectory and effectively designed controller, particularly in 

the presence of visco-elasticity. Structural simple systems may behave extremely rich 

dynamics, and even a tiny parameter variation may lead to qualitative changes of the system 

outputs. 

Recently, there are emerging  practical engineering requirements and rising research 

interest in nonlinear dynamics and multi-stability, as such, the vibro-impact characteristic of 

active mechanisms have been widely applied to a large range of engineering mechanical 

systems. During these applications, the correlative relationships between the system 

parameters and dynamic performance can be achieved. Driven by external harmonic 

excitations, these implementations are capable of motions such as rectilinear [23, 24] 

unidirectional [25] and bidirectional [24] by utilizing a periodically driven mass/inertia that 

interacts with the main robot body. A three-masses model was analysed and compared with a 

low dimensional model in [26]. More interestingly, the authors considered several system 

control parameters including the applied static force, the amplitude and frequency of the 

applied force, which were optimally chosen through the higher dimensional model 

simulations. As a practical application, the vibro-impact dynamics of a capsule robot was 

studied in [27], which consists of a capsule main body that interacts with an internally 

moving mass excited by harmonic force. It is revealed in [27] that the system response are 

mainly periodic and the best progression can be guaranteed through careful selection of the 

system control parameters. Notably, the dynamic models developed by these works have 
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been proved to be useful for uncovering the interactive dynamic performance of such systems 

in real-world applications. Moreover, these related works have contributed to fundamental 

characteristics of the non-smooth motions of practical mechanical systems with impacts. 

Nevertheless, it is important to note that most of these studies are, in nature, based on 

rectilinear motions under the consideration of visco-elastic characteristic. However, to the 

best of our knowledge, very few research has considered modelling, analysis and optimal 

parametric selection for nonlinear (rotational) motions of self-propelled system in the 

presence of visco-elastic characteristic. 

This paper investigates the compliant property of an encapsulated self-propelled system 

with a visco-elastic joint. It is underactuated, legless and wheelless, and thus has potential 

applications in restricted space, such as pipeline inspection, medical assistance and 

information acquisition in disaster rescues. The proposed motion generation approach, in 

nature, employs a vibro-driven pendulum nonlinearly coupled with a 2-DOF spring-mass-

damper system and actuated by a rotational autogenetic torque. Comparing to the self-

propelled robotic systems in the literature (e.g., [25, 27, 28]), the proposed robot model 

employs combined tangential-wise (i.e., linearly along the direction of motion) and norm-

wise vibrations for bidirectional underactuated locomotion, which features a generic 

significance in the studies on self-propelled robotic system. Also designing an impedance 

model (inertia-spring-damper) in the rotational joint of the pendulum can improve the system 

efficiency. Therefore, the contribution of this paper includes: (1) it conducts computation of 

the visco-elastic parameters under the consideration of energy-efficient locomotion; (2) it 

proposes the motion generation strategy of the self-propelled robotic system with detailed 

analysis for each motion phase; (3) it identifies the qualitative features of the system 

dynamics to achieve the optimal forward motion of the self-propelled robot. 

This paper is organised as follows. Section 2 formulates the problem and derives the 

system dynamics of the self-propelled system. Section 3 investigates the dynamic behaviours 

of the system and identifies the variation laws of the visco-elastic elements. In Section 4, 

motion generation strategy and an analytical two-stage trajectory are presented with an 

optimization that incorporates the selected stiffness and damping coefficients, and numerical 

simulation results are demonstrated to verify the performance in Section 5. Finally, 

conclusions are outlined in Section 6. 

2. The self-propelled robotic system 

Consider the self-propelled system as shown in Fig. 1, where inside the shell, a vibration-

driven pendulum is articulated with a linear visco-elastic pair of torsional spring and viscous 

damper and mounted on the top of a horizontally moving base. The mass of the pendulum is 

assumed centralized at the ball and the centre of mass of the base is assumed coinciding with 

the pivot axis. The main difference between the proposed system and the conventional cart-

pole system is that the torque is applied at the pivot to rotate the pendulum with no force on 

the cart, which induces trajectory planning and tracking issues rather than the swinging-up or 
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stabilization problems. As an energy storage element, a torsional spring is employed to 

improve the energy efficacy through optimally designed motion trajectory of the pendulum 

discussed in Section 3.  

 
(a) (b) 

Fig.1 The self-propelled robotic model. 

The robot body is driven rectilinearly over a surface by the force applied on the 

pendulum and the dry friction between the sliding surface, and the robot body performs 

sticking and slipping intermittently. The potential energy is stored and released in compatible 

with the compression and extension of the torsional spring. The motor torque actuation 

rotates the pendulum back and forth and drives the entire system moving forward through the 

strongly coupled force. Motion of the robot begins with a static state, and the robot moves 

when the magnitude of the resultant force applied on the body in the horizontal direction 

exceeds the maximal value of the dry friction force at the contacting surface. It is termed 

sticking phase when the above condition is not satisfied. The occurrence of sticking phase is 

diverse, at the initial static state, during the motion cycle as well as at the end. It is termed 

slipping phase when the magnitude of the resultant force exceeds the static resistant force, 

and the robot body moves forward, and the sticking phase is ended. 

The torsional spring is un-stretched when the driving pendulum is at the upright position. 

� and � are the masses of the cart and the ball, respectively. � is the length of the inverted 

pendulum, � and � depict the configuration variables of the rotational and the horizontal 

movements, i.e. � = [��, ��]
� = [�, �]� . �  and �  represent the stiffness and damping 

coefficients, respectively. � denotes the control input applied to the system and physically 

describes the motor torque that exerts on the pendulum rotation. The motor torque actuation 

rotates the pendulum back and forth and drives the whole system moving forward through the 

strongly coupled force. The forward motion of the robot emerges when the force applied in 

the horizontal direction exceeds the threshold of the dry friction force. The motion equations 

of the proposed system are derived using the Euler-Lagrangian method, and the Coulomb 

friction model [29] is employed to describe the resistance force between the robot and the 

environment surface �� = �
0,               � =̇ 0

�(�� + ��)���(�)̇, � ≠̇ 0, with � being the friction coefficient and 

�� being the internal reaction forces applied on the pendulum by the platform in the vertical 

direction. The friction at the pivot is assumed as a viscous friction as a function of angular 

velocity. It is worth mentioning that the surface in contact is anisotropic, and the asymmetry 
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characteristic may exist because of the physical and structural inconsistency of system 

parameters. As such, it is plausible that the stiction force exists with its value range falling 

into the threshold of the Coulomb friction �− �(�� + ��)���(�)̇, �(�� + ��)���(�)̇�. This is 

resulting from the sticking motion and largely depending on the magnitudes of the external 

forces. 

Based on the assumptions and definitions, the governing equations of the self-propelled 

system are derived using Euler-Lagrangian method [30] described as 
�

��

��(��,��̇)

���̇
−

��(��,��̇)

���
+ � = ��                          (1) 

where ��  are the generalized coordinates, �(��, �̇�) is the Lagrangian function, � describes the 

resistant and dissipated forces, �� is the generalized externally applied force or moment. Applying 

(1) into the proposed system and letting �� = �, �� = �, we have the dynamics of the system as 

���� −̈ ������� −̈ ������� + �� + �� =̇ �                   (2) 

−��[���� + ��������(�)̇]� +̈ (� + �)� +̈ ��[���� − ��������(�)̇]��̇ + �[(� + �)�

− (�� + ��)̇����/�]���(�)̇= 0 

(3) 

Harmonic excited forces have been well-employed to generate periodic motions. By 

doing so, forward and backward locomotion can be obtained and controlled through 

appropriate design of the control parameters. Therefore, in this paper, the input torque applied 

on the pendulum at the pivot generates a harmonic force which is a time-varying function 

given by 

� = ����(Ω�)                               (4) 

where � and Ω  are amplitude and frequency of the harmonic force, respectively. 

To obtain clearer numerical simulations and simplify the analysis, we introduce a 

dimensionless time � , and define a series of non-dimensional parameters and scale 

transformations to reduce the complexity of system dynamics as follows � = ���,  � = �/�, 

�� = ��/� , � = Ω/�� , � = �/� , � = �/(�����
�), � = �/(�����) and ℎ = �/(�����

�), 

where �� is the natural frequency of the pendulum. 

Adopting these parameters into Eqs. (2) and (3), and utilizing the chain rule 
��

��
=

��

��
×

��

��
 leads to 

the following scaled governing equations for the proposed system, which represent the motion of the 

inverted pendulum and the base respectively 

� −̈ ����� −̈ ���� + �� + �� =̇ ℎ���(��)                     (5) 

− ����� + �����������̇�� +̈ (� + 1) � +̈ ����� − �����������̇���̇ + �[(� + 1)

− ��� + ���̇����]������̇ = 0 

(6) 

From Eqs. (5) and (6), and letting ��(�)= �(�), ��(�)= �(̇�), ��(�)= �(�), ��(�)= �(̇�), we 
have the state-space representations 

⎣
⎢
⎢
⎡
��̇(�)

��̇(�)

��̇(�)

��̇(�)⎦
⎥
⎥
⎤

= �

0 1
���/∆ ���/∆

0 0
���/∆ ���/∆

0 0
���/∆ ���/∆

0 1
���/∆ ���/∆

�

⎣
⎢
⎢
⎡
��(�)

��(�)

��(�)

��(�)⎦
⎥
⎥
⎤

+ �

0
��/∆
0

��/∆

�             (7) 
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where 

��� = −�(� + 1)+ ����������(��)�����, 

��� = − �(� + 1)+ [���������(��)− �����]������� + ����������(��)�����, 

��� = 0, ��� = 0, 

��� = −�[����� + ���������(��)]+ ����������(��), 

��� = [���������(��)− �����]�� − ���������(��)− �[����� + ���������(��)], 

��� = 0, ��� = 0, 

�� = −�(� + 1)���(��)����� + (� + 1)����� + (� + 1)ℎ���(��), 

�� = −�(� + 1)���(��)+ [����� + ���������(��)]����� + [����� + ���������(��)]ℎ���(��), 

∆= (� + 1)− �����[����� + ���������(��)]. 

3. Parametric dependence analysis 

In dynamical systems, bifurcation plays an important role in creations and vanishing of the 

equilibriums and periodic solutions. It employs a visual interpretation of how the dynamic 

behaviours are affected by the system parameters and how the stability of solutions changes 

accompanied by the varying parameters. The solutions in this section are numerically 

calculated to identify the most suitable qualitative motion for the forward locomotion of the 

self-propelled robot. 

     

(a) � = 0.1                      (b) � = 1.0                         

Fig. 2 Trajectories on phase plane of the self-propelled robot for ��(0)= �/3, ℎ = 1.0, 

� = 3.6, ν= 0.8 and ω = 1.7. 

Typical time history of the robot displacement and phase portrait of the pendulum are 

presented in Fig. 2(a) and Fig. 2(b), respectively. In terms of the behavioural dependence of 

solutions on the system parameters, the trajectories can be monitored when parameters are 

changing. Bifurcation analysis is then conducted to inspect traces of the solutions against the 

control parameters � and υ, respectively. First, for each value of � and υ, we calculate �� 

as a function of dimensionless time �. To achieve steady state responses, the first 100 driving 

periods are omitted so that the initial transients have decayed away, then �� is plotted 

respectively as a function of � and υ. For a set of parameter values which are slightly 
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increased, the bifurcation scenario is studied subject to the aforementioned two parameters. 

Second, the first return Poincare map is created and projected respectively on the reliable 

axis, considering the boundedness of the state variables. The procedure is then repeated over 

a reasonably large range of values of � and υ in small steps as shown in Fig. 3 and Fig. 8, 

respectively. 

3.1 Parameter dependence on stiffness � 

In our previous study [24], we evident that the elastic stiffness and damping can affect the 

system performance, which are important factors for energy efficacy. Therefore, in this 

section, we aim to identify how the system behaviour is affected by these parameters, such 

that the optimal viscoelastic parameters are selected beforehand and fed into the 

parameterisation procedure of the motion trajectory. The torsional spring plays an important 

role in energy efficacy of the system, its stiffness coefficient is studied as a branching 

parameter which contributes to the elasticity on the system responses. Bifurcation diagrams 

are presented in Fig. 3, which depict the parameter dependence of the angular displacement 

(in Fig. 3(a)) and travelling velocity of the robot (in Fig. 3(b)). The Poincare maps are 

constructed and projected onto the �� and �� axis, respectively. It can be seen from the 

figure that bifurcation occurs at the stiffness coefficient �=0.7915, after where a large region 

of period-one motion is recorded for � ∈[0.7915,5.1]. During this periodic motion, angular 

displacement of the pendulum decreases as the value of � slowly increases. Fig. 3(b) 

demonstrates the average travelling speed which is an important index for a mobile system. 

We could observe that, based on the given parameter range of � , the maximum and 

minimum speed of the system. 

A sequence of trajectories on the phase plane and Poincare maps are depicted in Fig. 4. 

The locations of Poincare section are marked by red dot. Our numerical study shows that at 

the relatively small coefficient as shown in Fig. 4(b), the shape of limit cycle is similar to an 

ellipse, when � >0.7915 as shown in Fig. 4(a), after the initial transients have decayed away, 

the pendulum employs simple but periodic motions which would repeat subsequently. 

 
 (a)                             (b) 

Fig. 3 Bifurcation diagrams under varying stiffness coefficient for ��(0)= �/3, ℎ = 1.5, � =
 3.6, � = 0.8, � = 1.7.  
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Following a similar procedure as the pendulum subsystem, the trajectories on phase plane 

of the robot are shown in Fig. 5, in which the average travelling velocity �� is plotted as a 

function of robot displacement ��. The initial transient phases are also plotted here to present 

the traces of the self-propelled robot. It is straightforward to see that for a small stiffness 

coefficient, there is insufficient energy stored in the spring and injected into the self-propelled 

robot to enhance its forward motion, and the robot acts as atypical reciprocating motions and 

eventually resides within a certain boundary after initial transient has decayed away. On the 

other hand, for the parameters within the periodic range, as seen in Fig. 5(b), the self-

propelled robot performs repeatable forward motion. 

Comparison of robot travelling distance in the presence of varying stiffness coefficient is 

shown in Fig. 6 and Fig.7. It is observed that at relatively small values of �, the robot moves 

in periodic motion, but more like a response of vibration after the initial transients’ decays (� 

=0.5, 0.7), which are equivalent to the stiffness coefficients of 0.2001 (Nm/rad) and 0.2802 

(Nm/rad). When �  crosses the critical value of gazing, the travelling distance firstly 

increases and then decreases monotonically accompanied by the augmented stiffness 

coefficient. The largest displacement of the robot is obtained for the periodic response and 

the optimal value is recorded at � =0.9, which is equivalent to the stiffness coefficient of 

0.36 (Nm/rad). 

 
(a) 

 
(b) 

Fig. 4 Trajectories on phase plane and time histories of the pendulum for ��(0)= �/3, ℎ =
1.0, � =  3.6, � = 0.8, � = 1.7.  



9 

 

      (a) � = 0.1                            (a) � = 1.0                                  
Fig. 5 The trajectories on phase plane of the capsule for ��(0)= �/3, ℎ = 1.0, λ =  3.6, � =
0.8, ω = 1.7. 

 
Fig. 6 Time histories of the displacements for ��(0)= �/3, ℎ = 1.0, λ =  3.6, � = 0.8,ω =

1.7, obtained for varying stiffness coefficient: � = 0.9, � = 1.5 and � = 5.0. 

 
Fig. 7 Zoom up time histories of the displacements of the capsule robot for ��(0)= �/3, ℎ =

1.0, λ =  3.6, � = 0.8,ω = 1.7, obtained for � = 0.5 and � = 0.7, respectively. 
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Remark 1 � represents the stiffness coefficient � that contributes to the energy efficacy to 

the self-propelled system. The boundaries of periodic system response are portrayed precisely 

with respect to the varying stiffness coefficient. Basically, the dependent analysis on varying 

stiffness shows an optimal parametric selection of the torsional spring to achieve desirable 

performance and avoid undesirable motions. On the other hand, difference at the periodic 

motions exists in the shapes and the Poincare sections of the limit cycles, which result in 

varying performance. 

3.2 Parameter dependence on stiffness � 

Parameter dependence on damping � is studied in this subsection, which describes how the 

viscous coefficient � affects the system performance qualitatively. The bifurcation diagrams 

are shown in Fig. 8. The Poincare maps are constructed and projected onto the �� and �� 

axis, respectively recorded the average angular velocity in Fig. 8 (a) and displacement of the 

pendulum in Fig. 8 (b). Herein, accompany with the increasing of the damping coefficient, 

the system response keeps behaving period-one motion for � ∈ [0.01, 5.1]. The variations 

shown in Fig. 8 indicate that the larger damping injected into the system, the less angular 

displacement and velocity it performs. 

The trajectories of the pendulum on the phase plane and Poincare maps are shown in 

Fig.9. The locations of Poincare sections �� and �� are marked by red dots. The time 

histories of the angular displacement in Fig. 9 are important to appreciate the dynamic 

behaviours illustrated. It is noted that after the initial transients have decayed, the pendulum 

employs simple and repeatable periodic motion. 

Furthermore, to examine the dynamic behaviour of the entire robotic system, we 

construct the trajectories on phase plane of the entire robot are shown in Fig. 10, in which the 

average forward velocity �� is plotted as a function of robot travelling displacement ��. The 

repeatable forward motion after initial transient. It is also noted that the larger �  is 

employed, the shorter travelling distance the robot performs. 
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Fig. 9 The trajectories on phase plane and time histories of the pendulum for ��(0)=
�/3, ℎ = 1.0, λ =  3.6, � = 1.5 and ω = 1.7. 

 

                   (a) � = 0.6                     (b) � = 3.0                                  

Fig. 10 The trajectories on phase plane of the capsule for ��(0)= �/3, ℎ = 1.0, λ =

3.6, � = 0.9 and ω = 1.7. 

The comparison of robot travelling distance in the presence of varying damping 

coefficient is presented in Fig. 11. It is revealed that the proposed system maintains steady-

state progression after the initial transient is decayed away, and the capsule progression 

decreases monotonically accompanied by the augmented damping coefficient. Still, the best 

progression of the capsule can be obtained for the periodic response and the optimal value is 

recorded at �=0.6, which is equivalent to the damping coefficient of � = 0.0426 (�� ∗ �� ∗

��� ∗ �����). 

Remark 2: The dependent analysis on varying damping illustrates the effect of the limiting 

factor on the system dynamics, which heuristically can be adopted to optimize the injection of 

damping to achieve desired performance and avoid undesired responses. On the other hand, 

the different shapes and the Poincaré sections of the limit cycles result in varying performance. 
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Fig. 11 Time histories of the displacements for ��(0)= �/3, ℎ = 1, λ =  3.6, � = 0.9, ω =

1.7, obtained for: � = 0.6, 3.5 and � = 5.0. 

4. Underactuated motion generation 

4.1 The desired motion trajectory 
Periodic motion are generated to synthesize the rotational motion of the pendulum and the 

harmonic property of the viscoelastic element. It is considered that the characteristic of 

viscoelastic element is equivalent to existence of the periodic trajectory manifold with 

homologous arguments. In particular, three stages below are designed to generate the desired 

periodic locomotion: 

 Initialization and re-initialization stages (� = ��, ��): one cycle of forward motion 

begins and ends respectively with the initialization and re-initialization stages. In the 

initialization stage, the pendulum and torsional spring are constrained and kept stationary at a 

designed angle against the opposite direction of the retraction of spring, which stores 

potential energy in such a manner that more mechanical power will be injected into the entire 

system; at the end of the motion, the pendulum gradually returns to the initial position by 

following the motion profile, the system then is reinitialized with stored elastic energy for the 

new cycle. 

Forward motion stage (� ∈ (0, ��)): the torque motor drives the pendulum fast in the 

forward direction, together with the energy-releasing of the torsional spring, which leads the 

system to overcome the maximal dry friction and therefore, a continuous movement of the 

robotic system is obtained;  

Restoring stage (� ∈ (��, ��)): the pendulum gradually returns to the initial angular 

position to restore the potential energy and prepare for the next motion cycle, the resultant 

force on the system as a whole in the horizontal direction is less than the maximum static 

friction, which means the whole system is kept stationary in this stage of duration. 
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Fig. 12 Desired periodic motion trajectory for one cycle. The zoom up window demonstrates 

the details in the forward motion stage. 
Motivated by the qualitative changes in the stability of solutions with respect to the 

varying parameters, it is noted that the desirable forward motions can be achieved through 

careful choices of the parameters, and the net travelling displacement during one full cycle is 

determined by the forward motion stage. Therefore, a desired periodic motion profile can be 

generated by Eq. (8) and shown in Fig.12. 

��̇ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 ��� sin(��),     � ∈ [0, ��)
���,            � ∈ [��, ��)

��� sin(�� − ��), � ∈ [��, ��)
����

�����
��,         � ∈ [��, ��)

����

�����
��,          � ∈ [��, ��)

−��,             � ∈ [��, ��)
����

�����
��,          � ∈ [��, ��)

                       (8) 

It is apparent that a parametric selection procedure is needed to obtain the time-varying 

reference motion trajectory (8), and accordingly a series of parameters including the time 

durations �� - �� , the maximum angular velocity of the periodic trajectory in scaled 

coordinate ��, its minimum counterpart �� as well as the critical angular velocity �� when 

the robot begins to keep stationary. 

Detailed description of each phase of the motion trajectory profile is listed as follows: 

Initialization � = ��: �(�)= ���� = −��, �(̇�)= 0, �(̈�)= 0, �(�)= 0, �(̇�)= 0, 

�(̈�)= 0. The pendulum and torsional spring are kept stationary at a designed negative angle 

�� to the opposite direction of the retraction of spring, which stores potential energy such 

that more mechanical power will be provided. 

Phase �  � ∈ (��, ��) : �(�)= � > 0 , �(̇�)> 0 , �(̈�)≫ 0 , �(�)= � , �(̇�)>

0, �(̈�)> 0. The torque motor begins to move under the synthesized angular velocity and 

simultaneously the stored potential energy is released from the stretched torsional spring. 

This results in a motion with maximal angular acceleration of the pendulum pushing the base 

moving forward with relatively high acceleration. 
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Phase ��  � ∈ [��, ��) : �(�)= � > 0 , �(�)= � ,  �(̇�)> 0 , �(̇�)> 0 ,  �(̈�)= 0 , 

�(̈�)> 0. It is noted that once the potential energy is released, a short period of time is 

required to let the potential energy fully transfer into kinetic energy of the proposed system. 

This leads to more efficient energy consumption. Thus a short period of uniform motion of 

the pendulum is designed. During this period, the pendulum swings forward with the 

maximal angular velocity while driving the base accelerating continuously. 

Phase ���  � ∈ [��, ��) : �(�)= � > 0 , �(̇�)> 0 , �(̈�)< 0 , �(�)= � ,  �(̇�)>

0, �(̈�)< 0. The torque actuation exerts an opposing force on the pendulum under the 

synthesized angular velocity together with the contraction of the torsional spring. This leads 

to a forward deceleration motion of the pendulum as well as the base. 

Phase ��  � ∈ [��, ��) : �(�)= ���� > 0 , �(̇�)→ 0 , �(̈�)< 0 , �(�)= � → 0 , 

�(̇�)= 0, �(̈�)= 0. In this phase, a slow deceleration motion of the pendulum results in the 

stationary of the base, which is subjected to the constraints under the dissipative force lie in 

the sliding surface as well as the pivot. Moreover, the angular displacement of the pendulum 

is constrained at ���� to avoid over-actuation and system failure. 

Phase V  � ∈ [��, ��): �(�)= � < 0 , �(̇�)< 0 , �(̈�)< 0 , �(�)= � , �(̇�)=

0, �(̈�)= 0. Phase V is designed to be a short duration and to generate a relatively low 

angular acceleration of the pendulum which keeps the base stands still. 

Phase ��   � ∈ [��, ��): �(�)= � < 0 , �(̇�)= −�� < 0 , �(̈�)= 0 , X(�)= �∆� , 

�(̇�)= 0, �(̈�)= 0. A uniform angular velocity of is designed for the purpose of gradually 

stretching the torsional spring such that enough potential energy is restored for the next cycle. 

The base remains stationary in this phase. �∆� represents the net displacement of the base 

after the ��� cycle. 

Phase VII  � ∈ [��, ��): �(�)= � < 0 , −�� < �(̇�)< 0 , �(̈�)> 0 , �(�)= �∆� , 

�(̇�)= 0, �(̈�)= 0. In phase VII, a low angular deceleration motion is generated in a short 

duration to decelerate the pendulum while the base keeps stationary. 

Re-Initialization � = 0 : �(�)= ���� = −�� , �(̇�)= 0 , �(̈�)= 0 , �(�)= �∆� , 

�(̇�)= 0, �(̈�)= 0. When the pendulum reaches to the initial angle, the torsional spring is 

constrained to ���� such that enough elastic energy is stored for the next cycle. 

The net forward travelling during one motion cycle is generated in the forward motion 

stage. Moreover, as one of the key elements regarding to the forward motion of the whole 

system, the friction between the platform and the sliding surface is taken into account for 

designing the restoring stage through the consideration of the system constraints. The 

proposed motion generation strategy can be utilized for generating a class of appropriate 

trajectory profiles for self-propelled underactuated mechanical systems with viscoelastic 

elements. 

4.2 System constraints analysis 

The optimal forward motions of the self-propelled robot in terms of travelling distance and 

energy consumption depend on a desirable solution for the actuated subsystem �(��), and 
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also the constraints need to be integrated with the system dynamics. The robot moves in a 

stick-slip motion pattern on the sliding surface, thus we apply a constraint for the contacting 

force to guarantee that the robot's locomotion is on the horizontal surface and no vertical 

movement is allowed. This means the contact force has to be greater than zero and gives an 

inequality constraint as 

�� = (� + 1)− ����� −̈ ������̇ − ������ > 0, � ∈ [��, ��)            (9) 

In the restoring stage, the robot is kept stationary on the ground. As such, the force that 

the pendulum applies on the base in the horizontal direction has to be less than the maximal 

static friction, that is, 
|��| ≤ �|��|, � ∈ [��, ��)                            (10) 

which gives a non-dimensionalized inequality constraint as 

������ −̈ ������̇ + ������� ≤ �|�(� + 1)− ����� −̈ ������̇ − �������|     (11) 

Furthermore, the interactive force from vertical �� is implicitly restricted to be non-negative 

under the constraint above, which essentially in virtue of the unidirectional property of the ground. 

4.3 Parametric optimization 

In this section, the optimal parametric selection is conducted to achieve the periodic motion 

trajectory. Adopting the optimal values of stiffness and damping coefficients, subsequently, a 

series of parameters values including ��~��, ��, �� and �� are to be optimized. To achieve 

motions of the base and the pendulum, integrating (6) once in one full cycle, we have 

(� + 1)� +̇ �(� + 1)������̇� − ��̇��� − ���̇���������̇ − ��������̇� �������
�

�

− � ��ℎ���������������̇��
�

�

+ ��������̇ ������ − � �������
�

�

�

− � ��ℎ����������������̇��
�

�

− �� = 0 

(12)                                          

Accordingly, the velocity of the capsule and the pendulum are given by 

�(̇�)

=
��̇��� + ���̇������(�)̇+ �����(�)̇∫ �������

�

�
+ �����(�)̇(����� − ∫ ��������(�)̇��

�

�
)

(� + 1)

+
∫ ��ℎ���������������̇��
�

�
+ ∫ ��ℎ����������������̇��

�

�
+ ��

(� + 1)
− �����(�)̇ 

(13) 

�(̇�)=
(� + 1)� +̇ �(� + 1)������̇� − ��������̇ ∫ �������

�

�
+ ��������̇������ − ∫ �������

�

�
�

���� + �����������̇

−
∫ ��ℎ���������������̇��
�

�
+ ∫ ��ℎ����������������̇��

�

�
− ��

���� + �����������̇
 

(14) 

Remark 3: Revisiting the desired motion trajectory shown in Fig. 12, in the progressive stage (phase 

� to phase ���), the velocity of the capsule is greater than zero (�(̇�)> 0); on the other hand, in the 
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restoring stage (phase IV to phase VII), the capsule is standstill preparing for the next progression, 

which means its velocity equals zero (�(̇�)= 0). And the net progression during one cycle of motion 

is determined by the progression stage. Therefore, considering the characteristic of the sign function, 

the displacement of the capsule system can be obtained through integrating (8) twice, we have 

�(�)=
���� − ����� + ��∫ ∫ �������

�

�
��

�

�
+ �� ∫ ∫ ��̇�����

�

�
��

�

�
+ ��(�)+ ��

(� + 1)

+
∫ ∫ ��ℎ�����������

�

�
��

�

�
+ ∫ ∫ ��ℎ������������

�

�
��

�

�

(� + 1)
−
1

2
���, � ∈ (�1, �7) 

(15) 

Considering the constraints analysis, the boundary conditions are defined below 

�(�)|���� = �(�)|���� = − �� < 0, �(�)|���� = ��, �(̇�)|���� = 0, �(̇�)|���� = �(̇�)|����

= �(̇�)|���� = 0 

To avoid from periodic to chaotic behaviours, the desired maximal angular velocity  �� and 

frequency of harmonic excitation � can be determined based on the aforementioned nonlinear 

dynamic analysis. Recalling the desired periodic motion profile, in the duration[0, ��],  �� can be 

obtained using Eq. (14) under the consideration of �� that if ���� + ����� ≠ 0, yields 

 �� = �(̇�)|���� =
�(� + 1)�� − �� ∫ �������

��
�

+ �������� − ∫ �������
��
�

�

����� + ������
 

(16) 

Furthermore, we can obtain the following relationships utilizing the conservation of the energy 

described in Fig. 12, yields 

� ������(��)��
��

�

+ ���(�� − ��)+  � ������(�� − ��)��
��

��

−
1

2
��[

��

�
+ �� − ��]= 2�� 

(17) 

−��(�� − �� + �� − ��)= ��(�� − ��)+ 4��               (18) 

Proceeding one step further leads to 

�� =
���[�����(���)��(�����)����(���)����(������)]����

��

�
������

               (19) 

�� =
������(�����)

(�����)�(�����)
                            (20) 

For phase �, recalling the constraint of non-bounding motion, gives 

�(�)|���� ��(̈�)|���� + ��(̈�)�|���� + �(̇�)�|����� < �               (25) 

where 

�(̇�)|���� = ���, �(̈�)|���� = 0, �(̈�)|���� = �����                (21) 

Then the maximal boundary of period � can be obtained as 

�� = �/(���)
�                             (22) 

where � = (� + 1)�/2�. 

In terms of phase ��, we have 
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��� sin(��� − ��)= ��                         (23) 

The duration can be calculated as 

�� = ��� − ������(��/���)                        (24) 

In view of the nonlinear analysis in section 3, the desired periodic motion of the pendulum in 

progressive stage, i.e. � ∈ (0, ��), 
is designed to reach the amplitude of the harmonic excitation 

torque at time �� and keep it till the time ��, and the duration of this phase is synthesized to be half 

of the motion period of the excitation, which gives the duration phase ��� as 

�� = ��/�                              (25) 

Revisiting Eq. (15), it is intuitively clear that the maximal net progression of the capsule can be 

achieved through enlarging the angular displacement of the pendulum as well as shortening the 

duration of progressive stage. 

For phase ��, the capsule is kept stationary which allows a recovery process without backward 

motion, thus considering the constraint of non-sliding motion at time �� that 

�(�)|����[�(̈�)|���� + �(̇�)�|����]≤ ��                    (26) 

where �(�)|���� = ����, �(̇�)|���� = ��, �(̈�)|���� = −��/(�� − ��) 

Therefore, 

�� =
�

���
��

��
���

+ ��                             (27) 

In terms of phase �, revisiting non-sliding motion constraint at time ��, yields 

�(�)|���� [�(̈�)|���� + �(̇�)�|����]≤ ��                     (28) 

where �(̈�)|���� = 0, �(̇�)|���� = ��, �(�)|���� = ����                

Then the maximal boundary of phase � can be obtained as 

�� = ��/��
�                              (29) 

Another relationship can be achieved in the period of [��, ��] as 

��(�� − ��)= ��(�� − ��)                          (30) 

To parameterize the durations for phase VI and phase VII, according to the design objectives, 

the durations of [��, ��]  and [��, ��]  are accordant, which have the relationship reads 

�� = [4�� + ��(�� + 2��)− ����]/2��                      (31) 

�� = [4�� − ���� + ���� + 2����]/2��                      (32) 

5. Simulation studies 

In this section, numerical simulations are presented to verify the effectiveness of the proposed novel 

self-propelled robotic system when adopting the aforementioned optimized visco-elastic parameters 

and motion trajectory, by implementing a closed-loop tracking controller. 

The optimally selected parameter values are shown in Table 1. Herein firstly, instead of a 

traditional displacement-velocity phase plane, the average forward velocity is plotted as a function of 

angular displacement and angular velocity, respectively as described in Fig. 13 (a) and Fig. 13 (b), 

where paint likewise the periodic motions after the initial transient is decayed away. Therefore, for a 
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set of optimized parameter values, the qualitative changes of the system dynamics are well recorded, 

and the quantitative variations of the excitation amplitudes are also precisely portrayed. 

Table 1 
Parameters of the numerical simulation 

          Parameter                                      Value 

                �                                           0.5 (��) 

                �                                       0.138 (��) 
               �                                        0.3 (�) 
               �                                       9.81 (� ∗ ���)   

               �                                      0.01 (� ∗ ������)  

               �                                       0.9
 

               �                                       0.6 
               ℎ                                       1.0 
               �                                       1.7 
               �                                       3.6 

                       ��                                                             5.7184 (��� ∗ ���)   

                       ��                                                             0.133 (�) 

                       ��                                                              0.195 (�) 
                       ��                                                             0.275 (�) 

                       ��                                                             0.9 (�) 
                       ��                                                             1.7 (�) 

                       ��                                                             5.8 (�) 
                       ��                                                             6.6 (�) 

 

   

  (a)                              (b) 
Fig.13 Steady-state periodic motion trajectorie: the average progressive velocity is plotted as 
a function of angular displacement (a) and angular velocity (b), respectively. 

On the other hand, to achieve a numerical investigation of the proposed system 

intuitively, a series of performance comparisons are then carried out with the system 

presented in [31], which is referred to as PDC system. Figs. 14 (a) and (b) depict the time 

histories of robot displacement and the input torque for one cycle, by tracking the desired 

periodic motion trajectory, the proposed system behaves steady intermittent forward motions. 

One can also perceive from Figs. 14 (c) and (d) that the proposed system travels 20.7588cm, 

while the PDC system moves 17.4865cm, with a relative displacement of 5.0957cm, which 

means the proposed system has a higher efficiency of 15.76% in travelling distance. In terms 
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of the energy consumption observed from Fig. 14 (d), the maximum input torque respectively 

for the proposed system and PDC system is 0.4582N*m and 0.5037N*m. The maximum 

angular displacement respectively for the proposed system and PDC system is 1.2059rad and 

1.2775rad. On average, the optimized periodic trajectory requires only 0.5525J of the energy 

necessary to perform the desired trajectory, and has 16.46% higher energy efficiency than the 

PDC system (0.6435J). 

0 1 2 3 4 5 6
0

1

2

3

4

5

Time (sec.)

C
a
p

su
le

 D
is

p
la

ce
m

e
n
ts

 (
cm

)

 

 

Proposed system

PDC system

     

                   (a)                                  (b) 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

Time t (sec.)

C
a

p
s
u
le

 D
is

p
la

ce
m

e
n
ts

 (
cm

)

 

 

Proposed system
PDC system
Relative displacement

      

                   (c)                                  (d) 
Fig. 14 Time histories of capsule displacement and input torque respectively for one cycle (a 
and b) and five cycles (c and d). 

6. Conclusions 

This paper investigates the dynamics and motion generation of a self-propelled robotic 

system in the presence of visco-elasticity. We show comprehensive numerical analysis of the 

parameter dependence on varying stiffness and damping coefficients. The bifurcation 

diagrams are with the most represented periodic solutions and demonstrated the thresholds of 

periodic motions. Our numerical studies have revealed that the behaviour of the system is 

mainly periodic, and the desirable travelling distance can be achieved by an appropriate 

selection of system parameters. The selected parameters were further adopted into the 

trajectory optimization to achieve promising performance with respect to the robot travelling 

distance and the energy consumption. 
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Through the investigation of varying stiffness coefficient �, a large region of periodic 

motions were found. The bifurcation is observed at � = 0.7915. The maximum average 

forward motion was observed at � = 0.9, where the robot experiences period-one motion. 

When � crosses the critical value of gazing, the robot displacement increases and then 

decreases monotonically accompanied by the augmented stiffness coefficient. The bifurcation 

analysis on the varying damping coefficient � indicates that the system behaves periodic 

motion for all the considered set of parameter values, and the maximum average forward 

motion was recorded at � = 0.6. As the damping coefficient increases, the driving efficiency 

of the pendulum was reduced and subsequently, the average forward motion was decreased. 

By incorporating with the selected viscoelastic parameters and system constraints 

analysis, an optimization procedure has been carried out to parameterize the trajectory 

profile. This has shed light on the relation between visco-elasticity and the optimal periodic 

motion trajectory, particularly for the efficient locomotion. It is noted that, using the proposed 

approach, the system performance is significantly improved, which is 15.76% in travelling 

distance and 16.46% in energy consumption. Without loss of generality, it provides a 

promising way that the proposed work can be extended to the study of self-propelled 

underactuated systems in a generic manner, which will be scrutinized in our future works. 

The optimization conducted in this work is based on qualitative analysis and analytical 

studies on the system dynamics. We will emphasize on optimization of the viscoelastic 

parameters, user designed parameters (e.g, critical boundaries of the trajectory and controller 

gains) by introducing some on-line learning algorithms and defining the objective functions. 
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