Complex & Intelligent Systems (2021) 7:687-702
https://doi.org/10.1007/s40747-020-00233-5

ORIGINAL ARTICLE l‘)

Check for
updates

Embedded YARA rules: strengthening YARA rules utilising fuzzy
hashing and fuzzy rules for malware analysis

Nitin Naik'® - Paul Jenkins? - Nick Savage? - Longzhi Yang? - Tossapon Boongoen* . Natthakan lam-On#* .
Kshirasagar Naik® - Jingping Song®

Received: 6 July 2020 / Accepted: 5 November 2020 / Published online: 23 November 2020
© The Author(s) 2020

Abstract

The YARA rules technique is used in cybersecurity to scan for malware, often in its default form, where rules are created either
manually or automatically. Creating YARA rules that enable analysts to label files as suspected malware is a highly technical
skill, requiring expertise in cybersecurity. Therefore, in cases where rules are either created manually or automatically, it is
desirable to improve both the performance and detection outcomes of the process. In this paper, two methods are proposed
utilising the techniques of fuzzy hashing and fuzzy rules, to increase the effectiveness of YARA rules without escalating
the complexity and overheads associated with YARA rules. The first proposed method utilises fuzzy hashing referred to as
enhanced YARA rules in this paper, where if existing YARA rules fails to detect the inspected file as malware, then it is
subjected to fuzzy hashing to assess whether this technique would identify it as malware. The second proposed technique
called embedded YARA rules utilises fuzzy hashing and fuzzy rules to improve the outcomes further. Fuzzy rules countenance
circumstances where data are imprecise or uncertain, generating a probabilistic outcome indicating the likelihood of whether
a file is malware or not. The paper discusses the success of the proposed enhanced YARA rules and embedded YARA rules
through several experiments on the collected malware and goodware corpus and their comparative evaluation against YARA
rules.

Keywords Malware analysis - YARA rules - Fuzzy rules - Fuzzy logic - Fuzzy hashing - Cybersecurity - Ransomware -
Indicator of compromise - IoC string

Introduction ing malware families and finding Indicator of Compromise
(IoC) strings. YARA rules are very effective due to their cus-
YARA is an established malware analysis technique, discov- tomisable features by which any individual or enterprise can

ering malware based on their strings and signature matching develop their own rules as per their requirement for target-
[47]. YARA rules are written based on reverse engineer-

Jingping Song
<X Nitin Naik songjp@swc.neu.edu.cn
n.naik1 @aston.ac.uk
School of Informatics and Digital Engineering, Aston

Paul Jenkins University, Birmingham, UK

paul.jenkins @port.ac.uk

. School of Computing, University of Portsmouth, Portsmouth,
Nick Savage UK

nick.savage @port.ac.uk
Department of Computer and Information Sciences,

Longzhi Yang Northumbria University, Newcastle upon Tyne, UK

longzhi.yang @northumbria.ac.uk

Center of Excellence in Al and Emerging Technologies,
School of Information Technology, Mae Fah Luang
University, Chiang Rai, Thailand

Tossapon Boongoen
tossapon.boo@mfu.ac.th

Natthakan Tam-On 5

Department of Electrical and Computer Engineering,
natthakan@mfu.ac.th

University of Waterloo, Waterloo, Canada
Kshirasagar Naik 6

. Software College, Northeastern University, Shenyang, China
snaik @uwaterloo.ca

Dieliase cllodi ay .
bes Shens) Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00233-5&domain=pdf
http://orcid.org/0000-0002-0659-9646

688

Complex & Intelligent Systems (2021) 7:687-702

ing specific attacks and security threats [23]. However, an
inappropriate type or number of [oC strings could signif-
icantly affect the effectiveness and performance of YARA
rules by impeding the malware analysis process [8]. Fur-
thermore, the efficacy of the analysis is dependent on the
relevance and number of rules, ensuring there is sufficient
rules to perform the analysis, as if the applied YARA rules
are unfitting, inadequate or excessive then it may affect the
outcome and performance of the malware analysis negatively
[15,28]. There are two common routes to improve YARA
rules and its effectiveness: (A) Generating extensive YARA
rules and (B) Generating optimised YARA rules.

Generating extensive YARA rules and associated
issues

One of the most common and simplest ways to improve
YARA rules is to increase the number of IoC strings by
extending the search criteria. This will generate more exten-
sive YARA rules covering a greater range of indicators
assisting YARA rules to discover malware more effectively.
However, generation of effective YARA rules using such a
method may have some serious issues, for example:

1. Increasing a large number of IoC strings can gradually
cause YARA rules to become more cumbersome and
complex, which can adversely affect the performance of
YARA rules [2,8].

2. Generating extensive YARA rules requires security exper-
tise and is a difficult task for ordinary users whether by
writing such YARA rules manually or modifying auto-
matically generated rules, both styles [9,15].

3. Including a large number of IoC strings might match a
large number of malware samples, including benign ones,
thus increasing the number of false positive [11,15].

Consequently, discovering a simpler way to make YARA
rules more efficient without increasing the IoC strings sig-
nificantly is a laudable aim. The first technique proposed,
called enhanced YARA rules, in which a fuzzy hashing tech-
nique is used to enhance YARA rules instead of increasing the
number of IoC strings. This can improve the effectiveness of
YARA rules without significantly increasing the complex-
ity and overheads of YARA rules. The proposed method
utilises an additional fuzzy hash function alongside basic
YARA rules, thus both techniques complement each other,
so that when one method cannot find a match, then the other
can and vice versa. The experimental result demonstrates
that the proposed enhanced YARA rules produce improved
results in comparison with basic YARA rules.

Dieliase ¢llodi ay .
bes Shenas Q) Springer

Generating optimised YARA rules and associated
issues

The majority of proposed methods to optimise YARA rules
are focused on generating effective rules utilising some intel-
ligent mechanisms. However, generation of effective YARA
rules using such methods may be computationally complex
or may not address several common issues related to its exe-
cution and outcome [9,11,15], which could be crucial in
improving the effectiveness of YARA rules while utilising
IoC strings, for example:

1. YARA rules may not identify a sample as malware even
on matching with several strings in any rule, as it may
be below the set threshold of the condition in that rule.
Indeed, this set threshold of the condition in a rule is
determined by the in-house security expert on YARA rule
creation.

2. YARA rules may not identify a sample as malware even
on matching with several strings in several rules, as it
may be below the set threshold of the condition in all the
rules. However, the sum of the matched strings in all the
rules could be much higher than the set threshold of the
condition in any one rule.

3. YARA rules are commonly used as a method to deter-
mine whether a sample is malware or not, irrespective
of its other significant findings, thus not considering any
probability between true and false (i.e., 1 and 0).

All these issues are related to the execution of YARA
rules, although not its generation; therefore, it is difficult to
manage these issues through the optimised rule generation
mechanism. However, all these issues can be resolved if all
the information generated by YARA rules during the execu-
tion phase are collected and utilised effectively, which may
be generally ignored or lost. Therefore, there is a require-
ment to discover a mechanism to capture such ignored or
lost information and utilising it effectively to improve the
successfulness of YARA rules. This paper proposes a sec-
ond technique called embedded YARA rules, in which all
the information generated by YARA rules during the execu-
tion phase is captured and utilised by fuzzy rules to enhance
YARA rules instead of focusing on rule optimisation. The
captured information is used in the fuzzy rule-based system
to generate more useful and comprehensive outcomes, which
is usually not possible using basic YARA rules and enhanced
YARA rules individually. The benefit of using fuzzy rules is
that it can complement YARA rules for several fuzzy opera-
tions and improve the effectiveness of existing YARA rules
without requiring any intelligent mechanism in the rule gen-
eration process. The experimental result demonstrates that
the proposed embedded YARA rules produce better results

Complex & Intelligent Systems (2021) 7:687-702

689

in comparison with basic YARA rules and enhanced YARA
rules.

This paper is organised into the following sections: “Back-
ground: techniques employed for malware analysis” dis-
cusses the chosen malware analysis techniques YARA rules,
fuzzy hashing and import hashing. “Related work: recentmal-
ware analysis techniques applied to ransomware” presents
the malware (ransomware) related work and discusses some
of the recently proposed static and dynamic detection method
for ransomware. “Data collection: collection of Malware
(Ransomware) and goodware samples” explains the col-
lection and verification process of chosen malware (ran-
somware) samples including goodware samples. “Experi-
mental evaluation of employed techniques: malware analysis
using fuzzy hashing, import hashing and YARA rules”
presents the experimental evaluation of the selected meth-
ods: fuzzy hashing, import hashing and YARA rules on
the collected malware and goodware. “Proposed technique-
I:malware analysis using proposed enhanced YARA rules”
discusses the first proposed technique enhanced YARA rules
and its testing results on the collected malware and goodware.
“Proposed technique-II:malware analysis using proposed
embedded YARA rules” discusses the second proposed tech-
nique embedded YARA rules and its testing results on the
collected malware and goodware. “Advantages and limita-
tions of the proposed technique” presents some of the main
advantages and limitations of the proposed embedded YARA
rules. Lastly, “Conclusion” presents the summary of the
research work and suggests some future work.

Background: techniques employed for
malware analysis

YARA rules

YARA rules are developed to detect malware by primarily
matching its signatures/strings with the existing malware sig-
natures/strings [33,47]. These rules contain predetermined
signatures/strings related to known malware used in attempt-
ing to match against the targeted files, folders, or processes
[32]. YARA rules consist of three sections: meta, strings and
condition as shown in Fig. 1. Here, strings can be classified
into three types of strings: text strings, hexadecimal strings
and regular expression strings (see Fig. 1). Text strings are
generally a readable text complemented with some modifiers
(e.g., nocase, ASCII, wide, and fullword) to manage the pro-
cess more effectively [1]. Hexadecimal strings are a sequence
of raw bytes complemented with three flexible formats: wild-
cards, jumps, and alternatives [1]. Regular expression strings
are similar to text strings as a readable text complemented
with some modifiers, which are available since version 2.0
and increases the capability of YARA rules [1].

rule RuleName rule WannaCry
{ {
meta: meta:
description = “descriptions of rule” description = “Generic Signature of WannaCry”
author = “name” author = “Nitin Naik”
date = “dd/mm/yyyy” date = “01/06/2018"
reference = “url” reference = “www.mydomain.com”

strings: strings:
Stext_string1 = “text1 you wish to find in malware” Stext_stringl = “encrypt”
Stext_string2 = “text2 you wish to find in malware” Stext_string2 = “bitcoin”

Shex_string1 = {hex1 you wish to find in malware}
Shex_string2 = {hex2 you wish to find in malware}

Shex_stringl = {B6 D3 56 A5 78 43}
Shex_string2 = {E8 27 F9 83 C4 82}

Sreg_exp_string1 = /regular expressions1 you wish to find in malware/
Sreg_exp_string2 = /regular expressions2 you wish to find in malware/

Sreg_exp_stringl = /md5: [0-9a-fA-F){32}/
Sreg_exp_string2 = /state: (on|off)/

condition:
Stext_string or Stext_string2 or
Shex_stringl or Shex_string2 or
Sreg_exp_string1 or Sreg_exp_string2
} }

condition:
Stext_string or Stext_string2 or
Shex_string1 or Shex_string2 or
Sreg_exp_stringl or $reg_exp_string2

Fig.1 YARA rules: syntax and example

Text strings and regular expression strings which can be
used to express a sequence of raw bytes through the use of
escape sequences. The final part of YARA rules is a rule con-
dition that specifies the number of signatures/strings required
matching with the target to alert the sample as malware [36].
YARA conditions determine whether to trigger the rule or
not, however, these conditions are Boolean expressions sim-
ilar to those used in a number of computer programming
languages [1]. Consequently, this aspect of YARA rules can
be strengthened by embedding fuzzy rules, thus improv-
ing the functionality and performance of YARA rules. This
embedding may be very helpful for effective decision mak-
ing, when YARA rules are more complex in nature, resulting
in multiple complex conditions, which may not be dealt effi-
ciently on their own.

Fuzzy hashing

Cryptographic hash and fuzzy hash techniques are utilised in
security analysis in an attempt to detect malware when inves-
tigating both the integrity and similarity of files of interest.
When considering these techniques, the behaviour of mal-
ware creators is worth reflecting upon, as many use existing
malware as the basis of their new strain creation, and it is this
behaviour which determines the importance of the different
techniques. Therefore, of these two techniques, it is the simi-
larity which is of greater importance [18]. In a fuzzy hashing
technique, the file of interest is split into several blocks and
each block is treated separately in calculating its hash, finally,
hashes of all the blocks are concatenated to obtain the fuzzy
hash of that file (see Fig. 2). A number of factors affect the size
of the fuzzy hash of a file, comprising of the block size, the
size of the file and the output size of the chosen hash function
[45]. Fuzzy hashing methods are divided into different types
namely: Context-Triggered Piecewise Hashing (CTPH), Sta-
tistically Improbable Features (SIF), Block-Based Hashing

Dieliase cllodi ay .
bes Shens) Springer

Fig.2 Fuzzy hash generation process in a fuzzy hashing method

:I' IMPHASH

690 Complex & Intelligent Systems (2021) 7:687-702
Divide File Generate Hash for Concatenateall
into Segments each Segment Hashes to generate #
Fuzzy Hash
F Segment 1 —){ Hash 1 {
Fuzzy Hash =
Hash 1 + Hash 2 + Hash 3 + Hash N '—{
| Segment 2 [Hash 2
— — FU|zzY | HA|SH {
L Segment 3 X Hash 3 ﬂ
E Segment N [==)| Hash N ﬂ

(BBH) and Block-Based Rebuilding (BBR) [5,12,41]. Foren-
sic analysis of malware requires a thorough knowledge of the
degree of similarity between known malware and inert files to
assess files for their threat potential [35]. This is especially
important when considering the analysis and clustering of
suspected malware in order to discover new variants [30].
As a result, the use of the similarity preserving property of
fuzzy hashing is useful in malware analysis while comparing
unknown files with known malware families during malware
analysis, where samples possess the similar functionality, yet
different cryptographic hash values [28,29].

SSDEEP

The SSDEEP fuzzy hashing technique was specially cre-
ated to distinguish spam or junk emails [18]. It splits a file
into several blocks depending on the data given in the file.
These blocks and their endpoints are created by employing
Adler32 function involved in a rolling hash method [45]. Sub-
sequently, a hash is created for each block and finally, hashes
of all the blocks are concatenated to obtain the fuzzy hash
of that file. The Damerau—Levenshtein distance measure is
used to compute the similarity distance of concerning files.

SDHASH

The SDHASH fuzzy hashing technique discovers common
and uncommon attributes in a file and matches the uncom-
mon attributes with those in another file to find the degree of
similarity of concerning files [40]. Normally an attribute is
a 64-byte string and is detected based on the calculation of
entropy. The SDHASH fuzzy hash of a file is computed by
employing SHA-1 hash function and Bloom filters. A Bloom
filter is a probabilistic and space-efficient data structure used
to establish that an element is a member or not a member of
the set. The Hamming distance measure is used to compute
the similarity distance of concerning files.

jillate ¢llodl By .
bes Shenas Q) Springer

Fig. 3 Import hash (IMPHASH) is generated based on the Import
Address Table (IAT) in a portable executable (PE) File

mvHASH-B

The mvHASH-B fuzzy hashing technique focuses on pre-
serving the data unchanged in the case where there is a minor
change between files, it ensures the same hash value while
preserving the similarity. Nonetheless, mvHASH-B uses the
concept of majority voting to transform the input data, encod-
ing the majority vote bit sequence with Run-Length Encoding
(RLE), and finally generating the mvHASH-B fuzzy hash
employing Bloom filters [4]. Furthermore, it employs its own
outlined hash function which is comparable with the standard
SHA-1 function and having better run time efficiency than it.

Import hashing

Import hashing is one of the fastest analysis techniques used
to determine the similarity of two malicious programs [22].
Unlike other hashing techniques, which generate hash of a
complete file, import hashing only generates a hash of a
small part (i.e. Imports or Import Libraries) of a Portable
Executable (PE) file (see Fig. 3). Imports/Import Libraries
are simply functions called by a program (here, malware)
from other programs, which are to be bound and linked with
the program to build the final executable program [22]. The
details of Imports/Import Libraries (DLLs) are maintained
in the Import Address Table (IAT), which is the basis of
the generation of IMPort HASH (IMPHASH) of a program,
where the order in which the Import Libraries are called
determines the value of the generated IMPHASH. Thus, two
programs that were compiled with similar code except with
a different order of Import Libraries will generate different
IMPHASH values. This method is analogous to fuzzy hash-
ing with regard to its speed, computation, complexity and
hash size, however, it is noteworthy that IMPHASH provides

Complex & Intelligent Systems (2021) 7:687-702

691

Crisp Set A

\ Fuzzy Set A

Hx)

Membership value

Support

Fig.4 Fuzzy set and crisp set

a binary similarity result, rather than the degree of similarity
of two files.

Fuzzy rules

Fuzzy logic is a superset of propositional or Boolean logic
which s extended to represent the degree of truth/membership
in the range of 0 (false/non-membership) and 1 (true/full-
membership), which is shown by comparing fuzzy set and
crisp set in Fig. 4. Fuzzy rules are the core component of any
fuzzy system that articulates the knowledge of that system in
fuzzy logic [10]. A fuzzy rule is written as an If-Then rule
in the form of: If antecedent(s) Then consequent(s), where
antecedent and consequent are fuzzy propositions that con-
tain linguistic variables. For example a descriptive fuzzy rule
can be written as:

If xis Aand yis BThenz = C

(Mamdani Fuzzy Rule [21]) (1)
I1f xis Aand yis B Thenz = f(x,y)
(Takagi — Sugeno Fuzzy Rule [44]) 2)

These rules contain two inputs x and y (antecedents) and
an output z (consequent), two fuzzy sets A and B in the
antecedent and a fuzzy set C in the consequent. Fuzzy rules
mimic human thinking and are based on human experience.
These rules are derived by experts of the specific area or from
the collected dataset [10]. Fuzzy rule-based systems can man-
age imprecise and incomplete data and include a broad range
of conditions, which may not be possible in Boolean logic
[24]. Consequently, fuzzy rules are the most effectual mech-
anism to resolve conflict in multiple criteria conditions and
assessing the most proficient option accordingly. Addition-
ally, these rules are readily customisable similar to YARA
rules.

Related work: recent malware analysis
techniques applied to ransomware

Numerous detection techniques for malware have been pro-
posed previously, however, very few techniques focused
on ransomware. Recently, some static and dynamic anal-
ysis methods have been proposed to detect ransomware,
which are discussed here. The dynamic analysis method
UNVEIL checks any tampering activity related to files and
data [16]. Similarly, a dynamic machine learning method
EldeRan monitors a set of actions performed by applica-
tions as signs of ransomware [43]. Another dynamic analysis
method HelDroid is particularly designed for mobile devices
that detects if an app is attempting to lock or encrypt
the device without the user’s consent [3]. The dynamic
analysis method R-Locker is developed for detecting and
preventing ransomware by employing honeyfiles (a FIFO
file structure) to block ransomware once it starts reading the
file [13].

These dynamic methods are more effective than static
methods in detection, however, their disadvantage in detect-
ing ransomware is that they require the successful loading
and running of ransomware to demonstrate their expected
behaviour or characteristics. If the infected ransomware is
able to evade the method due to its silent behaviour for some
time or waiting for some specific activity from users, then
it is already too late for those affected users. Moreover,
depending on the requirement of emulation or virtualiza-
tion for the dynamic method, several efficient ransomware
variants will not perform any action and thus cannot be
detected by that method. Furthermore, if the detection policy
of the dynamic method is matched with the activity of good-
ware then that dynamic method may generate several false
positives.

Alternatively, a static analysis method can safely examine
the ransomware samples without running them and affect-
ing the data and user, leading to a safer analysis of malware.
However, most static analysis and detection methods [6,7,37]
require greater computational overheads and suffer from
false positives and negatives. The proposed methods for
detecting and predicting ransomware are a static analysis
method, which require fewer computational overheads and
performs rapid comparative analysis, in comparison to other
static analysis methods.

Data collection: collection of malware
(ransomware) and goodware samples

In this implementation, one of the most prevalent malwares,
ransomware was selected to perform all analysis and eval-
uating the effectiveness and performance of the proposed
techniques. Ransomware was selected for the experiment as

Dieliase cllodi ay .
bes Shens) Springer

692

Complex & Intelligent Systems (2021) 7:687-702

it is one of the most relevant and damaging malware that
exploits victims for financial gain, business disruption and
market share. Numerous types of ransomware were created
and used in cyberattacks, though, some ransomware cate-
gories were worthy of greater focus due to their historical
significance, severity of attack and financial loss. Based on
primary research, four ransomware categories were targeted
for this work WannaCry, Locky, Cerber and CryptoWall
[17,20,37,42]. Thousands of malware samples were acquired
from the two sources Hybrid Analysis [14] and Malshare
[19]. Later, these samples were verified for their credibil-
ity as numerous samples were simply fake. It was critical to
select only credible samples of a specific category as a ref-
erence to test all selected malware analysis methods and the
proposed technique successfully. These samples were inves-
tigated based on the information available on VirusTotal [46].
To determine that every sample was indeed genuine malware
or ransomware and were members of a specific ransomware
category, the criterion was set that it must be identified as mal-
ware by at least 40 or more detection engines on VirusTotal.
To check the ransomware category of collected samples, their
category from WannaCry, Locky, Cerber and CryptoWall
was verified manually on the recognized detection engines
on VirusTotal. This sample collection and verification pro-
cess was both lengthy and time consuming, leading to 1000
ransomware samples being selected out of several thousand
samples, these were equally divided into 250 samples of four
ransomware categories WannaCry, Locky, Cerber and Cryp-
toWall. The four different categories of ransomware were
chosen to evaluate how each employed and proposed mal-
ware analysis method works on the different categories of
ransomware.

In addition to the collection of malware (ransomware)
samples, equal numbers of goodware samples were collected
to balance this analysis. These 1000 goodware samples were
the files collected from ten commonly used software: JAVA,
MS OFFICE, Google Chrome, MySQL, R, NMAP, McAFee,
MATLAB, Python and Snort. These ten different software
samples were chosen in such a way that it could cover wide
range of benign programs and to evaluate how each employed
and proposed malware analysis method works on the differ-
ent types of benign program. Finally, a total 2000 samples
were utilised to perform all the experiments applying all
employed and proposed malware analysis methods.

Experimental evaluation of employed
techniques: malware analysis using fuzzy
hashing, import hashing and YARA rules

In this research work, three different malware analysis meth-
ods fuzzy hashing, import hashing and YARA rules are
employed to perform static analysis on the collected ran-

Dieliase ¢llodi ay .
bes Shenas Q) Springer

somware (WannaCry, Locky, Cerber and CryptoWall) and
goodware samples. All three analysis methods are employed
to perform static analysis which is generally fast, efficient and
resource-optimised [28]. Fuzzy hashing and import hashing
are relatively compact, fast and resource-optimised analysis
methods [26,27]. In addition to the accuracy of malware anal-
ysis results, these criteria are very decisive in determining
the appropriate method for the analysis of a large volume of
malware [34]. This section discusses the methodology and
experiment of each analysis method for the collected ran-
somware samples. The experiment is aimed at illustrating
the similarity detection success rate of each analysis method
for each ransomware category separately and collectively. It
is expected and most probable that each sample of the same
category holds some similarity to other samples in that cat-
egory. Therefore, experiments evaluate how many samples
within one category are matched with at least one other sam-
ple of the same category by each analysis method.

Fuzzy hashing: methodology

Fuzzy hashing generates a fuzzy hash value when it is applied
on an unpacked ransomware sample. This fuzzy hash value
can be matched against either already identified ransomware
samples or their fuzzy hash values. If the fuzzy hash of a
sample in question matches with any of the pre-identified
ransomware samples or its fuzzy hash value then the fuzzy
hash result is generated as a degree of similarity between the
two [34]. This fuzzy similarity result is presented in the range
of 1% (least matched) to 100% (exactly matched), however, it
is entirely at the discretion of security experts how this value
is interpreted depending on their analysis requirement [34].
Generally, a threshold value can be set to accept or ignore
the fuzzy similarity score and to determine as matched or not
matched scenarios respectively. The fuzzy hashing should
only be used as an initial investigation that may assist in any
further analysis but not as a conclusive result [29].

Fuzzy hashing: experiment

The SSDEEP, SDHASH and mvHASH-B fuzzy hashing
methods were used to detect similarity for each ransomware
category separately. It was important to assess the per-
formance of these three methods in different threshold
conditions for comparison purposes; therefore, their sim-
ilarity detection results were evaluated in four different
conditions: (1) when all the fuzzy similarity scores were
considered (1-100%), (2) when those fuzzy similarity scores
were considered which are greater than 10%, (3) when those
fuzzy similarity scores were considered which are greater
than 20%, and (4) when those fuzzy similarity scores were
considered which are greater than 30% [34]. The four evalu-
ation results for four ransomware categories are presented in

Complex & Intelligent Systems (2021) 7:687-702

693

Table 1. One of the most important findings in all four evalu-
ation results is that the results of SDHASH and mvHASH-B
fuzzy hashing methods decreased and in some cases quite
significantly as the similarity threshold value increased. The
detection rate of the SSDEEP fuzzy hashing method is lower,
however, consistent in all four experiments. At the final sim-
ilarity threshold limit of 30%, most SSDEEP results are
superior to the other two fuzzy hashing methods. This find-
ing is crucial when utilising these similarity detection results
in further analysis as the proposed method and subsequent
analysis (e.g., clustering or classification) results will be
dependent on them [26,29].

Import hashing: methodology

Import hashing generates an IMPHASH hash value when it
is applied on an unpacked ransomware sample. Later, this
IMPHASH hash value can be matched against either exist-
ing identified ransomware samples or their IMPHASH hash
values. If the IMPHASH hash matches with any of the pre-
identified ransomware samples or its IMPHASH hash value,
then the result is generated as a matched sample with one
or more samples. However, it does not provide a degree of
similarity, rather a binary output (i.e. either matched or not
matched) [34]. The import hashing should only be used as an
initial investigation that may aid in any further analysis but
not as a conclusive result [28].

Import hashing: experiment

The import hashing method was used to detect similarity for
each ransomware category separately. The similarity detec-
tion results for all the four ransomware categories are shown
in Table 2. The import hashing result is a mixed result when
compared with the fuzzy hashing results. In one case, it is
somewhat better, however, in other cases, it is slightly lower.
It is worth noting that import hashing can only be used on
the PE file format, therefore, its effectiveness depends on the
type of samples investigated [34].

YARA rules: methodology

Fuzzy hashing and import hashing both generate a hash
value of the examined samples and find similarity with the
existing malware samples, whereas YARA rules include IoC
strings extracted from the existing malware samples to find
their similarity with the examined samples. YARA rules are
very different from hashing as rule generation requires a
reverse engineering process. It requires an in-depth analy-
sis of malware and their family to generate YARA rule(s) for
specific malware or their family. Therefore, generation of
effectual YARA rules demands effort and expertise, unlike
both hashing methods, where untrained personnel can apply

the process of hash generation to generate hashes and perform
the analysis [34]. YARA rules can be generated manually
or automatically, whilst automatic rule generation is easier
than the manual process, however, it may require some post-
processing operations to optimise them. Here yarGen tool
[39] is employed to generate the YARA rules for all ran-
somware samples. This tool generates two types of rules
ordinary rules and super rules depending on malware types by
utilising some intelligent techniques such as Fuzzy Regular
Expressions, Naive Bayes Classifier and Gibberish Detector
[38]. All the basic YARA rules generated for ransomware
samples contain up to 20 strings based on their highest scores
and do not include IMPHASH as it is employed as one of the
analysis method in this research work.

YARA rules: experiment

Once YARA rules are generated for all four ransomware cat-
egories separately, they are used to detect similarity for each
ransomware category separately. The similarity detection
results for all four categories are shown in Table 3. The result
of YARA rules is a mixed result when compared with the both
hashing results, as in two cases it is slightly improved, and in
others it is not. However, there is a caveat here as these basic
YARA rules were generated by yarGen with its default set-
tings, it means different YARA tools may generate different
rules which might produce different results [25]. Further-
more, if the number of strings and attributes are increased
or decreased then it may change the analysis results. If the
number of strings and attributes are significantly increased,
then it adversely affects the performance of YARA rules as
malware analysis is always performed on a large sample size.

When comparing the results of these three employed
methods, each method performed slightly better and slightly
worse, and it is difficult to determine the best analysis method
for all given scenarios. Consequently, further investigation is
required for how to improve the effectiveness of these analy-
sis methods. YARA rules are customisable and contain some
advanced features, whereas fuzzy hashing can be a compact
and add more value to YARA rules. Therefore, their consid-
ered combination may offer some improvements in malware
analysis.

Proposed technique-I: malware analysis
using proposed enhanced YARA rules

Enhanced YARA rules: methodology

As previously mentioned, IoC strings are a critical com-
ponent of YARA rules which determines its success, in
particular, how many strings and how they are selected for a
rule [34]. Conversely, attackers continuously try to identify

Dieliase cllodi ay .
bes Shens) Springer

Complex & Intelligent Systems (2021) 7:687-702

694

¥'0¢

8°0¢

8°9¢

9°¢8

¥'0C

¥C

8'CE

%Y

8¢C

8¢

8¢C

8¢

9¢

8'9¢

Y06

816

%0¢€
< $21098

Kyrrerwats
'8¢ 9'¢e 9'ce ¥'0€ 91y '8 06 806 Kzzng
%0¢
< $21008
KjLreqrwars
9LE 9'¢e ¥'9¢ 9'¢e 91y '8 06 cl6 Kzzng

%01
< $91098

Kyrrerwats
879 9'¢e 9 ¥'8¢ (44 06 9°¢6 l6 Kzzng
(%001-1)
$9100S
KjLrerwais
TIL 9'¢e YL ¥'8¢ [4% 06 9'¢6 16 Kzzng

(9) 9ex
uornodap

q-HSVHAW

(o) arex
uorn0Jop

HSVHAS

(o) e
EOEUOHOU

d34dssS

(2) anex
uonoaep

q-HSVHAW

) ows (p)awr () aws (p)aws (A (p)awr (p)ows (%)
uonosaep uondAep uonodAep uonoaep uonoalep uonosalep uonodANap uonodAap BLIANLID
HSVHAS d93dSS g-HSVHAW HSVHAS dd3dSS d-HSVHAW HSVHAS d94dssS Sumyoey

aremwosuer [JemoydL1)

Surysey
QIEMTIOSUEBT 190G aremuwosuer £Y00| QremwosueT AID)euuBA\ Kzzng

spoyiow Surysey Azzny g-HSYHAW pue HSYHAS ‘dIAdSS JO SHNS1 uonoajop Ajue[mus | ajqe)

V4
4

\/

80 @ Springer

KACST a.141lg oglel)

Ljsllase ¢

Complex & Intelligent Systems (2021) 7:687-702

Table 2 Similarity detection results of import hashing

Ransomware category Import hashing detection rate (%)

WannaCry ransomware 87.6
Locky ransomware 31.6
Cerber ransomware 61.6
CryptoWall ransomware 27.2

Table 3 Similarity detection results of YARA rules

Ransomware category YARA rules* detection rate (%)

695
Assessment
Samples for Result with
Initial YARA | Degree of
Assessment Rules Similarity
| D
Fuzzy | |
Hash

Fig.5 Fuzzy hashing aided enhanced YARA rules

WannaCry ransomware 89.6
Locky ransomware 544
Cerber ransomware 77.2
CryptoWall ransomware 27.6

YARA Rules*: These rules are generated by yarGen tool utilising
machine learning methods Fuzzy Regular Expressions, Naive Bayes
Classifier and Gibberish Detector, where simple rules contain up to the
20 highest scored strings

such detection methods and attempt evasion using intelli-
gent modifications in their malware. If only few or none of
the selected strings are found in the targeted samples then
YARA rules do not flag samples as malware even though
they may be malware [34]. Adding a large number of strings
inrules may increase the computational complexity and over-
heads affecting the performance of YARA rules significantly.
Moreover, to write such complex YARA rules or modify
automatically generated rules, a high degree of expertise
is required in the cybersecurity [2,8,9]. Consequently, it is
essential to find a simple solution to make YARA rules more
efficient without incurring all the complexities stated earlier.
This requires exploring some alternative mechanisms other
than IoC strings to enhance YARA rules. Fuzzy hashing is a
relatively compact, fast and resource-optimised mechanism
employed for analysis which may not be effective in isola-
tion; however, it may complement YARA rules enhancing
its analysis performance without affecting complexity sig-
nificantly [28,31]. Fuzzy hashing attempts to find structural
similarity between the two files in their entirety in circum-
stances where the selected IoC strings cannot be found in
the sample [34]. Furthermore, fuzzy hashing can provide the
degree of similarity of each matched sample alongside the
outcome of YARA rules which is not achievable in YARA
rules alone [34]. Occasionally, both methods can comple-
ment each other in finding a missed opportunity by one of
the methods. Therefore, the collective search result of these
two methods can increase the accuracy and confidence level
of the overall analysis [34]. The logical approach for the
implementation of enhanced YARA rules is shown using the
pseudocode in Algorithm 1 and Fig. 5.

Algorithm 1: Pseudocode of Enhanced YARA Rules

S, Set of Samples for Investigation

R, Set of YARA Rules

$, Set of Strings in a YARA Rule

[, Set of Fuzzy Hashes of Known Malware

F, Fuzzy Hash Value

Br, YARA String Count Threshold

87, Fuzzy Hash Similarity Threshold

A, Degree of Similarity

C, Counter for Matched Strings

for (i =1;i <|S|;i ++)do

for (j=1;j < |R[; j++)do

for (k=1;k < |$|; k + +) do
if $; € S; then

Cij++

it % C; ;> pr OR A(Fs, F)=>6r [F €F]then

return YARA Rule

Enhanced YARA rules: experiment

The enhanced YARA rules were developed based on the three
employed fuzzy hashing methods SSDEEP, SDHASH and
mvHASH-B. These three different fuzzy hashing methods
based enhanced YARA rules were evaluated to determine
two hypotheses: whether this integration was successful or
not, and if successful, then which fuzzy hashing method
produced greater accuracy in results [34]. The similarity
detection results of enhanced YARA rules utilising three dif-
ferent fuzzy hashing methods for all the four ransomware
categories are shown in Table 4. Here, the fuzzy similar-
ity scores greater than 30% were utilised for all the three
fuzzy hashing methods. Noticeably, enhanced YARA rules
with all the three fuzzy hashing methods showed a minor
improvement, but SSDEEP fuzzy hashing contributed to the
highest improvement in the overall result of analysis [32,34].
Interestingly, for one ransomware category Cerber, no fuzzy

Dieliase cllodi ay .
bes Shens) Springer

696

Complex & Intelligent Systems (2021) 7:687-702

Table 4 Similarity detection results of enhanced YARA rules utilising fuzzy hashing

Ransomware category Detection rate of enhanced (%)
YARA rules based on SSDEEP

(similarity score > 30%)

Detection rate of enhanced (%)
YARA rules based on SDHASH
(similarity score > 30%)

Detection rate of enhanced (%)
YARA rules based on
mvHASH-B- (similarity score

> 30%)
WannaCry ransomware 932 92.8 92
Locky ransomware 59.6 58 58.4
Cerber ransomware 712 712 77.2
CryptoWall ransomware ~ 38.4 34.8 344

Table 5 Comparison of similarity detection results of enhanced YARA rules with SSDEEP, SDHASH, mvHASH-B, IMPHASH and YARA rules

Ransomware category SSDEEP fuzzy SDHASH fuzzy mvHASH-B IMPHASH YARA rules Enhanced YARA
hashing hashing fuzzy hashing import hashing detection rate rules detection
detection rate detection rate detection rate detection rate (%) rate (%)

(%) (%) (%) (%)

WannaCry ransomware 90.8 90 84.4 87.6 89.6 93.2

Locky ransomware 41.6 30.4 33.6 31.6 54.4 59.6

Cerber ransomware 33.6 28.4 36 61.6 77.2 77.2

CryptoWall ransomware 28 20.4 20.4 27.2 27.6 38.4

hashing could improve the result of YARA rules, however,
in this case, YARA rules already produced better results than
other methods, which compensates the failure of fuzzy hash-
ing [34]. Alternatively, in all those categories where YARA
could not produce respectable results, fuzzy hashing assisted
improvement in the results, which is crucial for the success
of this integration. On the basis of this experimentation, the
SSDEEP based result of YARA rules is recommended as the
final results of enhanced YARA rules [32,34]. Furthermore,
SSDEEP is more compact, faster and a resource-optimised
fuzzy hashing method in comparison to the SDHASH and
mvHASH-B methods.

Comparative evaluation of the analysis results of
enhanced YARA rules with different analysis
methods

Comparison based on similarity detection results

Based on the experiment of enhanced YARA rules, the result
of the selected enhanced YARA rules (based on SSDEEP) is
compared against the analysis results of all other employed
analysis methods as shown in Table 5 and Fig. 6. Here,
basic YARA rules performed slightly better than the other
two analysis methods fuzzy hashing and import hashing.
Nevertheless, the proposed enhanced YARA rules (based on
SSDEEP) produced a slightly better result (67.1%) in com-
parison to the result (62.2%) of basic YARA rules. Despite
this improvement is not significant, it still shows the mod-

Lisllase cllad .
bes Shenas Q) Springer

100.00%
90.00%
80.00%

70.00% 67.10%
62.20% e
6000%
52.00%

w000 48.50%
42.30% 43.60%
0.00%
30.00%
20.00%
1000%

0.00%
SDHASH - Fuzzy mvHASH-B - Fuzzy IMPHASH -Import YARA Rules* Enhanced YARA

SSDEEP - Fuzzy
Hashing Hashing Hashing Hashing Rules

Similarity Detection Rate

Fig. 6 Comparison of an overall similarity detection rate of enhanced
YARA rules with all employed analysis methods

erate success of the integration of YARA rules and a fuzzy
hashing method.

Comparison based on evaluation metrics

For further comparative evaluation of the proposed enhanced
YARA rules (based on SSDEEP) with different analy-
sis methods, four evaluation metrics (Accuracy, Precision,
Recall and F1-Score) were calculated as shown in Table 6.
Here, the overall result of the proposed enhanced YARA
rules (based on SSDEEP), except Precision, is better than
all other analysis methods. In evaluating the effectiveness
of any analysis method decisively, a balance of Precision
and Recall is very important, therefore, F1-Score consist-
ing of both may be more helpful in determining a relatively
better analysis method. Here, the F1-Score of the proposed

Complex & Intelligent Systems (2021) 7:687-702 697
Table 6 Comparison of evaluation metrics for enhanced YARA rules with SSDEEP, SDHASH, mvHASH-B, IMPHASH and YARA Rules
Evaluation metric ~ SSDEEP fuzzy SDHASH fuzzy mvHASH-B IMPHASH YARA rules (%) Enhanced YARA
hashing (%) hashing (%) fuzzy hashing import hashing rules (%)
(%) (%)
Accuracy 74.25 71.15 71.80 76.00 79.80 83.55
Precision 100 90.19 90.08 100 95.99 96.27
Recall 48.50 42.30 43.60 52.00 62.20 67.10
F1-Score 65.32 57.59 58.76 68.42 75.49 79.08
enhanced YARA rules (based on SSDEEP) is 79.08%, which X:;:::r::ent Assessment
is better than the F1-Score of all other analysis methods. This Samples for VARA |Mndicators Result with
confirms that the proposed enhanced YARA rules (based on Initial Rules | | Fuzzy Rule
. . Assessment ules Indicator

SSDEEP) are more effective as compared to all other analysis | > Fuzzy
methods. Rules

Fuzzy | |

Hash

Proposed technique-ll: malware analysis
using proposed embedded YARA rules

Embedded YARA rules: methodology

The activation of any YARA rule is dependent on its condi-
tion, which is a Boolean expression and mainly utilised for
the binary decision, i.e. whether to activate that rule or not
[33]. This proposed approach focuses on this aspect of YARA
rules to improve the effectiveness of YARA rules during the
execution phase. The proposed embedded approach extends
the rule triggering condition of String Matching and adds
another additional condition of Fuzzy Hash Matching [33],
to demonstrate an initial concept of embedding (see Fig. 7).
However, it can be customised in a more complex way for
a number of parameters, multiple conditions and op-codes
depending on the specific requirement for malware analysis.
Almost all basic YARA rules rely on the most common String
Matching to trigger the rule, if the string matching count is
greater than or equal to the decided threshold in the rule, then
the rule will be triggered and the sample is flagged as mal-
ware [33]. However, if the string matching count is less than
the set threshold condition, then the rule is not triggered and
the sample is not flagged as malware. Despite the rule not
being triggered, it has produced significant information but
it is simply ignored or never utilised [33].

For the effective utilisation of such ignored or unused find-
ings of YARA rules, this proposed approach employs fuzzy
rules, especially in the event of no YARA rule being trig-
gered [33]. This embedding of fuzzy rules can complement
YARA rules to generate an improved indication where the
YARA rules simply do not generate an alert due to the limita-
tions of Boolean combinatorics. As discussed earlier, fuzzy
rules are more effective when working with complex mul-
tiple conditions, therefore, another additional condition of

Fig.7 Fuzzy rules and fuzzy hashing aided embedded YARA rules

Fuzzy Hash Matching is combined with the default String
Matching condition of YARA rules to demonstrate the use
of multiple conditions, and for optimising the overall perfor-
mance within this scenario [33]. Fuzzy hash is a compact and
effective mechanism to find structural similarity of malware
samples, which produces a similarity result as a percentage,
for ease of understanding [26,27,29]. Another advantage of
the proposed method over the use of YARA rules on their
own, fuzzy hash can produce a degree of similarity which is
not possible in basic YARA rules. The combination of these
two conditions for YARA rules leads to several alternative
outcomes, which can be efficiently managed with fuzzy rules
to produce the best possible combined results. The logical
approach for the implementation of embedded YARA rules
is shown using the pseudocode in Algorithm 2 and Fig. 7.
This proposed method can be adapted easily, as YARA rules
are fully customisable according to the specific requirement,
and thus fuzzy rules.

Embedded YARA rules: development of fuzzy rules

The embedding of fuzzy rules with YARA rules offers several
advantages, for example, fuzzy rules employ a value range
of a parameter to determine the degree of membership rather
than a binary membership, and generate an approximated
output based on several values/conditions of several param-
eters [33]. In this proposed approach, in addition to the rule
triggering condition of String Matching, another rule trigger-
ing condition of Fuzzy Hash Matching is added, and related to
these two conditions, two fuzzy input variables called YARA
String Count (YSC) and Fuzzy Hash Similarity (FHS) are

Dieliase cllodi ay .
bes Shens) Springer

698

Complex & Intelligent Systems (2021) 7:687-702

Algorithm 2: Pseudocode of Embedded YARA Rules

S, Set of Samples for Investigation

R, Set of YARA Rules

$, Set of Strings in a YARA Rule

IF, Set of Fuzzy Hashes of Known Malware

F, Fuzzy Hash Value

B, YARA String Count; S7, Threshold

8, Fuzzy Hash Similarity; §7, Threshold

A, Degree of Similarity

C, Counter for Matched Strings

for (i =1;i <|S|;i ++)do

for(j=1,j <|R[;j++)do

for (k =1;k < |$|; k ++) do
if $; € S; then

L Cij++
it % ¢, ;> pr OR A(Fs, F)=>6r [F € F]then
return Y ARA Rule

if Ejl‘ﬂillci > ﬂmin OR A(ng, FI) > 8min [Fl €]F] then
if zj'.ﬂi'lc,- > Br then

L return YARA Rule
else

L return Fuzzy Rule

derived respectively. The fuzzy output variable called Fuzzy
Rule Indicator (FRI) is derived from the two fuzzy input vari-
ables based on the Mamdani’s inference method [21]. The
three fuzzy sets Low, Medium and High for the first fuzzy
input variable YSC (8) are created in the range of 8, = 1
t0 Bmax = |$] (total number of strings in a YARA rule) and
divided them as shown in Fig. 8. Similarly, the three fuzzy sets
Low, Medium and High for the second fuzzy input variable
FHS () are created in the range of 8,,i;, = 10 to 8,4x = 100
(fuzzy similarity range in percentage) and divided them as
shown in Fig. 9. Finally, the fuzzy output variable is divided
into three fuzzy sets Less Likely Malware, Likely Malware,
and Most Likely Malware in the range of 1-100 as shown in
Fig. 10, to display the appropriate result using fuzzy rules.
The sample of fuzzy rules developed for this experiment is
illustrated here. Similarly, customised fuzzy rules can be cre-
ated for different and new parameters, multiple conditions
and op-codes depending on the specific requirement for the
specific malware analysis.

P4

y

Liglhte cllod ayao .
KACST il o @ Springer

Low Medium High

—

Membership Value

o

Bmin % ﬁT BT Bmax
YARA String Count (YSC)

Fig. 8 Generic fuzzy input variable—YARA string count (YSC) and
its fuzzy sets

Low Medium High

—_

Membership Value

o

Brin Yady &
Fuzzy Hash Similarity (FHS)

on
3
]

Fig.9 Generic fuzzy input variable—fuzzy hash similarity (FHS) and
its fuzzy sets

Less Most
Likely Likely Likely
Malware Malware Malware

—_

o Membership Value

0 10 20 30 40 50 60 70 80 90 100

Fuzzy Rule Indicator (FRI)

Fig. 10 Generic fuzzy output variable—fuzzy rule indicator (FRI) and
its fuzzy sets

Complex & Intelligent Systems (2021) 7:687-702

699

Fuzzy Rules
If YSC is Low AND FHS is Low
THEN FRI is Less Likely Malware
If YSC is Low AND FHS is Medium
THEN FRI is Likely Malware
If YSC is Medium AND FHS is Low
THEN FRI is Likely Malware
If YSC is Medium AND FHS is Medium
THEN FRI is Likely Malware
If YSC is Low AND FHS is High
THEN FRI is Most Likely Malware
If YSC is Medium AND FHS is High
THEN FRI is Most Likely Malware
If YSC is High AND FHS is High
THEN FRI is Most Likely Malware
If YSC is High AND FHS is Low
THEN FRI is Most Likely Malware
If YSC is High AND FHS is Medium
THEN FRI is Most Likely Malware

Embedded YARA rules: experiment

The embedded YARA rules were developed utilising a fuzzy
hashing method and fuzzy rules. Later, the similarity detec-
tion rate of embedded YARA rules was computed for all four
ransomware categories as shown in Table 7, which generated
the overall malware analysis result of 73.5% (detection suc-
cess rate) as shown in Fig. 11. This included the results based
on the two fuzzy categories Likely Malware and Less Likely
Malware, which were not possible using basic or enhanced
YARA rules alone [33]. This analysis result of the proposed
embedded YARA rules was again a moderate improvement
(6.4%) as compared to the enhanced YARA rules using only
fuzzy hashing. However, the overall improvement in similar-
ity detection rate was noteworthy (11.3%) as compared to the

100.00%

90.00%

80.00%
73.50%

a

4]
HN
o
ES

70.00%
62.20%

60.00%

50.00% T

40.00%

Similarity Detection Rate

30.00%

20.00% T

10.00%

0.00%

YARA Rules Enhanced YARA Rules Embedded YARA Rules

Fig. 11 Comparison of an overall similarity detection rate of YARA
rules, enhanced YARA rules and embedded YARA rules

basic YARA rules. This experimental evaluation shows that
the proposed embedded YARA rules with fuzzy rules can
produce slightly better results due to its capability to detect
malware below the set threshold conditions in the YARA
rules [33]. Thus, this approach can improve the effectiveness
of YARA rules, irrespective of how they are generated and
does not require any additional rule optimisation process.
For a more rigorous comparative evaluation of the pro-
posed embedded YARA rules with basic YARA rules and
the proposed enhanced YARA rules, four evaluation metrics
(Accuracy, Precision, Recall and F1-Score) were calculated
as shown in Table 8. Here, the overall result of the proposed
embedded YARA rules is better than both basic YARA rules
and enhanced YARA rules, thus the values of all four evalua-
tion metrics of the proposed embedded YARA rules are better
than their counterpart YARA rules. However, the proposed
embedded YARA rules generated false positive and false neg-
atives but fewer in comparison to both basic YARA rules and
enhanced YARA rules (see Precision Values and Recall Val-
ues respectively in Table 8). For evaluating the effectiveness
of any analysis method decisively, a balance of Precision and
Recall is very important, therefore, the F1-Score consisting
of both may be more helpful in determining a relatively better
analysis method. Here, F1-Score of the proposed embedded

Table 7 Comparison of similarity detection results of embedded YARA rules with enhanced YARA rules and YARA rules

Ransomware category YARA rules similarity detection

Enhanced YARA Rules (with

Embedded YARA rules (with

rate (%) fuzzy hash) similarity detection fuzzy hash and fuzzy rules)

rate (%) similarity detection rate (%)
WannaCry ransomware 89.6 93.2 95.2
Locky ransomware 54.4 59.6 65.6
Cerber ransomware 77.2 77.2 82.8
CryptoWall ransomware 27.6 38.4 50.4

Lisllase cllal .
bes Shens) Springer

700

Complex & Intelligent Systems (2021) 7:687-702

Table 8 Comparison of evaluation metrics for embedded YARA rules with enhanced YARA rules and YARA rules

Evaluation metric Basic YARA rules (%)

Enhanced YARA rules (%) Embedded YARA rules (%)

Accuracy 79.80
Precision 95.99
Recall 62.20
F1-Score 75.49

83.55 86.75
96.27 96.58
67.10 73.50
79.08 83.48

YARA rules is 83.48%, which is better than the F1-Score of
both basic YARA rules (75.49%) and enhanced YARA rules
(79.08%). This confirms that the proposed embedded YARA
rules are more effective as compared to other two types of
YARA rules.

Advantages and limitations of the proposed
technique

Advantages of the proposed embedded YARA rules

The proposed embedded YARA rules offers several advan-
tages, here some of the most notable advantages:

e Extending search scope Fuzzy rules can combine multi-
ple parameters and their complex conditions to produce
one approximated output.

e Extending result scope In addition to alert samples as
malware by YARA rules, fuzzy rules reveal the degree
of similarity of malware (Less Likely Malware, Likely
Malware, and Most Likely Malware).

e Aiding in analysis It can help security experts in analysing
or classifying samples based on their fuzzy membership
results to apply appropriate actions on specific groups
without a deep dive investigation into the samples.

e [mproving detection rate Fuzzy hashing can complement
YARA rules as it attempts to find structural similarity
between the two files in their entirety in circumstances
where the selected IoC strings cannot be found in the
sample. Thus, it can still trigger fuzzy rules and detect
more malware samples than YARA rules.

e Maintaining performance Fuzzy hashing is one of the
fastest analysis methods and it generates a compact hash,
which does not affect the overall performance of the com-
bined analysis process.

e Accuracy improvement In case of fuzzy hashing found
exactly matched sample(s), the strong similarity score 1
or 100% is generated, which increases the accuracy of
the overall result and the further processing results of
clustering or classification.

Dieliase ¢llodi ay .
bes Shenas Q) Springer

Limitations of the proposed embedded YARA rules

Despite offering several advantages, the proposed embedded
YARA rules inherit some of the limitations of YARA rules
and fuzzy hashing, here some of the most notable limitations
are:

e Dependency of fuzzy rules The result of fuzzy rules is
dependent on the values of YARA rules and fuzzy hash
indicators, thus if both fails to discover any sample then
the fuzzy outcome will also be missed out.

e Nota rule optimisation approach This proposed approach
does not focus on generating optimised YARA rules
rather its focus is to increase the effectiveness of exist-
ing YARA rules. Therefore, the success of this proposed
approach is also dependent on the superiority of rules
itself.

e Trusted code 1f YARA rules are created utilising trusted
code then this will increase the number of false posi-
tive [15], which will affect outcomes of the proposed
approach.

e Fuzzy structural similarity Fuzzy hashing can only dis-
cover structural or syntactic similarity, but not behavioural
or semantic similarity, therefore, it is only a complemen-
tary method to YARA rules but does not offer the same
effectiveness as YARA rules.

e Fuzzy similarity scores Similarity scores provided by
fuzzy hashing could be analysed and utilised differently
by different security analysts, resulting in different con-
clusions based on the same similarity scores.

e Scalability of advanced YARA rules Writing advanced
YARA rules at scale is a challenging task in general [15],
and this also applies to embedded YARA rules.

Conclusion

This paper proposed two different techniques utilising fuzzy
hashing and fuzzy rules to strengthen YARA rules: enhanced
YARA rules and embedded YARA rules. The first proposed
technique enhanced YARA rules utilised a fuzzy hashing
technique and the second proposed technique embedded
YARA rules utilised fuzzy hashing and fuzzy rules to improve

Complex & Intelligent Systems (2021) 7:687-702

701

YARA rules and its effectiveness. This improvement process
was focused on the execution phase of YARA rules rather
than optimising rules itself. Which improved the searching
criteria and effectiveness of YARA rules without signifi-
cantly increasing the complexity and overheads of YARA
rules. The experimental results demonstrated that the pro-
posed enhanced YARA rules and embedded YARA rules
produce improved results in comparison with basic YARA
rules. However, the most improved embedded YARA rules
has some limitations due to the inherent limitations of the
underlying YARA rules and fuzzy hashing, which require
further investigations and improvement in the future.

Acknowledgements The authors gratefully acknowledge the support
of Hybrid-Analysis.com, Malshare.com and VirusTotal.com for this
research work.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alvarez V (2019) Writing YARA rules. https://yara.readthedocs.
io/en/v3.4.0/writingrules.html

2. Alvarez V (2019) YARA Documentation, Release 3.10. 0. https://
buildmedia.readthedocs.org/media/pdf/yara/latest/yara.pdf

3. Andronio N, Zanero S, Maggi F (2015) Heldroid: dissecting and
detecting mobile ransomware. In: International workshop on recent
advances in intrusion detection. Springer, pp 382-404

4. Breitinger F, Astebgl KP, Baier H, Busch C (2013) mvhash-b-a
new approach for similarity preserving hashing. In: 2013 Seventh
international conference on IT security incident management and
IT forensics. IEEE, pp 33-44

5. Breitinger F, Baier H (2012) A fuzzy hashing approach based on
random sequences and hamming distance. In: Annual ADFSL con-
ference on digital forensics, security and law. 15. https://commons.
erau.edu/adfsl/2012/wednesday/15

6. Cabaj K, Gawkowski P, Grochowski K, Osojca D (2015) Network
activity analysis of Cryptowall ransomware. Przeglad Elektrotech-
niczny 91(11):201-204

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

. Culling CS (2018) Which YARA rules :

. Chen Q, Bridges RA (2017) Automated behavioral analysis of

malware a case study of wannacry ransomware. arXiv preprint
arXiv:1709.08753

basic or advanced?.
https://vt-gtm-wp-media.storage.googleapis.com/2.0- Which-
YARA-Rules-Rule-Basic-or- Advanced- 1.pdf

. Dias R (2014) Intelligence-driven incident response with YARA.

https://www.sans.org/reading-room/whitepapers/forensics/
intelligence-driven-incident-response-yara-35542

Dubois D, Prade H (1996) What are fuzzy rules and how to use
them. Fuzzy Sets Syst 84(2):169-185

French D (2012) Writing effective YARA signatures to identify
malware. https:/insights.sei.cmu.edu/sei_blog/2012/11/writing-
effective-yara-signatures-to-identify-malware.html

Gayoso Martinez V, Hernandez Alvarez F, Herndndez Encinas
L (2014) State of the art in similarity preserving hashing func-
tions. http://digital.csic.es/bitstream/10261/135120/1/Similarity_
preserving_Hashing_functions.pdf

Go6mez-Herndndez J, Alvarez-Gonzdlez L, Garcfa-Teodoro P
(2018) R-locker: Thwarting ransomware action through a
honeyfile-based approach. Comput Secur 73:389-398
Hybrid-Analysis: Hybrid Analysis (2019) https://www.hybrid-
analysis.com/

Intezer.com: Generate advanced YARA rules based on code reuse
(2019). https://intezer.com/wp-content/uploads/2019/06/Intezer_
YARA_White_Paper.pdf

Kharraz A, Arshad S, Mulliner C, Robertson WK, Kirda E
(2016) Unveil: a large-scale, automated approach to detecting ran-
somware. In: USENIX Security symposium, pp 757-772
Klijnsma Y (2019) The history of Cryptowall: a large scale cryp-
tographic ransomware threat. https://www.cryptowalltracker.org/
Kornblum J (2006) Identifying almost identical files using context
triggered piecewise hashing. Digit Investig 3:91-97

Malshare (2019) A free Malware repository providing researchers
access to samples, malicious feeds, and YARA results. https:/
malshare.com/index.php

Malwarebytes: Ransomware (2019). https://www.malwarebytes.
com/ransomware/

Mamdani EH, Assilian S (1975) An experiment in linguistic syn-
thesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1-13
Mandiant: Tracking malware with import hashing (2014).
https://www.fireeye.com/blog/threat-research/2014/01/tracking-
malware-import-hashing.html

Mohaisen A, Alrawi O, Mohaisen M (2015) AMAL: high-fidelity,
behavior-based automated malware analysis and classification.
Comput Secur 52:251-266

Naik N, Diao R, Shen Q (2018) Dynamic fuzzy rule interpolation
and its application to intrusion detection. IEEE Trans Fuzzy Syst
26(4):1878-1892

Naik N, Jenkins P, Cooke R, GillettJ, Jin Y (2020) Evaluating auto-
matically generated YARA rules and enhancing their effectiveness.
In: IEEE symposium series on computational intelligence (SSCI).
IEEE

Naik N, Jenkins P, Gillett J, Mouratidis H, Naik K, Song J (2019)
Lockout-Tagout Ransomware: A detection method for ransomware
using fuzzy hashing and clustering. In: IEEE symposium series on
computational intelligence (SSCI). IEEE

Naik N, Jenkins P, Savage N (2019) A ransomware detection
method using fuzzy hashing for mitigating the risk of occlusion
of information systems. In: 2019 IEEE international symposium
on systems engineering (ISSE). IEEE

Naik N, Jenkins P, Savage N, Yang L (2019) Cyberthreat Hunting-
Part 1: triaging ransomware using fuzzy hashing, import hashing
and YARA rules. In: IEEE international conference on fuzzy sys-
tems (FUZZ-IEEE). IEEE

Lisllase cllal .
bes Shens) Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://yara.readthedocs.io/en/v3.4.0/writingrules.html
https://yara.readthedocs.io/en/v3.4.0/writingrules.html
https://buildmedia.readthedocs.org/media/pdf/yara/latest/yara.pdf
https://buildmedia.readthedocs.org/media/pdf/yara/latest/yara.pdf
https://commons.erau.edu/adfsl/2012/wednesday/15
https://commons.erau.edu/adfsl/2012/wednesday/15
http://arxiv.org/abs/1709.08753
https://vt-gtm-wp-media.storage.googleapis.com/2.0-Which-YARA-Rules-Rule-Basic-or-Advanced-1.pdf
https://vt-gtm-wp-media.storage.googleapis.com/2.0-Which-YARA-Rules-Rule-Basic-or-Advanced-1.pdf
https://www.sans.org/reading-room/whitepapers/forensics/intelligence-driven-incident-response-yara-35542
https://www.sans.org/reading-room/whitepapers/forensics/intelligence-driven-incident-response-yara-35542
https://insights.sei.cmu.edu/sei_blog/2012/11/writing-effective-yara-signatures-to-identify-malware.html
https://insights.sei.cmu.edu/sei_blog/2012/11/writing-effective-yara-signatures-to-identify-malware.html
http://digital.csic.es/bitstream/10261/135120/1/Similarity_preserving_Hashing_functions.pdf
http://digital.csic.es/bitstream/10261/135120/1/Similarity_preserving_Hashing_functions.pdf
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://intezer.com/wp-content/uploads/2019/06/Intezer_YARA_White_Paper.pdf
https://intezer.com/wp-content/uploads/2019/06/Intezer_YARA_White_Paper.pdf
https://www.cryptowalltracker.org/
https://malshare.com/index.php
https://malshare.com/index.php
https://www.malwarebytes.com/ransomware/
https://www.malwarebytes.com/ransomware/
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html

702

Complex & Intelligent Systems (2021) 7:687-702

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Naik N, Jenkins P, Savage N, Yang L (2019) Cyberthreat hunting-
part 2: tracking ransomware threat actors using fuzzy hashing and
fuzzy C-means clustering. In: IEEE international conference on
fuzzy systems (FUZZ-IEEE). IEEE

Naik N, Jenkins P, Savage N, Yang L (2020) A computational intel-
ligence enabled honeypot for chasing ghosts in the wires. Complex
Intell Syst

Naik N, Jenkins P, Savage N, Yang L, Boongoen T, lam-On N
(2020) Fuzzy-import hashing: a malware analysis approach. In:
IEEE international conference on fuzzy systems (FUZZ-IEEE).
IEEE

Naik N, Jenkins P, Savage N, Yang L, Naik K, Song J (2019)
Augmented YARA rules fused with fuzzy hashing in ransomware
triaging. In: IEEE symposium series on computational intelligence
(SSCI). IEEE

Naik N, Jenkins P, Savage N, Yang L, Naik K, Song J (2020)
Embedding fuzzy rules with YARA rules for performance optimi-
sation of malware analysis. In: IEEE international conference on
fuzzy systems (FUZZ-IEEE). IEEE

Naik N, Jenkins P, Savage N, Yang L, Naik K, Song J, Boongoen
T, Iam-On N (2020) Fuzzy hashing aided enhanced YARA rules
for malware triaging. In: IEEE symposium series on computational
intelligence (SSCI). IEEE

Naik N, Shang C, Jenkins P, Shen Q (2020) D-FRI-Honeypot: A
secure sting operation for hacking the hackers using dynamic fuzzy
rule interpolation. IEEE Trans Emerg Top Comput Intell
Readthedocs: Writing YARA rules (2019). https://yara.
readthedocs.io/en/v3.5.0/writingrules.html

Richardson R, North M (2017) Ransomware: evolution, mitigation
and prevention. Int Manag Rev 13(1):10-21

Roth F (2017) How to post-process YARA rules gener-
ated by yarGen. https://medium.com/@cyb3rops/how-to-post-
process-yara-rules-generated-by-yargen-121d29322282

Roth F (2018) yarGen is a generator for YARA rules. https://github.
com/Neo023x0/yarGen

Roussev V (2010) Data fingerprinting with similarity digests. In:
IFIP international conference on digital forensics. Springer, pp
207-226

Sadowski C, Levin G (2007) Simhash: Hash-based similarity
detection. www.webrankinfo.com/dossiers/wp-content/uploads/
simhash.pdff

Lisllase cllad .
bes Shenas Q) Springer

42.

43.

44,

45.

46.

47.

Savage K, Coogan P, Lau H (2015) The evolution of ransomware
- Symantec pp 1-57

Sgandurra D, Mufioz-Gonzalez L, Mohsen R, Lupu EC (2016)
Automated dynamic analysis of ransomware: Benefits, limitations
and use for detection. arXiv preprint arXiv:1609.03020

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its
applications to modeling and control. IEEE Trans Syst Man Cybern
1:116-132

Tridgell A (1999) Efficient algorithms for sorting and synchroniza-
tion. Ph.D. thesis, Australian National University Canberra

VirusTotal: Virustotal (2019). https://www.virustotal.com/#/
home/upload
VirusTotal: YARA in a nutshell (2019). https://virustotal.github.io/

yara/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://yara.readthedocs.io/en/v3.5.0/writingrules.html
https://yara.readthedocs.io/en/v3.5.0/writingrules.html
https://medium.com/@cyb3rops/how-to-post-process-yara-rules-generated-by-yargen-121d29322282
https://medium.com/@cyb3rops/how-to-post-process-yara-rules-generated-by-yargen-121d29322282
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
www.webrankinfo.com/dossiers/wp-content/uploads/simhash.pdff
www.webrankinfo.com/dossiers/wp-content/uploads/simhash.pdff
http://arxiv.org/abs/1609.03020
https://www.virustotal.com/#/home/upload
https://www.virustotal.com/#/home/upload
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/

	Embedded YARA rules: strengthening YARA rules utilising fuzzy hashing and fuzzy rules for malware analysis
	Abstract
	Introduction
	Generating extensive YARA rules and associated issues
	Generating optimised YARA rules and associated issues

	Background: techniques employed for malware analysis
	YARA rules
	Fuzzy hashing
	SSDEEP
	SDHASH
	mvHASH-B

	Import hashing
	Fuzzy rules

	Related work: recent malware analysis techniques applied to ransomware
	Data collection: collection of malware (ransomware) and goodware samples
	Experimental evaluation of employed techniques: malware analysis using fuzzy hashing, import hashing and YARA rules
	Fuzzy hashing: methodology
	Fuzzy hashing: experiment
	Import hashing: methodology
	Import hashing: experiment
	YARA rules: methodology
	YARA rules: experiment

	Proposed technique-I: malware analysis using proposed enhanced YARA rules
	Enhanced YARA rules: methodology
	Enhanced YARA rules: experiment
	Comparative evaluation of the analysis results of enhanced YARA rules with different analysis methods
	Comparison based on similarity detection results
	Comparison based on evaluation metrics

	Proposed technique-II: malware analysis using proposed embedded YARA rules
	Embedded YARA rules: methodology
	Embedded YARA rules: development of fuzzy rules
	Embedded YARA rules: experiment

	Advantages and limitations of the proposed technique
	Advantages of the proposed embedded YARA rules
	Limitations of the proposed embedded YARA rules

	Conclusion
	Acknowledgements
	References

