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Abstract: Motivated by the desire to optimally control the friction-induced stick-slip locomotion and sufficiently 
improve the energy efficacy, a novel trajectory synthesis and optimization scheme is proposed in this paper for a 
underactuated microrobotic system with dynamic constraints and couplings. The nonlinear microrobotic model 
utilizes combined tangential-wise and normal-wise vibrations for underactuated locomotion, which features a 
generic significance for the studies on microrobotic systems. Specifically, an analytical two-stage velocity 
trajectory is constructed under control indexes and physical constraints. Subsequently, the dynamic coupling 
behavior and the qualitative variation laws are characterized through rigorous bifurcation analysis. The 
synthesized trajectory is optimized and tuned via rigorous analysis based on the robot dynamics. The proposed 
trajectory planning mechanism provides a promising approach in determining the optimal viscoelastic parameters 
and trajectory parameters such that the optimal locomotion indexes can be met. Simulation results are presented to 
demonstrate the efficacy and feasibility of the proposed scheme. 
 
Keywords: Trajectory synthesis, optimization,

 
vibro-driven microrobot, underactuated system, viscoelasticity. 

 

1. INTRODUCTION 
 
During the past decade, autonomous microrobotic 

systems have become an increasingly significant domain 
of research and have received great attentions from both 
robotics and control communities. They are energetically 
involved in extensive fields of applications that demand 
miniaturized robotic systems that provide micro-
manipulations, micro-positioning and micro-navigation 
with a wide mobility range and flexibility, such as 
microscopy, micro-manufacturing and neuro-technology. 

One of the key issues is the motion principle of the 
microrobotic systems that determines the capabilities, 
performance, particularly energy consumption and 
degrees of autonomy. Conventional motion systems have 
been designed and utilized via mimicking the earth-
worm progression [1] and canoe paddling [2], magnetic 
field [3]–[5], etc. The internal force-static friction 
principle [6] is well-established. The main idea is that 
directional motions can be obtained through an vibro-
driven inner mass/inertia, which interacts with the main 
robot body and indirectely overcoms the resistance 
forces from the environments. This priciple has been 
widely employed and applied to the so-called capsule 
systems [7]–[15] which operate in vulnerable media and 
restricted space, for instance, minimally invasive sensing, 
diagnosis and intervention, pipeline inspection, 
engineering diagnosis, seabed exploration and disaster 

rescues, etc. Due to the underactuated nature, the system 
has fewer independent control inputs than the degrees of 
freedom (DOF). The reduction of actuations lowers the 
cost and increases the energy efficacy; however, 
imperfectness of input space gives rise to complex 
theoretical and practical control problems and less 
generality in which conventional control systems are not 
directly applicable. Besides, the nonlinear frictions 
acting in such microrobotic systems raise challenges and 
difficulties in identification of qualitative variation laws 
in system dynamics and implementation of efficient 
motion control algorithms. 

Towards underactuated mechanical systems (UMSs), 
specific issues have been raised when attempting the 
control of the entire state space. Several seminal works 
have been proposed for the adaptive control and neural 
network control of the robotic systems. The control 
problem of setpoint regulation of a hybrid PDE–ODE 
system that describes a nonuniform gantry crane system 
with constrained tension was studied in [16]. In [17], a 
neural network control scheme was proposed for a 
rehabilitation robot to approximate the unknown model 
of the robot and adapt interactions between the robot and 
the patient. Nevertheless, in the present paper, the issue 
of trajectory tracking control is studied through elaborate 
synthesis and optimization of the trajectory. The issue of 
optimal control of the rectilinear motion of the rigid body 
along a rough surface driven by an internally vibrating 
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mass is essential to effective locomotion of the 
microrobotic systems, and it is conventionally described 
as the optimal construction of trajectory planning 
algorithms. Typically, this problem is considered as the 
desired motion generation of the internally driving 
mechanism. A majority of studies have been conducted 
to design optimal periodic control modes of the internal 
driving mechanism, such as velocity-controlled mode 
[18]–[21] and acceleration-controlled mode [8], [22]. 
The minimal energy solution is obtained in [18] to 
generate a four step motion pattern. An optimal 
controller is designed with an experimental comparison 
in [19]. Yu et al [21] propose a six-step motion strategy 
based on optimal selection of trajectory parameters. A 
four-step acceleration profile is proposed in [22] for the 
motion control of capsubots. The stick-slip effect is 
elaborately discussed by Fang et al [8] to optimize the 
parameters of the internal controlled mass to obtain 
maximal average periodic velocity of the system. 
Conventionally, the average velocity is considered as the 
critical criterion to design the control modes. The 
optimal parameters of trajectory profiles are selected for 
both modes to realize the maximal average velocity of 
the periodic motion. It is evident that friction plays 
pivotal roles in propulsion and locomotion for self-
propelled microrobotic systems. In the fast motion stage, 
the system is propelled to move back and forth under the 
underactuated dynamics and nonlinear friction, which 
contributes to the net progressions. Therefore, how to 
find an appropriate way to describe and characterize the 
coupling behaviours, which are difficult and challenging, 
are of vital importance particularly for efficient trajectory 
planning. Unfortunately, a majority of reported results in 
the literature, such as [8], [17], were mainly devoted to 
the couplings in the slow motion stage, optimal control 
design of the fast motion was usually neglected. This is 
mostly owing to the underactuated kinematic coupling 
behaviour and the relevant analysis is of much difficulty. 
Towards trajectory planning and control, there exist 
some studies for overhead cranes systems based on phase 
plane analysis of crane kinematics [23], [24], however 
for locomotion systems, the locomotion-performance 
indexes (e.g., average locomotion velocity, energy 
efficiency) were not examined. Besides, it is always 
intractable to achieve steady-state periodic motion of the 
driving mechanism and efficient progression of the 
microrobot simultaneously. As typical nonlinear UMSs, 
these microrobotic systems feature strong coupling in 
states. Therefore, the analysis of the nonlinear coupling 
property is crucial to the construction and synthesis of 
motion trajectory. 

In this paper, the control indexes and dynamic and 
physical constraints are elaborately considered for 
optimal control of friction-induced stick-slip propulsion 
and improvement of the efficacy. As such, a novel 
trajectory synthesis and optimization approach is 
proposed through characterization of the coupling 
dynamics and identification of the qualitative variation 
laws in fast motion stage in a manner that the designed 
control (locomotion-performance) indexes can be met. 
The main idea is to reduce complexity and to 
characterize coupling by imposing a harmonic drive and 

then to compute the dynamics projection onto a hyper-
manifold, such that the issue of trajectory planning is 
converted into geometric analysis and trajectory 
optimization. The proposed method features rigorous 
bifurcation analysis and identification of the dynamics 
and optimal trajectory parameters selection. The 
nonlinear connection between the actuator and the 
driving pendulum is modeled through a viscoelastic pair 
of torsional spring and viscous damper. The viscous 
damper denotes the motor viscosity at the pivot. The 
dynamic coupling behaviour and qualitative variation 
patterns of the system dynamics are characterized in 
bifurcation diagrams. An analytical periodic trajectory is 
generated under practical robot control constraints, in 
which a transition phase is introduced to tackle the jag 
problem (certain delay in time). The synthesized 
trajectory is further optimized and tuned via rigorous 
analysis based on underactuated robot dynamics. It is 
noted that most of the conventional studies on 
microrobotic models, such as [8], [15], [25], [26], are 
linear model that utilizes translational (linearly along the 
direction of motion) vibration of an inner mass as the 
propulsion mechanism. The microrobotic model 
considered in this paper is a nonlinear (rotational) model 
that employs combined tangential-wise and normal-wise 
vibrations. It is capable of bidirectional locomotion with 
less number of actuation, which features a generic 
significance in the studies on optimal control of the 
underactuated vibro-driven microrobotic systems. In 
contrast to the conventional cart-pole systems, the 
control input is applied at the pendulum pivot, instead of 
the force on the cart in the horizontal direction. More 
importantly, the cart-pole systems address the set-point 
stabilization problem, whilst the proposed system is to 
make the robot track a desired (designed) trajectory by 
actuating the inverted pendulum. The viscoelastic 
elements are introduced into the trajectory synthesis of 
vibro-driven microrobotic system to model the nontrivial 
interaction and to explore the feasibilities of improving 
the energy efficacy. It is noted that the considerations on 
uncertainties and disturbances are beyond the scope of 
this paper. And the proposed approach may be combined 
with advanced control schemes (e.g., robust and adaptive 
paradigms) to enhance robustness to disturbances and 
adaptability to parametric uncertainties with guaranteed 
performance of the proposed algorithm. 

The paper is organized as follows. Section 2 outlines 
the dyanmic model of the vibro-driven underactuated 
microrobotic system. Section 3 formulates the research 
problem and presents the trajectory synthesis. 
Optimization is studied in Section 4. Simulation results 
are presented in Section 5 to verify the effectiveness of 
the proposed scheme. Finally, conclusions are given in 
Section 6.

 

 
 

2. MODEL OF THE MICROROBOTIC SYSTEM 
 
This paper considers a vibro-driven underactuated 

microrobotic model as shown in Fig.1, which contains a 
pendulum, a sliding platform and a rigid massless shell. 
The microrobotic model utilizes combined tangential-
wise and normal-wise vibrations for underactuated 
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locomotion. The advantage of this model is that it can be 
used for robotic operations in restricted space and 
vulnerable media. As such, it has potential applications 
such as minimally invasive sensing, diagnosis and risk 
intervention, pipeline inspection, engineering diagnosis, 
seabed exploration and disaster rescues, etc. The actuator 
is mounted on the platform at the pivot and connected 
with the pendulum. � and � represent masses of the 
platform and the pendulum, respectively. � is the length 
of the pendulum. �  and �  denote the stiffness 
coefficient of the spring and damping coefficient of the 
damper, respectively. In what follows, �� , ��  and ��̇ 
are used to represent the trigonometric functions ����, 
���� and the signal function ����(�̇), respectively. 

 

 

Fig. 1. Schematic of the vibro-driven underactuated 
microrobotic system. 

 
Assumption 1: The mass of the pendulum is centralized 
at the ball and the center of mass of the platform 
coincides with the pivot axis. 

The detailed working principle of the proposed robotic 
model can be found in our recent work [27]. The actuator 
rotates the pendulum back and forth and drives the entire 
system moving bidirectionally through the internal 
dynamic coupling. The motion of the robot starts with 
static state, and the it moves when the magnitude of the 
resultant force applied on the body in the horizontal 
direction exceeds the maximal value of the dry friction 
force at the contact surface. 

The ball’s position is uniquely described by �� and 
�� , chosen as the deflection of the geometric centre of 
the ball referenced from the medial axis. The position 
and velocity of the ball are given by �� = � − ��� , 

�� = ���, �̇� = �̇ − ��̇�� and �̇� = −��̇�� . 
Based on the Newton’s law, let � = [�� ��]�  and 

� = [�� ��]� be the internal reaction forces applied on 

the pendulum by the platform and the viscoelastic 
element, respectively. We have 

� = �
��

��
� = �

��̈�

��̈� + ��
� + �

��

��
�

= �
−��̈ + ���̈�� − ���̇��� + ��

�� − ���̇��� − ���̈�� + ��

� 

(1) 

where �� = (�� + ��̇)��/�  and �� = −(�� +

��̇)��/�. 
The underactuated dynamics of the microrobotic 

model are derived as follows using the Euler-Lagrangian 
approach 

�(�)�̈ + �(�,�̇)�̇ + �(�)� + �(�) = �� + �� (2) 

where �(�) = [� �]� represents the system state vector. 

�(�) = �
��� −����

−���� (� + �)
� ∈ ℛ �× �  is the inertia 

matrix, �(�,�̇) = �
0 0

�����̇ 0
� ∈ ℛ �× �  denotes the 

Centripetal-Coriolis matrix,  �(�) = �
� 0
0 0

� ∈ ℛ �× �  is 

the generalized stifness matrix, �(�) = [−����� 0]� ∈
ℛ �× � represents the gravitational torques, � = [1 0]� ∈

ℛ �× �  is the control input vector, ��(�) = [−��̇  −
�]� ∈ ℛ �× � denotes the frictional torques, � ∈ ℛ � 
denotes the control input applied to the system. � 
denotes the friction force acting between the microrobot 
and the sliding substrate. 
It is noted that, in this paper, the Coulomb friction model 

� = �
�(� + ��)��̇, ��� �̇ ≠ 0 

��,                      ��� �̇ = 0 
 is assumed to represent 

the sliding friction force, with �� denoting the stiction 
force when the velocity of the robot is zero. 

Definition 1: The set of DOF of underactuated 
systems can be partitioned into two subsets [28], which 
referred to as the collocated subset with its cardinality 
contains the actuated DOF and equals the number of 
control inputs; and non-collocated subset accounts for 
the remaining passive DOF. 

Remark 1: The driving force is applied to the 
collocated subsystem (pendulum) and transformed to the 
non-collocated subsystem (robot body) through dynamic 
coupling, which indicates its underactuated characteristic. 
The coupling behavior and nonlinearity of the system are 
originated from the frictions, signal function and 
trigonometric functions. 

In order to simplify the analysis of the model by 
searching the dimensionless groups that control its 
solution patterns, the multiple time scales method is 
utilized in this paper. The characteristic time scale as 

�� = ��/� , and the characteristic length as �� =

�/��
�  are introduced in this paper. Utilizing the 

harmonic force ���� with amplitude � and frequency 
Ω to excite the pendulum, and utilizing the following 
non-dimensional parameters 

� = �/��, � = �/�, � = �/(�����
�), � =

�/(�����), ℎ = �/(�����
�), � = �/�� 

As such, the equations of motion (2) is transformed 
into a dimensionless one, gives 

[ℳ]�ℌ ̈ � + [ℂ]�ℌ ̇ � + [�]{ℌ } + [�] + [��] = {℧}�� (3) 

where [ℳ] = �
1 −��

−�� � + 1
� , [ℂ] = �

0 0
���̇ 0

� , [�] =

�
� 0
0 0

� , [�] = �
−��

0
� , {℧} = �

1
0

�  and [��] = �
��̇
�′

� , 

�� = ℎ��� and �′ = ��(� + 1) − ���̈ − ���̇� −

��� + ��̇������̇. 

It is noted that the above time scaling is conducted 
with respect to the dimensionless time �  and 
accordingly the configuration variables evolved as 
{ℌ } = [�� ��]� = [�  �]�. 
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3. PROBLEM STATEMENT AND TRAJECTORY 
SYNTHESIS 

 
In this section, the method to construct a continuous 

velocity trajectory is proposed on the basis of the 
dynamic couplings between the internally driving 
mechanism and the robotic motion. The planning indexes 
and physical constraints are firstly highlighted. 
Motivated by the control objectives, a two-stage 
velocity-controlled trajectory is constructed for the 
driving pendulum to guarantee efficient locomotion of 
the robot. Towards the lag problem induced by smart 
actuators, a transition function is introduced to synthesis 
the motion between actuator and pendulum. The 
trajectory parameters can be explicitly obtained to fulfill 
giving locomotion tasks with guaranteed efficiency. 

 

 

(a) Robot displacement 

 

(b) Robot velocity
 

Fig. 2. Time histories of the periodic motion of the 
microrobotic system. 

 
 
Fig. 2 presents time histories of periodic motion of the 

microrobotic system. From the figure, the robot performs 
periodic progression (as shown in Fig. 2(a)) with certain 
speed (as shown in Fig. 2(b)). However, such motion, by 
its very nature, is not optimal, since certain amounts of 
energy and forward displacement are counteracted in the 
backward motion during each motion cycle.  

Besides, it is noticed that the forward progression is 
determined by the onset of the harmonic drive. These 
observations initiate the objective of the work here to 
construct a two-stage motion trajectory, which optimally 
utilizes the harmonic drive in the progressive (slipping) 
stage and, sufficiently neutralize the backward motion, in 
particular, via optimal control of the sticking phase. In 
this regard, a restoring stage is inserted. The following 
principles and constraints are designed as control indexes 
need to be achieved to construct an optimal motion 
trajectory for the driving pendulum: 

1) For one full motion cycle, the maximum pendulum 
swing is constrained within an acceptable range, namely 
|�(�)| ≤ �� , where ��  is a prescribed angular 
displacement of the driving pendulum. 

2) The robot is contacting with the sliding surface, for 
the sake of achieving a non-bounding motion, the 
constraint for the contact force needs to be satisfied, 
which means the contact force has to be always greater 
than zero, gives 

(� + 1) − ���̈ − ���̇� − (�� + ��̇)�� > 0   (4) 

3) Besides, according to the definition of stick-slip 
motion, it is noted that the microrobot has to be remained 
stationary (sticking) after each cycle of forward motion 
(slipping) to achieve an intermittent forward progression. 
In this regard, the microrobot system remains stationary 
on the ground without any sliding during the return trip 
in each cycle. Thus, the force of the inverted pendulum 
applied on the microrobot in the horizontal direction has 
to be less than the maximal static friction, that is 

|��| ≤ �(�� + ��)��̇            (5) 

which gives a dimensionless inequality condition as 

����̈ − ���̇� + (�� + ��̇)���

≤ �[(� + 1) − ���̈ − ���̇�

− ��� + ��̇���]��̇ 

(6) 
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Fig. 3. Schematic profile for the synchronized velocity 
trajectory. 
 
 

A brief description of the two stages are presented as 
follows: 1) progressive stage: driving the pendulum with 
higher angular acceleration incorporating with the 
release of the elastic energy stored in the torsional spring, 
and the robot is able to overcome the maximal static 
friction to initiate a slipping motion; 2) restoring stage: 
returning the pendulum to �� slowly to restore potential 
energy and prepare for next cycle, the resultant force 
exerting on the robot body in horizontal direction is less 
than the maximum dry friction, that is, the robot is kept 
in the sticking phase in this stage. Fig. 3 demonstrates 
the schematic profile for the synchronized velocity 
trajectory. 

It is noted that smart actuators, particularly in control 
practice, may experience lag problem (certain delay in 
time such as hysteresis) originated from magnetic, 
ferromagnetic and ferroelectric materials, which may 
occur between the application and the removal of a force 
[29]. It is particularly true when sudden changes in 
velocity burst in. Therefore, a transition function is 
introduced to cope with the lag problem and to 
synchronize the motion trajectory. Equation (7) describes 
the proposed two-stage velocity trajectory based on the 
indexes, objectives and synchronization considerations. 
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�̇(�) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 �������,                     � ∈ [0,��)

����,                         � ∈ [��,��)

�����������
,            � ∈ [��,��)

����

�����
��,                    � ∈ [��,��)

����

�����
��,                    � ∈ [��,��)

−��,                          � ∈ [��,��)
����

�����
��,                    � ∈ [��,��)

     (7) 

where  ��  and ��  are upper and lower trajectory 
boundaries, respectively. ��  is the critical boundary 
when the robot keeps stationary, �� is the frequency of 
periodic excitation. 
 

 
4. TRAJECTORY OPTIMIZATION 

 
The considered microrobotic system belongs to UMSs 

and features strong coupling in states, and the dynamics 
induced by friction and control parameters are critical for 
the trajectory planning and optimal motion control. 
Considering that the creations and annihilations of 
equilibria as well as the stability of periodic solutions 
play vital roles in determining the transient response. 
And the system performance can be significantly 
improved via elaborate choice of the control parameters. 
Thus, we are motivated to identify the qualitative 
variation laws for the progressive stage, to obtain the 
optimal periodic net progression and thereafter feed the 
optimal control parameters into the optimal planning of 
the trajectory.  

3.1. Identification of Qualitative Variation Laws 

The efficient utilization of the potential energy stored 
in springs and the dissipative energy in dampers is 
critical for energy efficient locomotion. As such, by 
employing the harmonic drive, the stiffness �  and 
damping �  are chosen as branching parameters to 
identify the variation laws of the system dynamics in 
terms of the average progression of the microrobot. The 
qualitative variation law of stiffness coefficient �  is 
depicted in Fig. 4. It can be observed that period-one 
motion dominates the system response for the values of  
�  considered. The points of global maximum and 
minimum average progressions are recorded at � = 0.9 
and � = 0.25, respectively. A pair of locally maximal 
and minimal points of average progressions is also 
identified at � = 0.65 and � = 0.75, respectively. In 
this regard, the optimal value of the control parameter � 
can be identified. The time histories of the capsule 
displacements are presented in Fig. 5 to verify the 
identified qualitative variation laws. It is noted that for a 
smaller stiffness coefficient such as � = 0.1, the spring 
is not able to generate sufficient force to enhance the 
capsule progression, accordingly the capsule behaves 
vibrations-like motion around the starting point. On the 
other hand, for a larger coefficient such as � = 2.0, the 
spring becomes sufficiently “hard” to hinder the 
progression of the microrobot. And for the parameter 
values in between, the spring either promotes the 
microrobot to move forward (e.g. � = 0.7, 0.9), or drag 

it to move backward in the opposite direction (e.g. � =
0.3, 0.25).  

 

 

Fig. 4. Bifurcation diagram for the variation laws of �. 
 

 
Fig. 5. Time histories of the robot displacement. 
 

 
The qualitative variation law of viscosity � is studied 

as shown in Fig. 6. It is evident that period-one motion 
dominates the system response for all the values of  � 
considered. From Fig. 6, it is observed that the maximum 
average progression is recorded at � = 1.3. It is noted 
that for the damping value ranging as � ∈ (0,1.3], the 
progression of the microrobot increases monotonically as 
� augments; on the other hand, for the damping value 
ranging as � ∈ (1.3,5.0] , the viscous damper acts 
negative roles in decreasing the robot forward 
progression. The time histories of the microrobotic 
displacements are presented in Fig. 7 to verify the 
identified qualitative variation laws. The identified 
optimal damping value is critical for the system and 
controller design. In this regard, the optimal value of the 
control parameter � can be identified. 

Remark 2: The qualitative variation laws and optimal 
values of the control parameters can be characterized and 
identified to achieve optimal periodic motions and 
improve the robot performance. Promising average 
progressions can be obtained, however, it is noted that 
the existence of backward motions decreases the efficacy 
significantly. Besides, such backward motions are 
essentially not the optimal motion since the efficiency of 
progression and energy consumption are lowered by 
overly oscillations. Therefore, utilize the sticking phase 
through elaborate planning of the motion trajectory is a 
feasible solution to realize a desired motion. 
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Fig. 6. Bifurcation diagram for the variation laws of �. 

 

 
Fig. 7. Time histories of the robot displacement. 

 
 

3.2. Dynamic Constraints Analysis 

The motion of the vibro-driven microrobot is on the 
ground and it dynamically interacts with the sliding 
friction. To obtain the optimally controlled stick-slip 
motion, the flowing lemmas are proposed to characterize 
the dynamic constraints. 

Lemma 1: From the designed control index in 
equation (4), the non-bounding motion of the microrobot 
can be achieved if the following inequality is satisfied 

�̇��(�̈ + �� + ��̇)� < �/2        (8) 

where � = (� + 1)�. 
Proof: The control index in equation (4) can be 

reorganized to generate the following inequality  

��̈ + �� + ��̇��� + �̇��� < (� + 1)    (9) 

Enlarging the inequality in equation (9), a sufficient 
condition can be given based on the auxiliary angle 
formula, yields 

���̈ + �� + ��̇�
�

+ �̇� < (� + 1)     (10) 

Subsequently, based on the inequality of arithmetic 
and geometric means (AM-GM inequality), we have 

�2�̇�(�̈ + �� + ��̇) < (� + 1)       (11) 

Therefore, the following inequality is obtained as 

�̇��(�̈ + �� + ��̇)� < (� + 1)�/2      (12) 

This is the end of the proof.                     

Lemma 2: From the designed control index in 
equation (6), the robot performs the sticking motion in 
the restoring stage if the following inequality is satisfied 

�̈ + �̇� + �� + ��̇ ≤ ��        (13) 

where � = � + 1 and � = �/��� + 1. 
Proof: The control index in equation (6) can be 

reorganized by removing the absolute value and 
considering one side of the inequality, gives 

���̈ − ���̇� + (�� + ��̇)��

≤ �[(� + 1) − ���̈ − ���̇�

− ��� + ��̇���] 

(14) 
The above equation is reorganized as 

�����̈ + ���̈� + �����̇� − ���̇�� + [���� + ��̇���

+ (�� + ��̇)��] ≤ �(� + 1) 

(15) 
Enlarging the inequality in equation (15), a sufficient 

condition can be given based on the auxiliary angle 
formula, yields 

��� + 1(�̈ + �̇� + �� + ��̇) ≤ �(� + 1)   (16) 

Therefore, the following inequality is obtained as 

�̈ + �̇� + �� + ��̇ ≤ �(� + 1)/��� + 1   (17) 

The result proposed here is also applicable to the other 
side of the inequality. This is the end of the proof.      

Remark 3: Conventional motion planning approaches 
are not directly applicable to the robot subsystem which 
is non-collocated to the control input, as such, the 
dynamic constraints in equations (4) and (6) imposed on 
the capsule locomotion need to be fully considered when 
planning an efficient nominal forced trajectory. The 
normal-wise interactive force �� is implicitly restricted 

to be non-negative under the dynamic constraint in 
equation (4), which is due to the unidirectional property 
of the contacting ground.  

 
3.3. Optimization 

It is noted that the objective of optimization is to 
maximize the average velocity of the microrobot for each 
motion cycle by proper design of the prescribed 
trajectory profile. Therefore, a series of parameters need 
to be determined, including the durations for each motion 
phase �� ∼ ��  and trajectory boundaries �� , ��  and 
�� . Based on the dynamic constraints analyzed in 
subsection 3.2, the boundary conditions of the system are 
defined as 

�(�)|����
= �(�)|����

= −�� < 0,�(�)|����
=

��,�̇(�)|����
= 0,�̇(�)|����

= �̇(�)|����
= �̇(�)|����

= 0  

(18) 
Integrating the robot dynamics (3) once along one full 

motion cycle, we have 
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(� + 1)�̇ + �(� + 1)��̇� − �̇�� − ��̇����̇

− ����̇ � �����
�

�

− � ��ℎ�������̇��
�

�

+ ����̇ ���� − � �����
�

�

�

− � ��ℎ��������̇��
�

�

− �� = 0 

(19) 
The optimal values of the elastic coefficient � and 

viscous coefficient � are identified using the qualitative 
analysis in in subsection 3.2. Recalling the desired 
periodic motion profile in Fig. 2, in the duration [0,��], 
 �� can be obtained through integral calculation of the 
equations of motion (3) based on the consideration of �� 
that if �� + ��� ≠ 0. We have 

 �� = �̇(�)|����
=

1

���
+ ����

[�(� + 1)��

− �� � �����
��

�

+ �� ���� − � �����
��

�

�] 

(20) 
Furthermore, we can obtain the following relationships 

utilizing the conservation of the energy 

� ���������
��

�

+ ����(�� − ��) +  � �����������
��

��

��

−
1

2
��[

��

��

+ �� − ��] = 2�� 

(21) 

1

2
(−��)[(�� − ��) + (�� − ��)] =

1

2
��(�� − ��) + 2�� 

(22) 

Proceeding one step further leads to 

�� =
2���1 − �����

+ ��(�� − ��) + �����
− ��������

� − 4��

��/�� + �� − ��
 

(23) 

�� =
������(�����)

(�����)�(�����)
            (24) 

In order to optimally select the durations for each 
phase, Lemmas 1 and 2 towards the dynamic constraints 
are explicitly utilized. During Phase �  and applying 
Lemma 1 at time ��, the following inequality can be 
obtained as 

�̇�(�)|����
�(�̈(�)|����

+ ��(�)|����
+ ��̇(�)|����

)�

< �/2 

(25) 
As such, the maximal boundary of the duration Phase 

I can be calculated as 

�� =
�

�
[

�2

2(�1�)
3 − �]          (26) 

During the duration Phase II , the following 
relationship is given as 

������������
= ��                    (27) 

Accordingly, the duration Phase II is obtained as 

�� = ���� − arc� ��
����

                  (28) 

Based on the problem statement and design 
considerations in section 3, a transition function is 
inserted into the progressive stage. The motion trajectory 
is designed to reach the amplitude of the harmonic 
excitation at time �� and keep it till time ��, and as 
such, the duration of phase III has to be half of the 
motion period of the excitation. In this regard, the 
duration Phase III can be yielded as 

�� = ��/��              (29) 

For the duration of Phase IV, the robot is controlled to 
perform a sticking motion and it is kept stationary, and 
the angular velocity of the driving pendulum gradually 
returns to zero. As such, based on Lemma 2 at time ��, 
we have 

�̈(�)|����
+ �̇(�)�

|����
+ ��(�)|����

+ ��̇(�)|����

≤ �� 

 (24) 
Accordingly, the duration of Phase IV is given by 

�� = −
�2

��−�2
2−��2�3−��2

+ ��       (25) 

As for the duration of Phase V, applying Lemma 2 at 
time ��, gives 

�̈(�)|����
+ �̇(�)�

|����
+ ��(�)|����

+ ��̇(�)|����

≤ �� 

(26) 
Then the upper boundary of the duration of Phase V 

can be obtained as 

�� =
�����

�����

���
              (27) 

Besides, in the duration of [��,��], the following 
relationship can be achieved as 

�� =
��(�����)

�����
              (28) 

It is noted that the durations for Phase VI [��,��] and 
Phase VII [��,��] are accordant based on the design 
principles of the proposed trajectory, gives 

�� = �� − �� + ��            (29) 

Therefore, the durations for Phase VI and Phase VII 
can be obtained through combination of equation (28) 
with equation (23), we have  

�� =
�

���
[4�� + ��(�� + 2��) − ����]     (30) 

�� =
�

���
(4�� − ���� + ���� + 2����)     (31) 
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Remark 4: It is worth mentioning that the proposed 
approach is an off-line method which is developed to 
make steps forward based on the previous studies by 
elaborate consideration on the dynamic constraints and 
couplings. Admittedly, online implementation of the 
proposed trajectory synthesis method is of great 
importance, however, it is beyond the scope of this paper 
and will be reported in due course. Note also that the 
method proposed in this paper can be applied into design 
of an open-loop control system or as a feedforward 
component of a closed-loop control system for the 
underactuated systems. Moreover, the proposed approach 
can be integrated with robust and adaptive paradigms to 
cope with the uncertainties and disturbances. Therefore, 
the main concentration of this paper is optimized 
trajectory synthesis for underactuated capsule systems 
considering dynamic constraints and couplings, further 
analysis of the system performance under different 
parametric and environmental situations are beyond the 
scope here and will be reported in another paper. 

 

5. SIMULATIONS AND DISCUSSIONS 
 
In this section, numerical simulations are presented to 

verify the performance and effectiveness of the proposed 
trajectory synthesis scheme. In particular, the advantages 
of the synthesized trajectory such as smooth transition in 
progressive stage and superior efficiency in progression 
are presented. In the simulation, the parameters are 
allocated in original time scale to make convenient 
demonstrations. The system parameters are configured as 
� = 0.5 �� , � = 0.05 �� , � = 0.3 � , � =
9.81 �/�� , � = 0.01 �/��  and the system natural 
frequency �� = 5.7184 ���/� . The initial conditions 

are set as �(0) = �� = �/3, �̇(0) = 0, �(0) = 0 and 
�̇(0) = 0 . Then, based on the identified qualitative 
variation laws studied in subsection 3.1, the viscoelastic 
parameters are selected as � = 0.36 ��/��� and � =
0.0923 ����/���� to obtain optimal average capsule 
progression. The rationality of the parameters selection 
in this section is specified as follows: the parameter 
values for the system are configured from the studies on 
microrobotic systems in the literature. The control 
parameter values and initial conditions of state variables 
are selected based on our previous [13], [14], [22] and 
ongoing works on identification of qualitative variation 
laws induced by control parameters. The optimized 
trajectory parameters for each phase are listed in Table 1. 

 
Table 1. Trajectory parameters.  

Phase Value Phase Value 

I 0.133s II 0.195s 

III 0.275s IV 0.9s 

V 1.7s VI 5.8s 

VII 6.6s   

 
The following PD controller designed in [12] is utilized 
to make the driving pendulum track the planned 
trajectories 

�(�) = �̈��(�) − ���̇(�) − ���(�)     (32) 

where ���(�) is planned displacement trajectory of the 
actuated subsystem, �(�) denotes the trajectory tracking 
error, ��  and ��  are diagonal matrix with positive 

gains, and appropriate values of ��  and ��  can be 

selected to obtain performance requirements. The control 
gains are tuned and selected to achieve better control 
performance with values �� = 100 and �� = 50. 

As such, comparative studies are performed with a state-
of-art approach proposed in [12] for an elastically joint-
actuated cart-pole underactuated system (here referred to 
as the EPC system), in which a two-stage velocity 
trajectory is proposed using conventional approach with 
heuristically chosen control parameters. 

 

(a) Trajectory tracking 

 

(b) Tracking error 

Fig. 8. Trajectory tracking performance. 
 
 

The simulation results are given in Figs. 8-10. The 
trajectory tracking performances are presented in Fig. 8. 
It can be observed that using the proposed approach, the 
robot gains a maximum angular velocity of about 7.8 
rad/s, while it is 11 rad/s with the EPC approach. The 
actuated pendulum precisely tracks the synthesised 
trajectory. The tracking error as shown in Fig. 8(b) 
demonstrates a good convergence of the tracking error. 
The comparison of system performances for five motion 
cycles are given in Fig. 9, including the angular and 
robot displacements. The proposed approach also 
presents a better transient performance in terms of the 
overshoot in angular displacement as shown in Fig.9(a). 
The control input torque for five motion cycles is shown 
in Fig. 10. The average velocity of the microrobot with 
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the proposed approach calculated from Fig. 9(b) for the 
first five cycles is about 0.642cm/s, while it is 0.629cm/s 
with the EPC approach. The transition functions inserted 
into progressive stage guarantee the smooth transition as 
shown in Fig. 9 and a lower maximum control input 
torques of 0.5367 Nm as shown in Fig. 10, comparing to 
the 0.6246 Nm with the EPC approach. This clearly 
demonstrates a better performance in energy efficacy. 
The simulation results also conclude that the stick-slip 
motions are effectively controlled through the proposed 
trajectory synthesis and optimization scheme, and thus 
the effectiveness and superior performance are verified. 
 

 

(a) Angular displacements 

 

(b) Robot displacements 

Fig. 9. System performance for five motion cycles. 
 

 
Fig. 10. Control inputs for five motion cycles. 

 

6. CONCLUSIONS 
 

This paper studied the issues of trajectory synthesis 
and optimization of an underactuated vibro-driven 

microrobotic system. The robot motion control indexes, 
dynamic constraints and coupling behaviours have been 
elaborately considered. The microrobotic model features 
a generic significance for the studies on underactuated 
microrobotic systems. A two-stage trajectory has been 
constructed and a transition function has been introduced 
to synchronize the motion between the actuator and the 
driving pendulum. This is based on the practical 
consideration of robot control when using smart 
actuators. The coupling and qualitative variation patterns 
between the actuated and passive subsystems have been 
identified through rigorous dynamic analysis. The 
optimal values of the elastic and viscous coefficients 
were identified qualitatively. The control indexes and 
constraints have been evaluated analytically, and the 
synthesized trajectory was further optimized and tuned 
via rigorous analysis on the basis of underactuated robot 
dynamics. The effectiveness of the proposed scheme 
were demonstrated and verified through numerical 
simulations. The future work will be focued on online 
implementation and trajectory tracking control by 
proposing advanced control scheme to guarantee the 
system robustness to disturbances and adaptability to 
parametric uncertainties.
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