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Abstract 

This prospective longitudinal trial aimed to 1) determine the role of head impact exposure on 

behavioral/cognitive outcomes, and 2) assess the protective effect(s) of a jugular vein 

compression (JVC) collar on behavioral/cognitive outcomes following one season of high-school 

football. Participants included 284 male high-school football players aged 13-18 years enrolled 

from seven midwestern high-schools. Schools were allocated to the JVC collar intervention(four 

teams, 140 players) or non-collar/no intervention control (three teams, 144 players) condition. 

Head impact exposure was measured throughout the season using CSx accelerometers. Outcome 

measures included post season parent and adolescent report on Strengths and Weaknesses of 

ADHD Symptoms and Normal Behavior Scale (SWAN) and Post-Concussion Symptom 

Inventory (PCSI), as well as adolescent performance on Attention Network Task (ANT), digital 

Trail Making Task (dTMT), and Cued Switching task. No significant effect of head impact 

exposure or JVC collar use on post-season SWAN or PCSI scores or performance on dTMT and 

Cued Switching task were noted. There was no effect of head impact exposure on ANT 

performance; however, the JVC collar group had greater post-season Alerting network scores 

than the non-collar group (p=.026, d=.22). Findings provide preliminary evidence that the JVC 

collar may provide some protection to the alerting attention system. These findings should be 

interpreted cautiously as a greater understanding of the long-term sequalae of head impact 

exposure and the role of cumulative head impact exposure behavioral/cognitive outcomes is 

required. 
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Introduction 

Over 1 million high-school students play football annually, making it one of the most 

popular high-school sports in the United States.1 Despite recent declines in participation,2 

football remains a leading cause of sport-related emergency room visits3 and concussions.3-5 

While there has been a focus on understanding the mechanisms6,7 and prevention8 of sports-

related concussion, there is mounting concern that repetitive sub-concussive head impacts (i.e., 

head impacts not resulting in a clinical diagnosis of concussion9-13 may result in subtle cognitive 

or neurological changes that do not immediately cause observable clinical symptoms.  

Repetitive head impact exposure during adolescence has been associated with poor long-

term cognitive, behavioral, and psychiatric functioning in adulthood;14-16 however, findings 

regarding short-term impairments during adolescence are mixed. Some have documented 

detrimental short-term effects of repetitive sub-concussive head impacts on neurophysiology,17-19 

white matter integrity,20,21 functional connectivity,11 metabolic functioning,22 and neurocognitive 

functioning23-25 among young football players. Yet others report minimal, if any, short-term 

effects of head impact exposure on white matter integrity,26  neurophysiology,27 neurocognitive 

outcomes,27-31 postural stability31-33 or oculomotor performance.31,33 Given these inconsistencies, 

it remains critically important to better understand the influence of repetitive head impacts in 

young athletes, particularly as adolescence is a critical period of neurodevelopment.34-37  

Despite inconsistencies in the literature, strategies to reduce/mitigate short- and long-term 

effects of head impact exposure are needed. However, the strategies that have been employed to 

date (e.g., rule changes, improving personal protective equipment such as helmets) have had 

limited effectiveness for mitigating concussion risk.8  An emerging line of research has 

investigated the use of an external jugular vein compression (JVC) collar for the protection of the 
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brain against head impacts through absorption of “slosh” energy.38-40 Preliminary evidence 

indicates that the JVC collar may lessen structural and functional alterations associated with 

repetitive head impacts,41-46 including the attenuation of pre- to post-season brain activation 

changes in functional activation during a working memory task.45,46 However, it remains 

unknown whether the JVC collar mitigates behavioral/neurocognitive outcomes. 

The present study used select measures hypothesized to be sensitive to the subtle short-

term behavioral/neurocognitive effects of head impact exposure, with an emphasis on 

multidimensional aspects of attention and executive functioning.47-51 The goals of this study were 

to 1) determine the role of head impact exposure on behavioral/cognitive functioning, and 2) 

assess the mitigative effect(s) of JVC collar use on behavioral/cognitive outcomes following a 

single season of high-school football.  
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Materials and Methods 

Participants 

284 male high-school football players between the ages of 13-18 (Mean ± SD=15.8±1.0) 

were enrolled from seven midwestern high-schools. Parental consent and player assent were 

obtained prior to data collection. Exclusion criteria included history of neurological deficits, 

cerebral infarction or recent or severe head trauma, medical contraindications to JVC collar use 

(glaucoma, hydrocephalus, carotid hypersensitivity, known increased intracranial pressure, 

central vein thrombosis, any airway obstructions, recognized seizure disorder, prothrombotic or 

hyperthrombotic condition, cerebral cavernous malformation), or not medically cleared to play 

sports. This study was approved by an institutional review board and was registered with 

clinicaltrials.gov (NCT# 04068883).  

Procedure 

Recruitment occurred between April and June of 2018.  Athletes were administered a 

behavioral and neurocognitive battery at pre- and post-season. Pre-season study visits occurred 

prior to the start of any practice or games. Post-season study visits occurred at the end of the 

regular season and before the start of any playoff games. Notably, while assessors were not made 

aware of participants’ group assignments, they were also not officially blinded from condition. 

Prior to the start of the season, schools were allocated at the team level to the JVC collar 

intervention group (four teams, 140 players) or non-collar/no intervention control group (three 

teams, 144 players).  Athletes allocated to the collar group were individually fitted with the JVC 

collar. The collar was positioned around the neck to apply mild bilateral JVC to increase venous 

dilation, implying backfill into the venous capacitance vessels of the brain. The details of collar 
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fitting and physiological response  has been documented via ultrasound studies41,42 and real time 

MRI,52 and the effect is reported to be less than the physiologic response to a Valsalva maneuver, 

sneeze, or cough.41 Athletes wore the collar during every practice and game; attendance and 

compliance with collar use were recorded daily. Collars were visually inspected after each 

practice/game, and any collar that appeared to be altered or manipulated in anyway was replaced 

with a new collar of the same size. There were no adverse events reported due to collar wear. 

During the season, athletes wore an accelerometer device (CSx System Ltd., Auckland, 

New Zealand) attached to their left mastoid process at all practices and games to quantify head 

impact exposure. 

Outcome Measures 

Post Concussive Symptom Inventory (PCSI,).53 The PCSI is a 20-item parent- and self-

report questionnaire assessing for concussion symptom severity. Symptoms are rated from 0 

(“not a problem”) to 6 (“severe problem”). In addition to a total symptom score created by 

summing all 20 items, four factor scores are derived from summing items on each factor: 

Physical (8-items; e.g. “complains of headaches”), Fatigue (3-items; e.g., “sleeping more than 

usual”), Emotional (“4-items; e.g., “acts irritable”), and Cognitive (5-items; e.g., “has difficulty 

concentrating”) problems. At the pre-season assessment, athletes were instructed to rate 

symptom severity during the past three months in order to establish a baseline level of 

symptoms.  This previous three-month time range, rather than current symptom severity, was 

also used at the post-season assessment.  

Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Scale (SWAN).54 

The SWAN is a parent and self-report measure of the 18 ADHD symptoms from the Diagnostic 
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and Statistical Manual 5 (DSM-5). Items measure attention, and appropriate level of activity and 

impulse control. Each symptom was rated from 1(“far below average”) to 7 (“far above 

average”). Inattention score (mean rating of 9 inattention symptoms), hyperactive/impulsive 

score (mean rating of 9 hyperactivity/impulsivity symptoms), and total score (mean rating of all 

18 symptoms) were used as dependent variables. Higher scores indicate better functioning.   

Attention Network Task (ANT). The ANT is a computerized attention task designed to 

assess three components of attention (i.e., alerting, orienting, and executive/conflict).55 Each trial 

began with a central fixation cross, followed by a cue, and then a target stimulus. There were 

four warning cue conditions that each appeared in 25% of trials: 1) a center cue (asterisk in place 

of fixation cross), 2) a double cue (asterisks above and below fixation cross), 3) a spatial cue 

(single asterisk in position of upcoming stimulus), or 4) no cue.  The stimulus array is a set of 

one to five arrows presented horizontally that appears either in the upper portion of the screen 

(50%) or lower portion of the screen (50%). The task included three types of stimuli: congruent 

trials (33%; central target arrow facing same direction as flanking arrows), incongruent trials 

(33%; central target arrow facing opposite direction as flanking arrows), and neutral trials (33%; 

no flanking arrows). Participants indicated the direction the central arrow was pointing by 

pressing the left or right mouse key. After responding, they received auditory and visual 

feedback indicating accuracy. Following a 24-trial practice block, participants completed one 

experimental block of 96 trials. Reaction times (RT), and attention network scores for alerting 

(median RT for no cue trials - median RT for double cue trials), orienting (median RT for central 

cue trials - median RT for spatial cue trials), and conflict (median RT for incongruent trials -

median RT for congruent trials) were computed. 
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Digital Trail Making Test (dTMT). A digital version of the Trail Making Test was used 

that was identical to the paper and pencil version.56 Parts A and B of the dTMT consisted of 

circles distributed over a tablet screen. In Part A, the circles were numbered 1-25, and 

participants were instructed to draw lines to connect the numbers in ascending order. In Part B, 

the circles included both numbers (1-12) and letters (A-L). The participants were required to 

draw lines to connect the circles in an ascending pattern with the added task of alternating 

between the numbers and letters (i.e., 1-A-2-B-3-C, etc.). Participants were instructed to connect 

the circles as quickly as possible without lifting the stylus from the tablet screen. The time to 

complete Part A was subtracted from Part B to denote speed of executive functioning and 

cognitive flexibility.  

Cued Task Switching Task. This task was designed to assess the ability to switch between 

competing tasks or stimuli (e.g., shape and color) response sets. Participants were instructed to 

match a stimulus presented in the upper center of the screen to one of two stimuli in the lower 

left and right corners of the screen. Participants completed two task-homogeneous (i.e., single 

task) blocks or repeat blocks where they matched the upper stimulus to shape (Task A); two 

blocks where they matched to color (Task B); and two task-heterogeneous (i.e. switch) blocks 

where they switched between Tasks A and B in a pseudo-random fashion. Participants were 

instructed on which type of task they were to complete prior to each block. Each block contained 

12 trials. Dependent variables used were switching-cost (the difference in RT and error rate 

between repeat trials and switch trials within switch blocks) and mixing-cost (the difference in 

RT and error rate between repeat blocks and switch blocks). 

Head Impact Exposure Tracking 
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 A CSx accelerometer device (CSx System Ltd., Auckland, New Zealand) was used to 

quantify head impact exposure. The CSx sensor is comprised of a triaxial accelerometer and 

gyroscope, which quantifies linear and rotational accelerations at 2300 Hz and 1000 Hz, 

respectively. Recording of impact data was triggered when the sensor placed below the left 

mastoid exceeded a 10g acceleration threshold. For each recorded impact, 50 ms of data were 

transmitted – 5 ms before and 45ms after the time of the impact. The magnitude of each impact 

was quantified by finding the peak g forces recorded during the 45 ms time period after the 

impact occurred.  

To minimize the potential for false positive recordings we implemented an additional ‘hit 

run’ filtering method. A ‘hit run’ was defined as an instance where the accelerometer data indicated 

an athlete received three or more hits >20 g spaced < 10 seconds apart within a 30 second time 

interval (which is considered unlikely for actual football participation). These events occurred 

disproportionately at the end of the sessions, potentially due to athletes removing the accelerometers 

and placing them on a table. Hit-run filtering resulted in the removal of 28.5% of the total head 

impacts accumulated across the cohort. After the ‘hit run’ filter was applied, the total number of 

impacts and g forces were summed across the regular season, and the number of impacts >90 g was 

used as an indicator of head impact exposure. The threshold of 90 gs was used to eliminate the 

potential for spurious head impact recordings. Notably, there is no consensus on the ‘threshold’ 

of significant g-force, and this 90g threshold was selected to be congruent with existing literature 

that 90g is the force of impact that may potentially put athletes at neurological risk.57,58 

Data Analysis 

An independent t-test was used to compare the total number of head impacts >90 g 

between the collar and no collar groups.  
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Separate analyses of covariance (ANCOVA) models were run for each outcome to assess 

for group (collar (intervention) vs. non-collar (control)) differences and head impact exposure on 

post-season performance. Models included nesting at the school level and controlled for pre-

season performance. Due to the known influence of ADHD on rating scales59 and task 

performance,60 we controlled for ADHD status (defined by parent report of diagnosis, history of 

stimulant medication, or > 5 symptoms of inattention rated as “far below average” or “below 

average” on baseline parent-rating) and ADHD medication status at the time of each assessment. 

The number of participants with ADHD did not differ between collar (n=23) and non-collar 

(n=23) groups (X2 (1)=.01, p=.92). Censoring was used in models examining the PCSI outcomes 

to handle the overabundance of ‘0’ ratings on this measure. Because this was not a concussed 

sample, a high number of ‘0’ ratings was expected. Due to the number of analyses completed, a 

false discovery rate correction61 was used, and only corrected p-values were reported.  
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Results  

Head Impact Exposure 

 Mean number of previously played season of football was 7.33 (SD=4.17) seasons for the 

collar group and 6.88 (SD=3.56) seasons for the non-collar group. There was no difference in 

number of seasons played between the two groups (t(282)=.74,p=.46). Mean number of hits 

(>90gs) per athlete was 22.54 (SD=15.47; range=0-92), and did not differ between the collar and 

no-collar groups (t(280)=1.15, p=249). Descriptives for each outcome variable are reported in 

Table 1. 

Behavioral/Cognitive Outcomes 

No significant effect of head impact exposure or JVC collar intervention was observed on 

any of the adolescent- or parent-report PCSI or SWAN factor scores (Table 1). Similarly, no 

effects of the head impact exposure or the collar intervention were observed on any of the dTMT 

or cued switching task outcomes. Table 1 reports the regression coefficients for all models. 

Positive coefficients indicate a positive relationship between the independent variable and post-

season dependent variable (e.g., greater number of hits >90gs associated with greater post-season 

score on dependent variable), while negative coefficients indicate a negative relationship 

between the independent variable and post-season dependent variable (e.g., greater number of 

hits >90gs associated with lower post-season score on dependent variable).  

 While no effects of head impact exposure or the JVC collar intervention were observed 

on most of the ANT outcomes, a significant, albeit small, effect of the collar was noted on the 

altering network score (FDR-corrected p=.026, d=.22). Specifically, those in the collar group had 

better post-season alerting network scores than the no collar group.  
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Discussion 

 This prospective longitudinal study examined the effects of head impact exposure on 

behavioral/cognitive outcomes and the potential protective effect of wearing a JVC collar during 

a single season of high-school football. Head impact exposure did not affect any assessed 

outcome. Although the JVC collar did not impact the majority of behavioral outcomes, collar-

wear result in better post-season ANT alerting network scores compared to the non-collar group, 

although the effect size was small. 

 While there are some studies that have reported a decline in behavioral functioning 

following a season of contact sport; these previous studies have some important methodological 

differences from the present study which may account for the differences in findings. First, a 

number of these studies used collegiate athletes;23,24,62,63 therefore, it is possible that deficits 

observed among college athletes may be due to greater cumulative lifetime exposure or greater 

exposure to higher g forces during collegiate-level sports compared to high-school level sports. 

Some studies have also demonstrated declines in functioning after a season of play on 

neurocognitive constructs (e.g., visual/spatial memory10,62) that were not assessed in the present 

study. Finally, some studies have demonstrated declines in cognitive functioning using more 

proximal testing to the time of exposure. For example, Espinoza et al.63 reported a decline in 

reaction time on a complex choice task when athletes were tested on the sideline immediately 

following an impact. Notably, these decrements in performance immediately after impact were 

not assessed as change over the course of a season.63 

Our finding of the absence of effect of head impact exposure on 

behavioral/neurocognitive functioning following a season of high-school football is congruent 

with several studies.27-31 The current study had one of the largest samples to date and is further 
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strengthened by the measurement of concurrent head impact exposure. While the absence of any 

effect of head impact exposure on functioning is promising, quantification of head impact 

exposure is difficult. There is no consensus on the ‘threshold’ of significant g-force, and while 

use of a 90g threshold is congruent with literature suggesting this represents the force of impacts 

that may potentially put athletes at neurological risk and elicit behavioral decrements,57 the exact 

threshold for head impacts is unknown. Thus, we can only conclude that head impact exposure 

as measured in our study did not impact behavioral or neurocognitive outcomes.   

Changes in neurophysiology9,11,17,18 and/or white matter integrity20,21 following a season 

of contact sport have also been reported. Further, these changes in neurophysiology often occur 

in the absence of symptoms of concussion or altered cognitive or behavioral functioning9,64-66 

and may persist long after the season has ended and possibly contribute to cumulative brain 

changes over time.21,65 Further, these neurophysiological changes are thought to be responsible 

for the maintenance of apparently normal behavioral and cognitive performance. 

Hyperconnectivity, for example, is a neurophysiological alteration often associated with head 

impact exposure.11 Repeated head impact exposure may result in continued recruitment/use of 

alternative collateral neural pathways in order to maintain apparently normal 

behavioral/cognitive functioning. Overtime these alternate pathways are strengthened which 

manifests as hyperconnectivity.11 Therefore it is possible that neural plasticity may be acting as a 

compensatory mechanism for head impact related damage.11 Another explanation for our limited 

findings may be that a single season of play may contribute to changes in physiology that are not 

yet observable at the behavioral/neurocognitive level. Notably, neurophysiological changes have 

been observed in athletes prior to the start of a season and long after the season ends11,21,65 

suggesting that there may be some degree of reorganization because of continued recruitment of 
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alternate pathways with no return to neurophysiological baseline,11 contributing to cumulative 

brain changes over time.21,65 In sum it is possible that our neurobehavioral tests are not sensitive 

enough to detect these changes, or possibly, these neurocognitive changes are inconsequential or 

take time to develop after neurophysiological change.  

Previously, the JVC collar had been shown to prevent alterations in white matter integrity 

associated with head impact exposure,41-44 and prevent pre- to post-season changes in functional 

activation.45 Yuan et al45 reported a similar lack of effect of the JVC collar on working memory 

task performance despite an increase in functional activation in the non-collar group. As 

discussed above, this hyperactivation in the non-collar group may reflect a compensatory 

mechanism allowing for comparable task performance. Therefore, it is possible that our 

measures were not sufficiently demanding to override these compensatory mechanisms to detect 

subtle behavioral/cognitive changes. In contrast, athletes in the collar group showed better post-

season alerting attention than the non-collar group, meaning that at the post-season assessment, 

those in the collar group were more responsive to cuing than those in the non-collar group. This 

may indicate that a single season of high-school football may impact the alerting attention 

system, and the JVC collar may provide some protection to this system. Moreover, the ANT may 

be sufficiently demanding to strain the compensatory mechanisms of the no-collar group, 

allowing for detection of subtle group differences.  

Study limitations should be considered. First, measurement of head impact exposure 

relied on a 90g threshold. Previous studies have noted the importance of the directionality (e.g., 

linear vs rotational) in understanding their effect on neural injury.17 Therefore, a better 

understanding of the effects of quality, periodicity, and magnitude of head impact exposure is 

required before we have confidence that head impacts do not alter behavioral/cognitive 
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outcomes. In addition, previous research45,46 reported change in functional activation in the 

absence of change in behavioral/cognitive performance, indicating a greater level of cognitive 

resources were used to maintain performance. It is possible that our measures were not 

demanding enough to override these compensatory mechanisms to detect subtle 

behavioral/cognitive changes. Future research would benefit from the inclusion of dynamic 

motor tasks or dual (cognition and motor) tasks sensitive to subtle concussion-related deficits.67-

69 While analyses controlled for ADHD status and medication usage, we did not conduct an 

ADHD diagnostic assessment. Future studies would benefit from including a diagnostic 

assessment to identify groups who may be at greater risk for deficit from head impact exposure. 

In addition, we did find that the JVC collar may prevent some decline in the functioning of the 

alerting system; however, the mechanism for this remains unknown. In light of the literature 

supporting the neuro-biological correlates of attention networks,70 coupled with preliminary 

studies indicating that the JVC collar may mitigate head impact related changes in white matter 

integrity and functional activation,41-43,45 future studies should include neuroimaging during task 

completion. This would allow for examination of congruent task-specific alterations in 

neurophysiology. Notably, due to logistic limitations, players were not individually randomized 

to the collar or no collar group, but rather participants were allocated to group at the team/school 

level. While the groups did not differ demographically or on any pre-season performance 

measure, future studies would benefit from a randomized controlled trial to eliminate this source 

of potential bias. Finally, the current study presents findings following a single season of play, 

and it is possible that changes in behavioral/cognitive functioning are downstream effects of 

cumulative head impact exposure. Future studies would benefit from following players across 

multiple seasons to further explore whether declines in functioning become apparent with 
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increasing cumulative head impact exposure, and exploration of the protective role of the JVC 

collar across multiple seasons and/or cumulative impact is required.   

Conclusion 

 Despite the promising results of limited negative effects of head impacts during a season 

of high-school football, previous literature documents pathophysiological changes in the absence 

of concomitant behavioral change. Therefore, concluding that a single season of head impact 

exposure does not impact functioning should be considered cautiously. A better understanding of 

measuring and quantifying subtle behavioral/cognitive changes is required, and monitoring 

throughout development will be important to better understand long-term sequalae of head 

impact exposure, and the role of cumulative exposure on athletes. 
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Table 1. Mean (standard deviations) and model results for all dependent variables.  

 
 

No Collar Group Collar Group 
Group 

(Collar vs. No 
Collar) 

Number of hits 
>90gs 

Outcome Variable Baseline  
Post-

season  Baseline 
Post-

season    
 

  
 

Adolescent Report N = 144 N = 141 N = 140 N = 135 Coefficient 
p-

value Coefficient 
p-

value 

PCSI - Cognitive 
2.88 

(4.63) 
3.19 

(4.74) 
2.17 

(3.50) 
2.68 

(5.07) 5.954 .96 0.041 .46 

PCSI-Emotional 
2.64 

(3.71) 
2.35 

(3.58) 
1.81 

(2.47) 
1.99 

(3.17) 4.166 .96 0.04 .30 

PCSI – Fatigue 
2.81 

(3.03) 
2.55 

(3.25) 
3.00 

(3.24) 
2.64 

(3.29) 4.414 .96 0.032 .30 

PCSI - Physical  
4.11 

(5.15) 
3.98 

(5.49) 
3.32 

(4.15) 
3.36 

(5.28) 0.868 .96 0.02 .71 

PCSI - Total 
11.95 

(13.70) 
11.57 

(14.12O 
10.25 

(10.20) 
10.21 

(13.72) 9.514 .96 0.121 .30 

SWAN - Inattention .97 (.77) .97 (.85) 1.07 (.80) 1.11 (.85) -0.016 .96 0.004 .51 

SWAN - 
Hyperactivity/Impulsivity .81 (1.03) .89 (1.00) .97 (1.00) 

1.07 
(1.02) -0.446 .96 0.005 .30 

SWAN - Total  .89 (.82) .93 (.85) 1.02 (.80) 1.09 (.87) -0.228 .96 0.005 .30 

Parent Report N = 137 N = 129 N = 129 N = 117 Coefficient 
p-

value Coefficient 
p-

value 

PCSI - Cognitive .99 (2.25) .96 (2.36) 
1.12 

(2.96) 
1.14 

(2.94) -2.712 .96 -0.06 .52 

PCSI-Emotional 
1.24 

(2.07) 
1.16 

(2.45) 
1.00 

(1.81) 
1.39 

(2.37) 1.261 .96 -0.016 .78 

PCSI - Fatigue 
1.04 

(1.84) 
1.29 

(2.24) 
1.33 

(2.53) 
2.00 

(3.08) -0.944 .96 -0.006 .89 

PCSI - Physical  
1.54 

(2.36) 
1.91 

(3.93) 
1.64 

(2.42) 
2.33 

(4.19) -4.785 .96 0.016 .85 

PCSI - Total 
4.66 

(6.21) 
5.19 

(8.51) 
4.98 

(7.32) 
6.67 

(10.14) -5.605 .96 -0.039 .78 

SWAN - Inattention .68 (1.07) .87 (.96) .72 (1.05) .92 (1.05) -0.363 .96 0.003 .63 

SWAN - 
Hyperactivity/Impulsivity 

1.05 
(1.01) 1.08 (.94) 

1.07 
(1.02) 

1.09 
(1.16) -0.593 .96 -0.001 .90 
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SWAN - Total  .86 (.95) .97 (.88) .90 (.98) 
1.01 

(1.07) -0.467 .96 0.001 .89 

Flanker N = 143 N = 140 N = 140 N = 136 Coefficient 
p-

value Coefficient 
p-

value 

Alerting Network 
17.59 

(31.66) 
26.30 

(29.11) 
16.13 

(34.39) 
29.20 

(26.94) 29.480* .03 0.13 .52 

Conflict Network 
89.17 

(46.84) 
66.76 

(35.35) 
91.60 

(52.37) 
70.38 

(29.47) 3.694 .96 -0.058 .78 

Orienting Network 
34.01 

(29.75) 
24.45 

(33.32) 
28.11 

(33.63) 
22.30 

(27.07) -5.682 .96 -0.191 .30 

Mean Reaction Time 
515.16 
(65.10) 

466.96 
(63.94) 

504.87 
(67.40) 

459.28 
(50.84) 2.601 .96 -0.229 .64 

Std Dev of Reaction 
Time 

106.60 
(39.05) 

91.23 
(36.16) 

101.18 
(37.65) 

89.77 
(27.88) 4.375 .96 -0.244 .30 

Trail Making Task N = 144 N = 138 N = 136 N = 133 Coefficient 
p-

value Coefficient 
p-

value 

Time B - Time A 
21.90 

(11.05) 
20.60 

(12.09) 
21.67 

(10.86) 
22.02 

(12.34) 3.361 .96 0.005 .92 

Cued Task Switching N = 144 N = 140 N = 140 N = 136 Coefficient 
p-

value Coefficient 
p-

value 

Mixing cost error rate -.08 (.08) -.07 (.08) -.07 (.09) -.05 (.09) 0.003 .96 0 .78 

Mixing cost reaction time 
126.84 
(75.09) 

114.56 
(65.03) 

112.30 
(73.54) 

86.63 
(67.15) -15.076 .96 -0.151 .78 

Switching cost error rate -.02 (.13) -.03 (.12) -.03 (.12) -.02 (.12) -0.006 .96 0.001 .30 

Switching cost reaction 
time  

-1.49 
(68.97) 

-3.76 
(65.42) 

-10.17 
(62.96) 

-6.45 
(65.02) -29.398 .96 0.098 .87 

 

Note: PCSI = Post Concussive Symptom Inventory; SWAN = Strengths and Weakness of ADHD 
Symptoms and Normal Behavior Scale.  

All p-values are FDR corrected p-values 

 

* =FDR corrected p<.05 
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