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Abstract: Video playback on mobile consumer electronic (CE) devices is plagued by fluctuations in
the network bandwidth and by limitations in processing and energy availability at the individual
devices. Seen as a potential solution, the state-of-the-art adaptive streaming mechanisms address
the first aspect, yet the efficient control of the decoding-complexity and the energy use when
decoding the video remain unaddressed. The quality of experience (QoE) of the end-users’
experiences, however, depends on the capability to adapt the bit streams to both these constraints
(i.e., network bandwidth and device’s energy availability). As a solution, this paper proposes an
encoding framework that is capable of generating video bit streams with arbitrary bit rates and
decoding-complexity levels using a decoding-complexity–rate–distortion model. The proposed
algorithm allocates rate and decoding-complexity levels across frames and coding tree units (CTUs)
and adaptively derives the CTU-level coding parameters to achieve their imposed targets with
minimal distortion. The experimental results reveal that the proposed algorithm can achieve the
target bit rate and the decoding-complexity with 0.4% and 1.78% average errors, respectively, for
multiple bit rate and decoding-complexity levels. The proposed algorithm also demonstrates a stable
frame-wise rate and decoding-complexity control capability when achieving a decoding-complexity
reduction of 10.11 (%/dB). The resultant decoding-complexity reduction translates into an overall
energy-consumption reduction of up to 10.52 (%/dB) for a 1 dB peak signal-to-noise ratio (PSNR)
quality loss compared to the HM 16.0 encoded bit streams.

Keywords: decoding-complexity–rate–distortion; decoding-complexity control; decoding-energy;
HEVC; rate control; energy consumption control

1. Introduction

Increasingly mobile consumption of video content, advancements in consumer electronics,
and the popularity of video on-demand services, have immensely contributed towards the dramatic
increase in video data traffic (expected to exceed 75% of the overall data traffic [1]) in the Internet.
However, fluctuations in the network bandwidth, together with the limited processing and energy
resources in mobile hand-held devices affect the quality of the video streams and the viewing
experiences of the end users. As such, jointly adapting the video content to meet the network
bandwidth and the device’s energy supply becomes a crucial element to enhance the quality of
experience (QoE) of video streaming services and applications.
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The fluctuations in the network bandwidth during video streaming are currently addressed
through HTTP adaptive streaming [2]. However, it currently lacks the necessary awareness to alter
the video content based on its decoding-complexity to reduce the energy demand on the end user’s
device. (The term decoding-complexity in this manuscript refers to the number of CPU instructions
consumed by the processor to decode an encoded bit stream.) This will become more pronounced
with time, especially due to the complexity of modern standards such as High Efficiency Video
Coding (HEVC) and the upcoming Versatile Video Coding (VVC), and the increasing demand for high
definition (HD) content on hand-held devices [3,4]. As a solution, simultaneous control of both bit
rate and decoding-complexity of an encoded video sequence could potentially address both these
constraints. For instance, such an algorithm could generate bit streams with arbitrary bit rates and
decoding-complexity levels that could be used with HTTP adaptive streaming where the requested bit
stream segments are adapted based on both network bandwidth and the device’s remaining energy
constraints. Yet, thus far, this has not been considered in the literature.

Broadly, the state-of-the-art attempts to reduce decoding-complexity include efficient decoder
implementations [5–8], dynamic alterations to the decoding process [9], dynamic voltage and frequency
scaling (DVFS) methods [10–13], content adaptation based on scalable coding architectures [14–16],
and media transcoding [17] approaches. Out of these, the latter two are encoder-side operations,
and operate together with HTTP adaptive streaming solutions such as MPEG-DASH [2,18] to
fetch videos of different decoding-complexities based on a device’s remaining energy level.
However, existing content adaptation algorithms simply manipulate the bit rate, quantization
parameter (QP), spatial resolution, etc., in an attempt to reduce the decoding-complexity and the
device’s energy consumption [19–23], which eventually results in poor visual quality and minimal
decoding-complexity reductions. In contrast to these approaches, the authors’ previous work in [24]
proposes a decoding-complexity–rate–distortion model within the encoder to determine the coding
modes that minimize the joint rate, decoding-complexity, and distortion cost for a given QP. However,
the deficiencies of the basic concept in [24] could be traced back to the lack of simultaneous allocation
and control of the bit rate and the decoding-complexity levels (e.g., being able achieve multiple
arbitrary decoding-complexities at the same bit rate) for rate and decoding-complexity-controlled
video coding—an aspect that is also overlooked in the literature and that is developed in this work [3].

In this context, this paper proposes a novel joint coding tree unit (CTU)-level
decoding-complexity and rate-controlled encoding algorithm for HEVC. This includes, (i) a
decoding-complexity–rate–distortion model along with a mode selection cost function that incorporate
both bit rate and decoding-complexity as constraints. Furthermore, a (ii) mean square error
(MSE)-based algorithm that utilizes the proposed decoding-complexity–rate–distortion model is
proposed to allocate bits and decoding-complexity levels across frames and CTUs. Finally, (iii) a
content-adaptive, CTU-level, decoding-complexity-controlled video coding algorithm that derives the
appropriate coding parameters and trade-offs for bit rate and decoding-complexity, is proposed to
meet the constraints imposed on the bit rate and decoding-complexity with minimal distortion.

The remainder of the paper is organized as follows. An overview of state-of-the-art is presented in
Section 2, followed up by a detailed description of the decoding-complexity, rate, and distortion model
in Section 3. Section 4 describes the proposed joint decoding-complexity and rate control algorithm.
Finally, Sections 5 and 6 present the experimental results and the concluding remarks together with
the potential future work, respectively.

2. Background and Related Work

Video streaming on mobile devices consumes energy at all layers of the TCP/IP stack [25].
Solutions to this problem in the recent literature can be categorized into two types: the link-layer
solutions that focus on managing the wireless network interface with energy-aware scheduling [26–29],
and application-layer solutions that alter the video decoding and processing functions. This manuscript
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focuses on a content-adaptive video-encoding solution for HEVC; thus the following section briefly
elaborates on the state-of-the-art with respect to the application layer class of solutions.

Certain application-layer approaches propose alterations to the decoder implementations (both
software and hardware decoders) such as data and task-level parallelization techniques [30,31]. The
more advanced of variants of this concept, such as Green-MPEG, use metadata to specify the
decoding-complexity requirements to the decoder [32,33], which can then skip certain decoding
operations in order to reduce the decoding energy consumption. The approach by Nogues et al. [34]
is one such technique where two of the most complex decoding operations in the HEVC
decoder (the in-loop filtering and the interpolation filters) are altered during the decoding process.
However, such alterations in the interpolation filter at the decoder during motion compensation
severely compromise the video quality. This is due to the use of a modified filter at the decoder on
prediction unit (PU) residuals that are computed at an encoder which is unaware of the changes in the
decoding process [3,24].

The use of DVFS algorithms is seen as another common approach to reduce the energy
consumption of a video decoder. In this case, the video quality and energy usage are
balanced [11,35–37], by controlling the idle-time of the video decoder in real-time by adjusting the
CPU frequency and operational voltage [12]. However, this has been shown to have drawbacks such
as frame drops and impact on the overall system performance which adversely affect the user’s QoE,
especially in the case of high frame rate, high quality video content [36]. The poor estimation of the
complexity of subsequent frame/video segment is largely to blame in many cases, which leads to the
sub-optimal selection of CPU frequencies and voltages. A recent Green-MPEG specification suggests
the inclusion of codec-dynamic voltage frequency scaling (C-DVFS) metadata into the bit stream [13] to
aid the frequency selection process in DVFS. However, estimating frame complexity in order to predict
the operational CPU frequency still remains a challenging task. Such operations can greatly benefit
from using an encoder (such as that proposed in this manuscript) which is capable of generating HEVC
bit streams for given decoding-complexity and bit rate constraints.

The encoder-side content adaptation offers another alternative to reduce the decoding energy
consumption during video playback. For example, scalable video coding (SVC) using proxy
servers, media transcoding solutions [27], and dynamic adaptive streaming technologies such as
MPEG-DASH [20] facilitate dynamic video content adaptation in order to meet the constraints of video
playback devices. However, in general, these and other similar solutions, such as device-oriented [23],
battery-aware [19], adaptive multimedia delivery and rate adaptation [38] schemes, are limited
to manipulating basic video coding parameters such as the quantization parameter (QP), spatial
resolution, and frame rate to adapt the video content and achieve energy savings.

Following a similar concept, decoder-friendly bit stream generation at the encoder has been
attempted for H.264/AVC in [39–41]. For instance, the algorithm proposed in [39] constrains the
encoder to select sub-pel motion vectors to control the decoding-complexity. A power consumption
model for the deblocking filter is proposed in [40] to support the encoder in preparing decoder
friendly H.264/AVC bit streams. A complexity analysis of H.264/AVC entropy decoder is presented
in [41] to facilitate the encoder to effectively trade off bit rate, distortion, and decoding-complexity
during the encoding process. However, mechanisms to dynamically allocate and control the
decoding-complexity levels across video frames and macroblock units have been overlooked in
these state-of-the-art algorithms.

The MPEG-DASH-based energy-aware HEVC streaming solutions [20] that exist in the literature
only consider the decoding energy in PU mode decision and motion vector selection (i.e., integer-pel
vs. fractional-pel). Hence, the reduction in energy consumption is marginal with respect to the similar
approaches. In addition, the encoding techniques targeting energy-efficient HEVC decoding proposed
in [42] consider the inverse transform and inverse quantization operations to reduce the decoding
energy consumption. In this regard, our previous work in [24] takes a step ahead by introducing a
decoding-complexity–rate–distortion model which is capable of determining the optimal combination
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of Langrangian multipliers that minimizes a cost function that constitutes all three parameters (i.e.,
rate, distortion, and decoding-complexity). The solution presented in [24] is capable of determining the
coding modes for given content that minimize the decoding-complexity, and by extension the decoding
energy, have minimal impact to the coding efficiency in a fixed QP encoding scenario. However, this
solution lacks the capability to arbitrarily allocate rate and decoding-complexity levels to frames or
CTUs, and control them in order to generate bit streams with multiple bit rate decoding-complexity
levels, which is crucial for video streaming applications that target resource-constrained video decoding
devices with high quality HD/UHD video contents.

Furthermore, the network-aware and receiver-aware adaptation algorithms and the
complexity-rate-distortion models [14–16] which have been introduced based on the previous coding
standards typically focus on creating spatial, temporal, and quality scalable video bit streams. These
approaches lack a comprehensive analysis of the decoding-complexity, rate, and distortion trade-offs
with respect to the features available to the modern coding standards such as HEVC.

Finally, it has been shown that the increasingly popular HTTP-based video streaming solutions
are sufficiently flexible to incorporate decoding-energy in their content prefetch logic [20]. This is
typically achieved by utilizing an algorithm that monitors the device’s remaining energy level to
determine the next most appropriate video segment to meet that energy level. However, as discussed
above, the content creation algorithms used in these solutions consider bit rate, QP, and spatial
resolution changes as means for generating bit streams at different energy levels [19,21–23]. This is
primarily due to the lack of a direct approach to generate rate-controlled bit streams at specified
decoding-complexities—a crucial missing element in the state-of-the-art. Therefore, it is clear that
a need exists for a mechanism to generate decoding-complexity and rate-controlled bit streams at
the encoder to fully realize the energy efficiency goals of standards such as Green-MPEG [32,33] that
can also co-exist with current streaming solutions and decoder-side energy efficiency initiatives such
as DVFS.

3. The Decoding-Complexity, Rate, and Distortion Relationship

In order to develop an algorithm to control the bit rate and decoding-complexity of a video
sequence, it is necessary to first determine the relationship between these two parameters and the
distortion produced when a particular coding parameter combination is selected by the encoder
for a given content. As such, a content-adaptive decoding-complexity–rate–distortion model is
necessary, where the decoding-complexity can be determined for various decoding operations based
on the coding modes and features selected by the encoder. To achieve this, the decoding-complexity
estimation models developed in [24,43–45] for both inter-predicted and intra-predicted coding units
(CU) are used as a basis for this work, which will equip the encoder to compute the relative
complexity of each decoding operation. This section describes the approach used to analyze the
behavior of these three parameters and a content-dependent model that can be generated for the
decoding-complexity–rate–distortion space.

3.1. The Decoding-Complexity, Rate, and Distortion Space

In HEVC, the optimum coding parameter combination of a CU is derived by using a Lagrangian
optimization approach with the rate-distortion (RD) cost function

min
p∈P

{
D(p) + λR(p)

}
, (1)

where λ ≥ 0 is the empirically determined Lagrangian multiplier, p is a coding structure in the
set of combinations P , and D(p) and R(p) represent the distortion (squared error per pixel) and
bit rate (bits per pixel), respectively. Each p in (1) results in different decoding-complexities at the
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decoder [24,44–46] that remain unknown to the encoder. In order to assess the impact of each p on the
decoding-complexity, we first redefine the optimization function in (1) as

min
p∈P

JCRD

∣∣∣ JCRDD(p) + λrR(p) + λcC(p), (2)

where C(p) is the relative decoding-complexity (cycles per pixel) of p obtained from [43–45]. Here,
λr and λc are bit rate and decoding-complexity trade-off parameters analogous to λ in (1), respectively.
The ranges of λr and λc define the decoding-complexity–rate–distortion space spanned by the coding
parameter combinations in P . Next, we analyze this relationship and derive a model of these
parameters for use in a joint decoding-complexity and rate-controlled encoding algorithm.

3.2. The Decoding-Complexity, Rate and Distortion Behaviour

In order to determine the behavior of decoding-complexity, rate, and distortion, the parameter
space created by (2) must first be determined. To achieve this, an experimental sweep of the
space created by λr ∈ [0, ∞) and λc ∈ [0, ∞) was performed on six different test sequences (with
representative and varying spatial and temporal characteristics). Empirical data were collected
from both inter- and intra-predicted frames of these test sequences for QPs ranging from 0–51 [24].
The resulting decoding-complexity, rate, and distortion can thereafter be expressed for further analysis
in terms of cycles per pixel (cpp), bits per pixel (bpp), and the mean squared error (MSE), respectively,
as follows.

MSE(p, λr, λc, q) =
1
N

N

∑
i=1

{
si − s′i(p, λr, λc, q)

}2 , (3)

where si and s′i correspond to the ith original and reconstructed pixel, respectively, q is the QP, and N
is the number of pixels in the frame. Similarly, the bpp and cpp are defined as,

bpp(p, λr, λc, q) =
R(p, λr, λc, q)

W×H
, (4)

and

cpp(p, λr, λc, q) =
C(p, λr, λc, q)

W×H
, (5)

where W and H correspond to the frame width and frame height, respectively. Further, R and C
represent the total number of bits required to encode the frame and the estimated decoding-complexity
of that frame once encoded. In the model used in this work, the relative decoding-complexity is
expressed in terms of the number of CPU cycles used by the HM 16.0 reference decoder for each
operation when executed on an Intel x86 CPU architecture platform.

Figure 1 graphically illustrates the behaviors of decoding-complexity, rate, and distortion in the
parameter space spanned by p, λr and λc for the “kimono 1080p” sequence, including the discrete
operating points that can be achieved by the encoder (i.e., each data point in Figure 1 represents the
resultant bit rate, decoding-complexity and distortion for a particular combination of λr and λc). (The
behaviors of decoding-complexity, rate, and distortion remain similar across QPs and sequences, albeit
with different model parameters). It was observed that this general behavior can be modeled in a
content-dependent manner using a 2-dimensional nth-power model given by

MSE(p, λr, λc, q) = a(q)× bppb(q)(p, λr, λc, q) +

c(q)× cppd(q)(p, λr, λc, q), (6)

where a(q), b(q), c(q), and d(q) are QP and content-dependent model parameters. Naturally,
this implies that a content-adaptive approach is necessary to compute the appropriate model
parameters dynamically, in order to determine the optimum coding structure p for particular content.
The next section describes an approach to build upon the model in (6) and to adaptively compute its



Future Internet 2020, 12, 120 6 of 23

model parameters (as described in Section 4.3), which leads to the novel joint decoding-complexity
and rate-controlled encoding algorithm proposed in this manuscript.

(a) QP = 25 (b) QP = 35

(c) QP = 25 (d) QP = 35

Figure 1. The decoding-complexity (cpp), rate (bpp) and distortion (MSE) behavior of inter-predicted
(top row) and intra-predicted (bottom row) frames.

4. Joint Decoding-Complexity and Rate Control

As with any rate control algorithm, the joint control of both decoding-complexity and rate also
requires target decoding-complexities and bit rates to be defined. In this context, this section first
describes how these can be allocated at the CTU-level. This is followed by the derivation of an
appropriate QP and content-adaptive decoding-complexity and rate trade-off factors in (6), and finally
by an update algorithm to dynamically adapt the model parameters in (6).

4.1. CTU-Level Rate and Decoding-Complexity Allocation

Adopting a similar approach to the rate controller in the HM reference encoder [47,48], the group
of picture (GOP)-level and frame-level bit rate and decoding-complexity targets can be used to derive
their CTU-level allocations. In this case, the target number of bits for the GOP can be expressed as

RGOP
T = ψ

{
Bl − Ba(Ml −W)

W

}
, (7)

where ψ, Bl , Ba, Ml , and W are the GOP size, bits remaining, average bits per frame, frames remaining,
and window size, respectively [48]. (In this case, it is assumed that the bit rate and the number of
frames to be encoded in the sequence is known ahead of the encoding process. E.g., an on-demand
video streaming scenario.) The average bits per frame is given by Ba = BT/M, where BT is the total
number of bits assigned to the sequence and M is the total number of frames in the sequence. Similarly,
the target decoding-complexity for the GOP becomes

CGOP
T = ψ

{
Cl − Ca(Ml −W)

W

}
, (8)
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where Cl and Ca are the total decoding-complexity budget left over and the average complexity per
frame, which is given by Ca = CT/M. Here, CT represents the total decoding-complexity assigned to
the sequence. (The available decoding-complexity budget in this case is defined as the total number of
CPU cycles that can be spent for the purpose of decoding a particular sequence with a known number
of frames. This can be determined based on the remaining energy capacity of the battery powered
decoding device, and is considered outside the scope of this work.) Throughout the remainder of the
manuscript, W = 40 as in the default configuration used in the HM 16.0 [49] encoder implementation.

Next, the bits and decoding-complexities allocated for the GOP in (7) and (8), respectively, must be
distributed across the individual frames in the GOP. In this case, a similar approach is adopted for
both quantities (i.e., bits and decoding-complexity) leading to a weighted distribution of the GOP-level
allocation to each frame as shown in (9). For the jth frame in the GOP, the bit and decoding-complexity
allocations are given by

XFrame
T (j) = XGOP

T ×
ωFrame

X (j)

∑
ψ
j=1 ωFrame

X (j)
, (9)

where X ∈ {R, C} and the weights are defined as

ωFrame
X (j) = $(j) + ηm

X . (10)

Here, $(j) is the default weighting factor defined in HM16.0 reference encoder
implementation [48,50] for the jth frame in the GOP. The weighting factor ηm

X is experimentally
determined based on the ratio of bits and decoding-complexities consumed by intra-predicted
and inter-predicted frames in a typical video sequence. In this case, the numbers of bits and the
decoding-complexities utilized within intra-predicted and inter-predicted frames were averaged across
50 frames for the six test sequences (Section 3.2) to determine ηm

X , which is defined as

m = Intra-frame : ηm
R = 50, ηm

C = 80,

m = Inter-frame : ηm
R = 3, ηm

C = 10.

Finally, bit rates and decoding-complexity targets are allocated to the individual CTUs based
on the MSE of the previous co-located CTU, as is often done in traditional rate control [51,52].
The decoding-complexity–rate–distortion model in (6) is used to these ends, and as the model
parameters therein are functions of QP and content, the MSE of the kth CTU in the jth frame of
the GOP is first predicted for each QP q which can be expressed as

MSE′CTU
k,j (q) = ak,j(q)× bpp

bk,j(q)
avg(q) + ck,j(q)× cpp

dk,j(q)
avg(q), (11)

where ak,j(q), bk,j(q), ck,j(q), and dk,j(q) are the appropriate model parameters for that CTU. Here,
bppavg and cppavg are the bpp and cpp calculated as the averages of the minimum and maximum of
each respective parameter observed so far within the encoded sequence for the kth QP for a given
frame type. Next, the actual MSE of the co-located CTU, MSECTU

k,j,co, is then compared with MSE′CTU
k,j for

all QPs to obtain a QP q0 such that

min
q0

∣∣∣MSE′CTU
k,j (q)−MSECTU

k,j,co

∣∣∣ . (12)

The bppavg and cppavg for QP q0 are then used as the weights for both the bit rate and
decoding-complexity to the CTU, respectively. Thus, the final target bit rate and decoding-complexity
of the kth CTU in the jth frame in the GOP can be expressed as

XCTU
T (k, j) =

ωCTU
X (k, j)

∑Φ
φ=k ωCTU

X (φ, j)
× ∆(k, j), (13)
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where ∆(k, j) =
{

XFrame
T (j)−∑k−1

φ=1 XCTU
T (φ, j)

}
is the remaining bits or decoding-complexity available

to the remaining CTUs in the frame, Φ is the total number of CTUs in the frame, and ωCTU
X (k, j) is the

bit or decoding-complexity weight for the CTU. Note that these bit rates and decoding-complexities
can be expressed in terms of bpp or cpp by simply dividing XCTU

T by the number of pixels in the CTU.

4.2. Determining the Model Parameters and Trade-Off Factors

Having established the target bit rates and decoding-complexities at the CTU-level, the remaining
modeling parameters in (6), QP and the trade-off factors for the bit rate and decoding-complexity must
be determined at the CTU-level in order to apply the optimization function in (2) to determine the
most appropriate coding structure for that CTU.

4.2.1. Determining QP

Once the CTU-level decoding-complexity and bit allocations are made, the QP selection is first
performed using a similar MSE based approach. In this case, MSE of the co-located CTU, MSECTU

k,j,co,

is now compared with M̃SE
CTU
k,j for all QPs to obtain a QP q̄0 such that

min
q̄0

∣∣∣M̃SE
CTU
k,j (q)−MSECTU

k,j,co

∣∣∣ . (14)

In this case, MSE of the kth CTU in the jth frame of the GOP is estimated for each QP q using

M̃SE
CTU
k,j (q) = ak,j(q)×

{
RCTU

T (k, j)
N

}bk,j(q)

+

ck,j(q)×
{

CCTU
T (k, j)

N

}dk,j(q)

, (15)

where, N is the total number of pixels in the CTU and RCTU
T , and CCTU

T are the bit and
decoding-complexity levels allocated for the CTU, respectively.

4.2.2. Determining λr and λc

Next, from (6), for the kth CTU in the jth frame

λr(k, j, q)− ∂MSE
∂bpp

= −ak,j(q) bk,j(q) bppbk,j(q)−1

= αk,j(q)× bppβk,j(q) (16)

and

λc(k, j, q)− ∂MSE
∂cpp

= −ck,j(q) dk,j(q) cppdk,j(q)−1

= ρk,j(q)× cppτk,j(q). (17)

Equations (16) and (17) imply that the CTU-level model parameters, together with the CTU-level
bit rate and decoding-complexity allocations described in the previous subsection, completely
define the optimization function in (2) needed to determine the optimum coding structure. Thus,
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from (14)–(17) for the kth CTU in the jth frame the bit rate and decoding-complexity trade-off
parameters can be expressed as

λr(k, j, q̄0) = αk,j(q̄0)×
{

RCTU
T (k, j)

N

}βk,j(q̄0)

(18)

and

λc(k, j, q̄0) = ρk,j(q̄0)×
{

CCTU
T (k, j)

N

}τk,j(q̄0)

, (19)

respectively, where N is the number of pixels in the CTU.
It now becomes apparent that the two trade-off parameters are both content and QP-dependent

via the four modeling parameters in (6), (16), and (17). However, a content-independent generic set
of parameters can also be obtained (to be used as initial values in the adaptive model parameter
computation process described in the following subsection (Section 4.3) from the data collected in
Section 3 and [24]. In this case, MSE, bpp, and cpp values from 50 inter-coded and intra-coded frames
of six different test sequences (three HD, and three CIF) [24] have been considered to derive these
generic model parameters, which can be expressed as

α0(q)
β0(q)
ρ0(q)
τ0(q)


Intra

=


6.8× 1010 × q−8.745

0.0671× q− 7.375
2.28× 10−6 × q7.188

−4.24× 10−6 × q3.51 − 1.275

 (20)

and 
α0(q)
β0(q)
ρ0(q)
τ0(q)


Inter

=


0.000721× q2.516

3.89× 10−5 × q2.48 − 1.707
−39.38× q4.473 + 1.76× 109

−0.02157× q− 3.684

 , (21)

for the two frame types. Naturally, the bit rate and decoding-complexity achieved using (20) and (21)
will be inaccurate and not adaptive to the content. Hence, a mechanism to dynamically update the
model parameters is necessary for joint decoding-complexity and rate-controlled encoding.

4.3. Dynamic Model Parameter Adaptation

In order to derive content-dependent model parameters, the generic parameter set in (20) and (21)
can be adapted using a least mean square (LMS)-based approach [3,53]. To that end, the error between
the assigned and achieved bit rate and decoding-complexity must be minimized. To do so in this case,
a joint error function for the two quantities is first defined. Note that the following derivations will
omit the k, j, and q0 subscripts for notational simplicity, but the adaptation process must be applied
independently to each CTU to compute their unique model parameters.

Now, let the difference between the assigned and achieved bit rate and decoding-complexity per
pixel be ∆R and ∆C, respectively. Similarly, let the difference between the predicted distortion and
actual distortion in terms of MSE be ∆D. The total derivative of distortion in terms of MSE can be
expressed as the sum of partial derivatives of the dependent variables in the model in (6) and the
definitions in (16) and (17) as

d(MSE) =
∂MSE
∂bpp

d(bpp) +
∂MSE
∂cpp

d(cpp) (22)

∆D = −λr ∆R− λc ∆C. (23)
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Obtaining the squared term of (23) and rearranging the terms

∆D2 − 2 ∆R ∆C λr λc = λ2
r ∆R2 + λ2

c ∆C2 > 0 (24)

and dividing both sides by (λr λc)2

(
∆D

λr λc

)2
− 2

(
∆R ∆C
λr λc

)
=

(
∆R
λc

)2
+

(
∆C
λr

)2
. (25)

The right hand side of (25) can be simplified further as

∆R2
(

∂cpp
∂MSE

)2
+ ∆C2

(
∂bpp
∂MSE

)2
≈ 2

(
∆R ∆C

∆D

)2
. (26)

The objective of minimizing ∆C and ∆R simultaneously is now made possible by multiplying (26)
and therefore (25) by ∆D2. Hence, by combining (25) and (26), the joint error function to be minimized
can be defined as

F :=
(

∆D2

λr λc

)2

− 2 ∆D2
(

∆R ∆C
λr λc

)
. (27)

Thus, using (27) and a LMS adaptive filter, the updated model parameters can be expressed as


αn(q)
βn(q)
ρn(q)
τn(q)

 =


αn−1(q)− ϑα

∂F
∂α

βn−1(q)− ϑβ
∂F
∂β

ρn−1(q)− ϑρ
∂F
∂ρ

τn−1(q)− ϑτ
∂F
∂τ

 , (28)

where αn, βn, ρn, τn, αn−1, βn−1, ρn−1, and τn−1 are the newly computed and previous model
parameters for the QP q0 being considered. Further, ϑα, ϑβ, ϑρ, and ϑτ are the LMS filter’s step
size controlling the adaption speed and are empirically determined as 10−4, 10−5, 10−5, and 10−6

respectively. Finally, the partial derivatives of F in (28) with respect to the model parameters are

∂F
∂α

= − 2
α

(
∆D2

λrλc

)2

+ 2
∆C ∆R ∆D2

α λrλc
, (29)

∂F
∂β

= 2 ln

(
RCTU

T
N

){
∆C ∆R ∆D2

λrλc
−
(

∆D2

λrλc

)2}
, (30)

∂F
∂ρ

= −2
ρ

(
∆D2

λrλc

)2

+ 2
∆C ∆R ∆D2

ρ λrλc
, (31)

and

∂F
∂τ

= 2 ln

(
CCTU

T
N

){
∆C ∆R ∆D2

λrλc
−
(

∆D2

λrλc

)2}
, (32)

where RCTU
T , CCTU

T are the target bit rate and decoding-complexities, respectively. Once the model
parameters are updated as per (28) in this manner, the new parameters can be used to determine the
λr and λc trade-off factors for the mode selection in the cost function in (2).
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5. Experimental Results and Discussion

This section presents the performance of the proposed CTU-level decoding-complexity and
rate control algorithm. In this case, the rate and complexity-controlling capabilities of the proposed
algorithm are first compared with two state-of-the-art decoding-complexity-aware encoding algorithms
in the literature. Thereafter, experimental results for the power consumption characteristics of
the decoder during a video streaming session are compared for two different CPU frequency
governing methods. Finally, the experimental results and observations are discussed in detail for
different use cases.

5.1. Simulation Environment

The proposed encoding algorithm is implemented in the HM 16.0 reference encoder.
The decoding-complexity estimation models presented in [24,43–45], the Lagrangian cost function
that determines the coding modes and the proposed decoding-complexity, and rate-controlling
algorithm, are integrated into the HEVC encoding tool chain. The resultant bit streams are decoded
using the openHEVC [54] software decoder. The decoding was performed on an Intel x86 Core
i7-6500U system running Ubuntu 16.04 to measure the decoding-complexity performance of the bit
streams. The proposed algorithm’s performance is compared with three state-of-the-art approaches:
the power-aware encoding algorithm proposed by He et al. [20]; the rate, distortion, and decoder
energy optimized encoding algorithm proposed by Herglotz et al. [46]; and the tunable HEVC
decoder proposed by Nogues et al. [34]. The video sequences used in the experiments reported in
this section are of HD (1920 × 1080) resolution. In this case, “Kimono” and “Parkscene” sequences
are defined in the HEVC common test configurations [55] and the rest are a collection of proprietary
sequences. Their sequence categories (i.e., motion and texture complexity levels) are defined in
the Table 1. Each video sequence is encoded at 900 kbps, 1 Mbps, 2 Mbps, and 4 Mbps video bit
rates using the random access configuration with rate control enabled. Moreover, the bit streams
corresponding to the proposed algorithm were generated with two decoding-complexity levels, which
are referred to as L1 and L2. The bit streams corresponding to these two levels are encoded such that
decoding-complexities are 30% and 40% less (in terms of CPU cycles) as compared to HM encoded bit
streams, respectively. The complexity of the decoding process was measured using the instruction
level analysis tools callgrind/valgrind [56]. The numbers of CPU cycles identified were assigned as the
available decoding-complexity budget for the sequence, when performing the decoding-complexity
allocation calculations described in Section 4.1.

Finally, the decoder’s energy consumption was determined by measuring the energy dissipated
by the system during the video playback. In this context, a test bed that implements an online
video streaming scenario where the openHEVC decoder is used as the playback client was used for
this assessment. The encoded bit streams were streamed for a duration of 15 min and the energy
capacity reduction of the playback device’s battery was measured using the Linux power measurement
tools [57]. It should be noted that the measured battery capacity reduction corresponds to the overall
energy consumption by the device that includes the energy consumed for the wireless transmission,
video decoding, and video presentation. Furthermore, the relative energy consumption performances
when using an application-specific DVFS algorithm [10] and the Linux ondemand frequency governor
were also analyzed and are compared in the experimental results.

5.2. Evaluation Metrics

The performance of the proposed algorithm is evaluated in multiple stages. The evaluation
metrics are described below.
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5.2.1. Decoding-Complexity and Rate Control Performance

First, the decoding-complexity and rate-controlling capabilities of the proposed algorithm are
evaluated by measuring the percentage error in achieving the target decoding-complexity and rate.
In this case, the percentage error in bit rate is calculated using

Re = 100× (RT − Rr)

RT . (33)

where Rr and RT are the achieved and target bit rate, respectively. Similarly, the overall
decoding-complexity controlling performance of the proposed algorithm is measured using

Ce = 100× (CT − Cr)

CT , (34)

where CT and Cr are the target and achieved decoding-complexity levels in terms of the CPU cycles,
for a particular number of frames. Moreover, the frame-wise rate and decoding-complexity control
performances are measured using the percentage error between the allocated and actual number of bits
and decoding-complexity per frame, respectively. (The decoding-complexity controlling performance
is presented only for the proposed algorithm as the state-of-the-art algorithms do not support a
mechanism to achieve a specified decoding-complexity).

5.2.2. Decoding-Complexity, Energy Reduction Performance, and Video Quality Impact

Next, the impact on video quality, decoding-complexity, and the respective energy reduction
achieved at a particular decoding-complexity by the proposed algorithm (e.g., complexity level L2 is
considered in this case), are compared against the state-of-the-art algorithms while keeping HM 16.0
as the reference. The impact on video quality for a given bit rate is assessed using the impact on PSNR
given by

∆PSNR = PSNRκ − PSNRHM, (35)

where PSNRHM and PSNRκ are the resultant average PSNRs for the reconstructed video sequences
when using HM 16.0 and proposed and other state-of-the-art algorithms, respectively. Similarly,
the reduction in decoding-complexity and the corresponding energy reduction are assessed using

∆Γ = 100× (Cκ − CHM)

CHM
, (36)

and

∆E = 100× (Eκ − EHM)

EHM
, (37)

respectively. Finally, for normalized comparison purposes, the proposed and state-of-the-art algorithms
are assessed on the decoding-complexity and energy reduction achieved for a 1 dB PSNR loss in the
video quality. In this case, ∆Γ(%) per ∆PSNR(dB) is given by

∆̃Γ(%/dB) =
∆Γ

∆PSNR
. (38)

Similarly, ∆E(%) per PSNR(dB) is defined as

∆̃E(%/dB) =
∆E

∆PSNR
, (39)

where ∆Γ and ∆E are calculated as per (36) and (37), respectively.
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Table 1. Rate controlling performances of the encoding algorithms.

Proposed L2 HM 16.0 [49] He et al. [20] Herglotz et al. [46]
Re % Re % Re % Re %

Band (AM, LT) 0.350 0.093 −0.03 0.002
Beergarden (LM, HT) 0.189 3.050 8.22 3.319
Cafe (AM, LT) 0.010 1.229 0.12 0.443
Dancer (AM, LT) 1.448 2.344 1.56 0.010
GTFly (HM, LT) 0.018 0.067 0.14 0.129
Kimono (AM, HT) 0.014 4.097 6.34 1.607
Musicians (LM, HT) 1.125 0.054 3.78 0.725
Parkscene (HM, HT) 0.105 2.352 4.56 0.386
Poznan St. (LM, HT) 0.359 2.548 3.07 2.579
Average 0.40 1.75 3.08 1.02

The sequence categories (i.e., LM, AM, HM, LT, and HT) are defined as follows. LM: low motion; AM: average
motion; HM: high motion; LT: low texture; HT: high texture.

5.3. Performance Evaluation and Analysis

This section presents and analyzes the experimental results. In this context, the decoding-complexity
and rate-controlling performances are analyzed first. Thereafter, the decoding-complexity reductions
achieved by the proposed as well as state-of-the-art algorithms and their quality impacts are discussed
with respect to the experimental setup discussed in Section 5.1. Here, the proposed algorithm considers
generating bit streams with a 40% decoding-complexity reduction target over HM 16.0 (i.e., complexity
level L2).

5.3.1. Rate Controlling Performance

The percentage deviations of the final bit rate achieved after encoding using the proposed (with
joint rate and decoding-complexity controlling) and state-of-the-art algorithms (with rate controlling
enabled) are presented in the Table 1. Here, the video sequences are encoded at four different bit rates
(described in Section 5.1) and the averaged percentage error is presented for comparison.

It can be observed that the rate-controlling algorithm implemented in the HM 16.0 reference
encoder shows 1.75% average error, which is less than the 3.08% deviation from the target bit rate
experienced by He et al. [20]. This is mainly due to the content and QP-agnostic nature of the
algorithm, despite its use of PU level prediction modes, integer-pel vs. fractional-pel motion vectors,
and in-loop filtering decisions. However, ref. [46] uses QP-dependent trade-off factors for both rate
and decoding-complexity; thus the impact on the rate controller is significantly improved compared to
He et al. [20].

In contrast, the proposed algorithm uses a content-adaptive, decoding-complexity, rate, and
distortion model to derive the QP as well as rate and decoding-complexity trade-off factors to
determine the set of coding modes and structures that minimize the distortion while achieving a
given bit and decoding-complexity budget. Therefore, as illustrated in the Table 1, the proposed
algorithm achieves the allocated bit rate targets with <1% error indicating that both CTU-level bit
allocation as well as coding parameter selection are more accurate and content-adaptive compared to
the state-of-the-art approaches.

In addition, the frame-wise rate-controlling performances of the encoding algorithms were
analyzed using the percentages of error between the allocated bits and actual bits per frame. A graphical
illustration of this frame-wise percentage error is presented in the Figure 2. It can be observed that the
rate-controlling algorithms implemented in HM 16.0 and other state-of-the-art encoding algorithms
suffer from large percentage errors throughout the video sequence. The incorporation of a third
parameter within the mode selection cost function in He et al. [20] and Herglotz et al. [46] crucially
affect the rate controller in achieving the allocated number of bits for a given block. For example,
both these algorithms use an RD-optimization-based bit allocation, QP, and Lagrangian parameter
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determination approach [48] for the rate control while utilizing three parameters in the cost function
(rate, distortion, and decoding-complexity) for the coding mode selection. The correlation that exists
between the three parameters is, however, ignored when performing the rate control, which results in
large average rate-controlling errors, as illustrated in the Table 1. The rate-controlling algorithm in HM
16.0 which follows a R-λ-based bit allocation and coding parameter selection approach also shows
some deficiency in achieving the allocated bit budget for each frame. However, as illustrated in the
Table 1, the HM 16.0 encoder still demonstrated a 1.75% error in its rate-controlling function.

(a) Dancer 2 Mbps (b) Parkscene 2 Mbps (c) Musicians 2 Mbps

(d) Dancer 2 Mbps (e) Parkscene 2 Mbps (f) Musicians 2 Mbps

Figure 2. (Top row): An illustration of the frame-wise percentage error between the allocated bits and
actual bits for the HM 16.0, proposed, and other state-of-the-art algorithms for three HD test sequences.
(Bottom row): A further illustration of the percentage frame-wise rate control performance of the
proposed algorithm.

In contrast, the proposed algorithm enables the encoder to effectively utilize the correlation
between the three parameters to perform rate and decoding-complexity allocation, and appropriate
coding mode selection, resulting in a smaller percentage bit error (illustrated in the bottom row of
Figure 2 and Table 1). Moreover, the parameter update process in Section 4.3 keeps the algorithm
content-adaptive, further minimizing the rate control error.

5.3.2. Decoding-Complexity Controlling Performance

The experimental results summarized in Table 2 show the percentage error in the
decoding-complexity controlling function of the proposed encoding algorithm (achieving a specified
decoding-complexity is not possible for any of the state-of-the-art algorithms). The proposed algorithm
shows on average an ≈1.78% decoding-complexity controlling error for both complexity levels
considered (30% and 40% reductions over HM 16.0). The results suggest that the proposed algorithm
is capable of generating a bit stream that adheres to a given bit rate and a decoding-complexity level.
Furthermore, the frame-wise decoding-complexity error illustrated in the Figure 3 also reveals that
the proposed encoding algorithm is capable of maintaining a very low error despite the dynamic
nature of the video content. In summary, numerical and graphical results for the simultaneous rate and
decoding-complexity control capability of the proposed method indicate that the proposed method is
content-adaptive and capable of achieving specified bit and decoding-complexity targets.
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(a) Parkscene 2 Mbps (b) Dancer 2 Mbps (c) Musicians 2 Mbps

Figure 3. An illustration of the frame-wise percentage error between the target decoding-complexity
and the achieved decoding-complexity for the proposed algorithm at two complexity levels for a given
bit rate (2 Mbps) for (a) Parkscene, (b) Dancer and (c) Musicians test sequences.

Table 2. Decoding-complexity-controlling performance of the proposed encoding algorithm.

Proposed L1 Proposed L2

Re % Ce % Re % Ce %

Band 0.638 −1.348 0.350 3.395
Beergarden 0.383 0.733 0.189 6.716
Cafe 0.012 −0.750 0.010 4.248
Dancer 1.534 8.485 1.448 1.448
GTFly 0.001 −5.864 0.018 −1.326
Kimono 0.015 −9.019 0.014 −4.276
Musicians 0.992 −6.867 1.125 −2.950
Parkscene 0.208 −7.407 0.105 −3.340
Poznan St. 1.140 1.973 0.359 8.265

Average 0.54 −2.22 0.40 1.35

5.3.3. Decoding-Complexity Reduction and the Impact on Video Quality

The Table 3 demonstrates the average decoding-complexity reductions and the corresponding
quality impact, in PSNR, for the proposed and state-of-the-art algorithms.

The algorithms proposed by He et al. [20] and Herglotz et al. [46] both achieved
decoding-complexity reductions in the range of 10% and 20%, respectively. However, it was observed
that those were achieved at the expense of a significant reduction in PSNR for a given bit rate.
For example, although Herglotz et al. [46] uses a decoding-complexity estimation model [58–60],
the bit rate, decoding-complexity trade-off factors are selected independently; thus, the impact on
each other is overlooked during the coding mode selection. Furthermore, only the bit rate trade-off
factor [47,49] is content-adaptive, and the decoding-complexity trade-off factor remains agnostic to
the dynamics of the video sequence, which ultimately results in a higher quality loss. Similarly, the
method proposed in [20] uses predefined trade-off factors and decoding-complexity-aware coding
mode selection only at the PU level. Thus, the sacrifice made in video quality to maintain the bit rate
requirement is greater, and performance is inferior to Herglotz et al. [46]. These results are illustrated
graphically in the ∆PSNR vs. decoding-complexity graphs presented in the Figure 4. Here, it can be
observed that both these algorithms would experience a higher quality impact in a rate-controlled
scenario if they were to achieve a particular decoding-complexity. However, it should be noted that the
encoding algorithm proposed by Herglotz et al. has shown improvements in very low-in-complexity
video sequences, such as “band,” “cafe,” “poznan st.,” etc.
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Table 3. Decoding-complexity-reduction performance.

Proposed L2 Proposed L2 * He et al. [20] Herglotz et al. [46] Nogues et al. [34]

Sequence
(Model Only) (Model + LF [34]) (PUM + DBLK) (MC + LF)

∆(dB) ∆Γ% ‡ Υ

(dB)
∆

(dB)
∆Γ% ‡ Υ

(dB)
∆(dB) ∆Γ% ‡ Υ

(dB)
∆(dB) ∆Γ% ‡ Υ

(dB)
∆(dB) ∆Γ% ‡ Υ

(dB)

Band −0.89 −9.77 −2.09 −1.36 −16.74 −2.78 −0.46 −7.11 −9.37 −3.00 −15.24 −1.36 −2.38 −15.33 −2.58
Beergarden −1.26 −7.12 −3.88 −2.01 −14.14 −4.86 −4.05 −9.63 −9.15 −2.56 −15.88 −2.85 −3.41 −13.40 −3.93
Cafe −2.01 −8.36 −3.13 −3.20 −15.35 −4.31 −0.56 −7.56 −8.29 −2.12 −17.48 −1.77 −4.11 −14.94 −4.23
Dancer −1.95 −16.05 −3.50 −2.47 −22.05 −4.07 −2.09 −11.71 −2.36 −4.93 −27.90 −4.66 −6.58 −24.37 −6.62
GTFly −1.85 −16.22 −3.07 −2.24 −23.28 −3.50 −1.11 −10.27 −9.12 −4.88 −27.51 −4.87 −5.86 −26.16 −6.10
Kimono −1.06 −17.48 −1.30 −1.28 −24.62 −2.88 −1.02 −11.19 −8.54 −4.05 −27.71 −3.92 −3.78 −25.86 −3.96
Musicians −1.03 −16.52 −2.87 −1.16 −23.47 −3.43 −1.63 −11.05 −9.00 −5.98 −27.78 −6.00 −6.31 −26.23 −6.86
Parkscene −0.96 −17.01 −2.34 −1.36 −23.55 −2.79 −2.03 −13.04 −6.75 −2.98 −27.88 −2.98 −5.19 −25.33 −5.48
Poznan St. −2.00 −5.92 −3.47 −3.25 −13.03 −4.86 −2.08 −9.18 −8.06 −1.81 −15.61 −1.55 −3.00 −12.04 −3.11

Average −1.44 −12.71 −2.85 −2.03 −19.58 −3.72 −1.67 −10.08 −7.84 −3.56 −22.55 −3.32 −4.56 −20.40 −4.76

∆ refers to the reduction in quality measured using ∆ PSNR (dB). Υ (dB) is the BD-PSNR that represents the
drop in video quality by the proposed algorithm when encoded using a similar bit rate to that of HM16.0
encoder. ‡ ∆Γ% achieved using the openHEVC decoder. * Here, the bit streams for complexity level 2 (L2) are
subjected to the LF algorithm.

(a) Dancer 1088 p (b) Musicians 1080 p (c) Parkscene 1080 p

(d) Dancer 1088 p (e) Musicians 1080 p (f) Parkscene 1080 p

Figure 4. An illustration of the variation of the ∆Γ, ∆PSNR ratio (top row), i.e., ∆̃Γ (%/dB), and ∆PSNR
(bottom row), with respect to the bit rate.

The approach by Nogues et al. [11] modifies the decoding operations to reduce the
decoding-complexity. For example, the skipping of in-loop filtering and simplifying the motion
compensation operations within the decoder results in a significant complexity reduction. (It should be
noted that the presented results correspond to the highest complexity reduction that can be achieved
by applying the decoder modifications proposed in [11] to all frames in the bit stream). However,
changing the motion compensation filters and thereby applying the decoded residuals on a predicted
PU which is different from that of the encoder’s, causes more distortions in the reconstructed block.
Although the intra-frames that appear within the given intervals avoid the propagation of these errors,
the algorithm results in a much larger PSNR reduction (cf. Figure 4).

In contrast, the proposed algorithm uses a more comprehensive and dynamic
approach to simultaneously control both decoding-complexity and bit rate. First, the
use of more accurate and detailed decoding-complexity estimation models enables the
encoder to estimate the decoding-complexity requirements for a given coding mode. Next,
the proposed decoding-complexity–rate–distortion model allows the encoder to determine
the impact of a coding mode on all three parameters. Finally, the continuous update of the
decoding-complexity–rate–distortion model allows the encoder to pick the most content-relevant
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trade-off factors when selecting the coding modes that minimize the distortion while achieving
the given rate and decoding-complexity constraints. As observed from Figure 4, the proposed
algorithm allows the encoder to generate bit streams that provide the least quality impacts on a given
decoding-complexity. Moreover, the proposed algorithm is highly scalable and provides the capability
to generate bit streams with multiple bit rate and decoding-complexity levels—a crucial benefit for
adaptive video streaming services that target streaming videos to mobile devices. For instance, in this
case, the decoding-complexity level L2 (i.e., 40% decoding-complexity reduction with respect to
HM16.0) results in on average −12.71% decoding-complexity reduction when using the openHEVC
decoder. Finally, if the bit streams generated by the proposed algorithms are decoded with a decoder
that skips the in-loop filter operations (e.g., openHEVC), it can be observed that decoding-complexity
can be further reduced by ≈ 7%, with only a minor impact on the video quality. Thus, it is evident that
the bit streams generated by the proposed algorithm can be subjected to decoder modifications such
as [34] to attain further complexity reductions.

Figure 4 also demonstrates the decoding-complexity reduction that can be achieved for a 1 dB
quality loss in PSNR. It can be observed that the proposed algorithm on average achieves a greater
∆̃Γ(%/dB) across all bit rates. This is much larger for the proposed algorithm at lower bit rates,
due to the reduced quality impact with respect to the HM encoded bit stream. Thus, it is apparent
that the proposed algorithm can produce more decoding-complexity reduction than state-of-the-art
algorithms for each 1 dB quality loss. Finally, Figure 5 illustrates the visual quality impact of the video
sequences reconstructed from the bit streams encoded by HM16.0, the proposed algorithm, and other
state-of-the-art methods. It can be observed that despite the PSNR drops listed in the Table 3, the bit
streams generated by the proposed algorithm retain a visual quality level similar to that of the bit
streams prepared by the HM 16.0 encoder.

(a) HM 16.0 (b) Proposed L2 (Model Only) (c) He et al.

(d) Herglotz et al. (e) Nogues et al.

Figure 5. An illustration on the visual quality impact of the reconstructed video sequences of bit streams
prepared by the (a) HM 16.0 encoder, (b) proposed algorithm, and other state-of-the-art algorithms
proposed by (c) He et al. [20], (d) Herglotz et al. [46], and (e) Nogues et al. [34]. The figures correspond
to the frame number 36 of the “Kimono HD” sequence encoded at 2 Mbps.

5.3.4. Decoding Energy Reduction Performance

Next, the actual energy consumption performance for the bit streams generated by the proposed
and state-of-the-art algorithms is compared for a video streaming use case. First, the generated bit
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streams are decoded using the openHEVC video decoder with Linux ondemand as the frequency
scaling governor [61]. It can be observed in the Table 4 that the proposed and state-of-the-art algorithms
demonstrate an energy-consumption reduction in the range of ≈4% compared to HM 16.0 encoded
video bit streams. Moreover, forcing the decoder to skip in-loop filters enables the proposed algorithm
to increase the energy-consumption reduction up to 5.65%.

Changing the Linux ondemand governor to a more application-specific DVFS algorithm [10] that
alters the CPU’s operational frequency based on the estimated complexity of the next video frame
improves the energy-consumption reduction of all the algorithm. In this case, the proposed algorithm
has achieved 7.77% and 9.10% decoding energy-consumption reductions compared to the HM encoded
bit streams—a non-trivial performance with only −1.44 dB and −2.03 dB quality impacts for with
and without in-loop filter operations, respectively. The decoding energy reduction achieved per 1 dB
PSNR video quality loss for the proposed and state-of-the-art algorithms is presented in the Table 5,
and the ∆̃E(%/dB) achieved for a 1 dB quality loss is graphically demonstrated for three different test
sequences in Figure 6. These results further corroborate that the energy reductions achieved by the bit
streams generated with the proposed algorithm result in smaller impacts on quality compared to the
state-of-the-art approaches. Thus, the decoding energy consumption reduction achieved for each 1 dB
PSNR loss is also relatively large for the proposed encoding algorithm.

(a) Dancer 1088 p (b) Musicians 1080 p (c) Parkscene 1080 p

Figure 6. An illustration of the variation of the ∆E, ∆PSNR ratio, i.e., ∆̂E (%/dB), with respect to the
bit rate for (a) Dancer, (b) Musicians and (c) Parkscene HD test sequences.

Table 4. Energy reduction performance during video streaming.

Sequence
Proposed L2 Proposed L2 He et al. [20] Nogues et al. [34] Herglotz et al. [46]

(Model Only) (Model + LF [34]) (PUM + DBLK) (MC + LF)

∆E † % ∆E ‡ % ∆E † % ∆E ‡ % ∆E † % ∆E ‡ % ∆E † % ∆E ‡ % ∆E † % ∆E ‡ %

Band −1.56 −5.61 −3.49 −7.71 −1.16 −3.49 −2.34 −5.47 −1.56 −5.03
Beergarden −2.22 −3.73 −2.78 −5.34 0.19 −2.53 −2.75 −5.52 −0.19 −4.91
Cafe −6.28 −12.61 −9.87 −14.26 −5.60 −7.41 −8.02 −13.83 −8.79 −12.38
Dancer −2.17 −5.19 −5.11 −7.59 −1.83 −4.13 −4.98 −8.42 −4.02 −6.51
GTFly −6.76 −11.26 −8.79 −13.17 −3.20 −5.48 −8.39 −11.39 −7.11 −10.58
Kimono −4.55 −11.16 −5.92 −12.61 −.72 −6.81 −8.56 −10.96 −4.90 −10.00
Musicians −2.11 −6.24 −4.06 −6.86 −1.12 −3.64 −1.53 −4.85 −2.68 −5.56
Parkscene −3.82 −6.74 −4.14 −7.33 −1.69 −3.52 −5.32 −8.82 −3.61 −7.79
Poznan St. −6.57 −7.41 −6.71 −7.04 −2.22 −8.36 −4.54 −7.12 −4.23 −7.51

Average −4.00 −7.77 −5.65 −9.10 −2.22 −5.04 −5.15 −8.48 −4.12 −7.80
† ∆E% achieved when using Linux ondemand frequency governor. ‡ ∆E% achieved when using an
application-specific DVFS algorithm as the frequency governor.
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Table 5. Decoding-complexity and energy reduction per 1 dB quality loss for the proposed and
state-of-the-art algorithms.

Sequence
Proposed L2 Proposed L2 He et al. [20] Nogues et al. [34] Herglotz et al. [46]

(Model Only) (Model + LF [34]) (PUM + DBLK) (MC + LF)

∆̃Γ ∆̃E † ∆̃E ‡ ∆̃Γ ∆̃E † ∆̃E ‡ ∆̃Γ ∆̃E † ∆̃E ‡ ∆̃Γ ∆̃E † ∆̃E ‡ ∆̃Γ ∆̃E † ∆̃E ‡

Band 10.97 1.75 6.30 12.30 2.56 5.66 15.45 2.52 7.58 5.08 0.78 1.82 6.44 0.65 2.11
Beergarden 5.65 1.76 2.96 7.03 1.38 2.65 2.37 -0.04 0.62 6.20 1.07 2.15 3.92 0.05 1.43
Cafe 4.15 3.12 6.27 4.79 3.08 4.45 13.5 10 13.23 8.24 3.78 6.52 3.63 2.13 3.01
Dancer 8.23 1.11 2.66 8.92 2.06 3.07 5.60 0.87 1.97 5.65 1.01 1.70 3.70 0.61 0.98
GTFly 8.76 3.65 6.08 10.39 3.92 5.87 9.25 2.88 4.93 5.63 1.71 2.33 4.46 1.21 1.80
Kimono 16.49 4.29 10.52 19.23 4.62 9.85 10.97 4.62 6.67 6.84 2.11 2.70 6.84 1.29 2.64
Musicians 16.03 2.04 6.05 20.23 3.50 5.91 6.77 0.68 2.23 4.64 0.25 0.81 4.15 0.42 0.88
Parkscene 17.71 3.97 7.02 17.31 3.04 5.38 6.42 0.83 1.73 9.35 1.78 2.95 4.88 0.69 1.50
Poznan St. 2.96 3.28 3.70 4.00 2.06 2.16 4.41 1.06 4.01 8.62 2.50 3.93 4.013 1.41 2.50

Average 10.11 2.77 5.73 11.58 2.91 5.00 8.30 2.60 4.77 6.69 1.66 2.77 4.67 0.94 1.87

The metrics ∆̃Γ (%/dB) and ∆̃E (%/dB) are both measured in terms of the ∆Γ(%) and ∆E(%) achieved per 1
dB PSNR quality loss for the proposed and state-of-the-art algorithms. † ∆̃E (%/dB) achieved when using
Linux ondemand frequency governor. ‡ ∆̃E (%/dB) achieved when using an application-specific DVFS
algorithm as the frequency governor.

5.3.5. Impact of the Proposed Encoding Framework on Different Decoders and CPU Architectures

The proposed encoding algorithm presented in this manuscript is based on the HM 16.0 reference
encoder and decoder implementations on an Intel x86 CPU architecture. For instance, the bpp
and MSE parameters defined in Section 3 are based on the corresponding values generated by the HM

16.0 encoder. Furthermore, cpp values utilized throughout the modeling phase in Section 3 correspond
to the decoding-complexity levels profiled for HM 16.0 decoder implementation.

The decoding-complexity level is tightly coupled with the implementation details,
CPU architecture, and hardware level optimization. Therefore, it is important that complete decoder
profiling is carried out for each decoder implementation on each CPU architecture to achieve an
optimal decoding-complexity/energy reduction. However, the focus of this work is to present a
framework which can be used to achieve decoding-complexity/energy reduction by generating joint
decoding-complexity and rate-controlled bit streams. Therefore, decoder profiling for individual
implementation and architecture is considered outside the scope of this work.

However, the experimental results presented in Tables 3–5 correspond to the decoding-complexity
and associated energy reductions when decoding bit streams use openHEVC decoder implementation
on an Intel x86 CPU. These results correspond to the decoding-complexity/energy reductions achieved
when bit streams are encoded with 40% less decoding-complexity to that of HM 16.0 decoder. Similarly,
the experimental results in Table 6 present the decoding energy reduction achieved when decoding
the bit streams using MXplayer [62] running on a Samsung Galaxy Tab A device that consists of an
Exynos 8890 processor with ARMv8 Instruction Set Architecture [63]. It can be observed that the
percentage energy reduction level is different to that in the Intel x86 results. However, overall, the
bit streams generated by the proposed algorithm outperform the energy reduction per 1 dB PSNR
quality loss compared to the state-of-the-art methods. Thus, the resultant energy reductions with the
proposed encoding framework with different CPU architectures and decoder implementations (even
though they are sub-optimal) are still significant, despite being optimized for a different encoding and
decoding architecture.
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Table 6. Decoder energy reduction performance on a RISC-based ARM CPU architecture.

Proposed L2 He et al. [20] Herglotz et al. [46]

Sequence
(Model Only) (PUM + DBLK)

∆E †

%
∆̃E ‡

(%/dB)
∆E †

%
∆̃E ‡

(%/dB)
∆E †

%
∆̃E ‡

(%/dB)

Band −20.89 −23.47 −6.37 −13.86 −29.03 −9.67
Beergarden −18.49 −14.67 −10.81 −2.66 −29.30 −11.44
Cafe −29.26 −14.56 −13.41 −23.95 −36.58 −17.25
Dancer −30.20 −15.49 −36.13 −17.28 −47.68 −9.67
GTFly −30.55 −16.51 −34.90 −31.44 −46.57 −9.54
Kimono −26.56 −25.06 −32.63 −31.99 −46.23 −11.41
Musicians −31.35 −30.44 −35.27 −21.64 −50.13 −8.38
Parkscene −31.36 −32.67 −38.07 −18.75 −47.68 −16.00
Poznan St. −20.63 −10.31 −10.96 −5.27 −31.16 −17.22

Average −26.59 −20.36 −24.28 −18.54 −40.49 −12.29

† ∆E%: energy reduction achieved when decoding the encoded video bit streams using MXPlayer [62] that
uses FFmpeg as a software codec. ‡ ∆̃E (%/dB): energy reduction achieved per 1 dB PSNR quality loss.

6. Conclusions

Fluctuations in network bandwidth and the limited availability of processing and energy resources
of consumer electronic devices demand video streaming solutions that adapt to changing network
and device constraints. In this context, although solutions such as HTTP adaptive streaming consider
the network bandwidth problem, adapting the transmitted video contents by considering both the
network bandwidth and an individual device’s energy constraints remains a compelling challenge.

To this end, this paper presents an encoding algorithm that can generate HEVC-compliant bit
streams with multiple arbitrary bit rate and decoding-complexity levels. The experimental results
with respect to the simultaneous bit rate and decoding-complexity control suggest that the proposed
algorithm achieves a target bit rate and a decoding-complexity level with 0.47% and 1.78% average
errors, respectively. Furthermore, the proposed algorithm demonstrates an average 10.11 (%/dB)
decoding-complexity reduction and up to 10.52 (%/dB) decoding energy reduction for 1 dB PSNR
quality loss compared to HM 16.0 encoded bit streams in an Intel x86 CPU architecture—a significant
improvement compared to the state-of-the-art techniques. In addition, the bit streams generated by
the proposed algorithm demonstrate 20.36 (%/dB) average energy reduction per 1 dB quality loss for a
RISC-based ARM CPU architecture. Finally, the future work will focus on developing the proposed
model into an adaptive video streaming solution that considers the end-to-end network and device
resource availability to determine coding parameters used to encode the streaming video.
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