1		
2		
3	1	Title: GLOBAL REACH 2018: Iron infusion at high altitude reduces hypoxic pulmonary
4	2	vasoconstriction equally in both lowlanders and healthy Andean highlanders
5		vasoconstruction equality in both low landers and nearting Andean inginanders
6	3	
7	4	Alexander Patrician MSc ¹ , Tony Dawkins PhD ² , Geoff B Coombs PhD ¹ , Benjamin Stacey PhD ³ ,
8	5	Christopher Gasho MD ⁴ , Travis Gibbons MSc ⁵ , Connor A Howe MSc ¹ , Joshua C Tremblay PhD ¹ ,
9	6	Rachel Stone BHK ¹ , Kaitlyn Tymko BKin ¹ , Courtney Tymko BSN ¹ , John D Akins PhD ⁶ , Ryan L
10	7	Hoiland PhD ¹ , Gustavo A. Vizcardo-Galindo BSc ^{1,7} , Rómulo Figueroa-Mujíca BSc ⁷ , Francisco C.
11	8	Villafuerte PhD ⁷ , Damian M. Bailey PhD ³ , Michael Stembridge PhD ² , James D. Anholm MD ⁴ ,
12	9	Michael M Tymko PhD ^{1,8} , Philip N Ainslie PhD ¹ .
13	10	······································
14	11	¹ Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences,
15		
16	12	University of British Columbia – Okanagan, Kelowna, British Columbia, Canada
17	13	² Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
18	14	³ Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of
19 20	15	South Wales, Glamorgan, UK
20 21	16	⁴ Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University
21	17	School of Medicine, Loma Linda, CA, USA
22	18	⁵ School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, New
24	19	Zealand
25	20	
26		⁶ Department of Kinesiology, University of Texas, Arlington, TX, USA.
27	21	⁷ Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de
28	22	Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
29	23	⁸ Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta,
30	24	Edmonton, Alberta, Canada.
31	25	
32	26	Abstract word count: 285
33	27	Text word count: 3071
34	28	
35	28 29	Conversion ding outhors
36		Corresponding author:
37	30	Alexander Patrician, Centre for Heart, Lung and Vascular Health, University of British Columbia,
38	31	3333 University Way, Kelowna, BC, V1V 1V7.
39	32	Email: <u>alexander.patrician@alumni.ubc.ca</u>
40	33	
41	34	Running title: Iron and the pulmonary vasculature in healthy Andeans
42	35	
43	36	
44	37	
45	57	
46		
47 48		
40 49		
5 0		
51		
52		
53		
54		
55		
56		
57		
58		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

60

63

67 68

69 70

Abstract 38 39 40 **Background:** Increasing iron bioavailability attenuates hypoxic pulmonary vasoconstriction in 41 both lowlanders and Sherpa at high altitude. In contrast, the pulmonary vasculature of Andeans suffering with chronic mountain sickness is resistant to iron administration. While pulmonary 42 vascular remodeling and hypertension are characteristic features of chronic mountain sickness, the 43 impact of iron administration in healthy Andeans has not been investigated. If the interplay 44

45 between iron status and pulmonary vascular tone in healthy Andeans remains intact, this could provide valuable clinical insight into the role of iron regulation at high altitude. 46

47

48 **Research question:** Is the pulmonary vasculature in healthy Andeans responsive to iron infusion? 49

50 Study Design and Methods: In a double-blinded, block-randomized design, 24 healthy high-51 altitude Andeans and 22 partially acclimatized lowlanders at 4300 m (Cerro de Pasco, Peru), received an *i.v.* infusion of either iron [iron (III)-hydroxide sucrose; 200mg] or saline. Markers of 52 iron status were collected at baseline and 4 hours after infusion. Echocardiography was performed 53 54 during room-air breathing ($P_1O_2 = -96$ mmHg) and during exaggerated hypoxia ($P_1O_2 = -73$ mmHg), 55 at baseline, and at 2 and 4 hours following the infusion. 56

57 **Results:** Iron infusion reduced pulmonary artery systolic pressure (PASP) by ~2.5 mmHg in room 58 air (main effect P < 0.001), and by ~7 mmHg during exaggerated hypoxia (main effect P < 0.001) in both lowlanders and healthy Andean highlanders. There was no change in PASP following the 59 60 infusion of saline. Iron metrics were comparable between groups, except for serum ferritin, which 61 was 1.8-fold higher at baseline in the Andeans when compared to lowlanders [95% confidence interval (CI) 74-121 ng/ml vs. 37-70 ng/ml, respectively; P=0.003]. 62

64 **Interpretation:** The pulmonary vasculature of healthy Andeans and lowlanders remains sensitive to iron infusion and this response seems to differ from the pathological characteristics of chronic 65 mountain sickness. 66

Keywords: Andeans, iron, high altitude, pulmonary

Take home points

Study question: Is the pulmonary vasculature in healthy Andeans responsive to iron infusion?

Results: Iron infusion reduced pulmonary artery systolic pressure (PASP) by ~2.5 mmHg in room air (main effect P<0.001), and by ~7 mmHg during exaggerated hypoxia (main effect P<0.001) in both lowlanders and healthy Andean highlanders.

Interpretation: The pulmonary vasculature of healthy Andeans and lowlanders remains sensitive to iron infusion and this response seems to differ from the pathological characteristics of chronic mountain sickness.

Abbreviations:

- CI, cardiac index
- CMS, chronic mountain sickness
- CO, cardiac output
- EPO, erythropoietin
- Hb, hemoglobin
- Hct, hematocrit
- HIF, hypoxia inducible factor
- F_1O_2 , fraction of inspired oxygen
- LVOT VTI, left ventricular outflow tract velocity time integral Z
- MAP, mean arterial pressure
- NaCl, sodium chloride
- PASP, Pulmonary artery systolic pressure
- Pb, lead
- P_1O_2 , partial pressure of inspired oxygen
- RAP, Right atrial pressure
- SV, stroke volume
- SpO₂, peripheral arterial oxygen saturation
- TIBC, Total iron binding capacity
- TPR, Total pulmonary resistance
- TrF Sat, Transferrin saturation

³ 108 Introduction

With ascent to high altitude, there is a progressive reduction in the partial pressure of oxygen (PO_2) and a progressive decline in iron bioavailability.¹⁻³ As such, there is a robust inverse relationship between iron status and the pulmonary vasculature in hypoxia (reviewed in ⁴). Part of this relationship stems from the integral role of iron on propyl hydroxylase activity^{5,6} and contribution to the stabilization of hypoxia inducible factors (HIF). The HIF pathway acts as a cellular oxygen sensor,^{7,8} and controls a broad range of transcriptional responses to hypoxic exposure, including a variety of down-stream gene products that can influence hypoxic pulmonary vasoconstriction (e.g. endothelin, vascular endothelial grown factor and transient receptor potential channels).^{4,9} Experimentally, iron manipulation has been used as: 1) a tool to attenuate pulmonary vascular responsiveness of lowlanders exposed to acute normobaric hypoxia,¹⁰ and upon ascent and stay at high altitude;^{3,11-14} and 2) a method to interrogate HIF-dependent differences associated with clinical pulmonary hypertension¹⁵ and adaptation to high altitude – such as Sherpa of Tibetan descent,³ and Andeans suffering with chronic mountain sickness (CMS).¹⁴ In both lowlanders and Sherpa, iron infusion attenuates hypoxic pulmonary vasoconstriction at high altitude; however, this does not occur in Andeans with CMS. Andeans with CMS characteristically display marked pulmonary remodeling and hypertension (reviewed in ¹⁶). Therefore, in the study by Smith and colleagues,¹⁴ it is perhaps not surprising that 400 mg of iron(III)-sucrose [200 mg·day⁻¹ over 2 days preceded by 4 days of venesection (at 500 ml·day⁻¹)], was ineffective at reducing pulmonary artery systolic pressure (PASP), even after 5 days.¹⁴

²⁶ 27 128

While Andeans have had a putatively shorter high-altitude lineage, especially compared to Sherpa/Tibetans,¹⁷ healthy Andeans still demonstrate numerous attributes that enhance their hypoxic tolerance compared to lowlanders including: elevated birth weights, increased exhaled nitric oxide concentrations, larger lungs, improved aerobic capacity and genotypic adaptations¹⁸⁻ 22 . With the recently proposed notion that high altitude adaptation may proffer an enhanced state of iron metabolism,^{3,23} exploring whether healthy Andeans are receptive to iron would provide insight into the pathological divergence of CMS on the pulmonary vasculature. Therefore, the aim of this study was to examine the role of iron bioavailability on the pulmonary vascular regulation to hypoxia in high-altitude adapted Andeans, with and without, acute reductions in inspired PO_2 (P_IO₂). To address this aim, partially acclimatized lowlanders and healthy Andeans received either an infusion of iron or saline at 4300 m, in a double-blinded and block-randomized design. Our primary hypothesis was that healthy Andeans and lowlanders would demonstrate comparable pulmonary vascular responses to hypoxia, and both groups would be sensitive to iron infusion.

43 142 44 143 Methods

44 143 Methods 45 144 <u>Ethical Approval</u>

All experimental procedures were approved by the University of British Columbia Research Ethics Board (H17-02687 and H18-01404) and the Universidad Peruana Cayetano Heredia Comité de Ética (no. 101686), and conformed to the Declaration of Helsinki, except for registration in a database. All participants received both written and oral information about the study and provided written informed consent. Forms were translated into Spanish, and Andeans participants spoke with a Peruvian research assistant and provided written informed consent in Spanish before participating.

- 54 152
- 55 153 Participants

A cohort of 24 healthy Andean highlanders and 22 age-matched lowlanders completed the study (Table 1). All were normotensive, and did not report a history of cardiovascular, cerebrovascular, or respiratory diseases during completion of a medical history questionnaire. All Andeans were born at high altitude (n=2 at 1880-2900 m, n=20 at 4300m; as were their parents) and resided at 4300 m, were non-smokers, did not exhibit excessive erythrocytosis (Hb \leq 19 g/dl for females and \leq 21 g/dl for males) and had a Qinghai CMS questionnaire score of 0.5±0.8 – and thus were not considered to suffer from CMS.²⁴ Of the few lowlander participants who opted for high altitude prophylaxis (i.e., acetazolamide) upon immediate arrival to 4300 m, all lowlander participants had discontinued use for at least a week, prior to being tested in the current study.

13 162 14 163

This study was part of the Global Research Expedition on Altitude Related Chronic Health (REACH) to Cerro de Pasco, Peru [4300m; barometric pressure of 457 mmHg; P₁O₂ of ~96 mmHg].²⁵ Upon arrival in Lima and finalizing logistics, lowlander participants (of which were members of the expedition and sea-level residents of European descent) were driven up to Cerro de Pasco in 8 hours. Lowlanders were tested after 8 ± 4 days at 4300 m – lowlander infusion groups were equally weighted, for number of days at 4300 m – see Infusion section.

23 171 <u>Experimental Design</u>

Participants arrived at the laboratory having only eaten a small meal ~2 hours prior, and abstained from caffeine and exercise for >6 and >12 hours, respectively. Following 10 min of supine rest an indwelling venous catheter (21G needle, BD Vacutainer eclipse) was inserted into the median antecubital vein for repeated blood sampling and the infusion. Echocardiography (see Experimental Measures section) was performed at baseline, and at 2 and 4 hours after receiving an infusion of either iron or saline (see *Infusion* section). Between time-points, participants were allowed to sit up, but all participants resumed supine rest for at least 10 minutes before any measurement. At baseline and at 4 hours, echocardiography was also performed during a hypoxic stage (15 min of $F_1O_2=0.16$; $P_1O_2=73$ mmHg; simulating ~1700 m gain in elevation). At 2.5 minutes into the hypoxic stage, automated blood pressure was collected in duplicate using brachial oscillometry. After 10 min of reduced P₁O₂, echocardiographic imaging was repeated, and at the end of the hypoxic stage, peripheral oxygen saturation was recorded.

38 184

Infusion: In a double-blinded, block-randomized design, Andean and lowlander participants received an *i.v.* infusion of either iron (iron (III)-hydroxide sucrose; 200 mg in 250 ml 0.9% NaCl saline) or saline (250 ml of 0.9% NaCl saline) over 30 min. Both participants and investigators were blinded during collection (via opaque bags to cover the infusion and lines), and maintained throughout analysis. Due to the >40 day longevity of iron infusion¹⁰ and the logistic constraints of an expedition,²⁵ a cross-over design was not feasible. Therefore, the purpose of block-randomizing participants was two-fold: 1) enabled us to optimize logistics and coordination with other ongoing studies, and 2) ensured that lowlanders allocated to iron or saline conditions, were appropriately weighted, in terms of the number of days at 4300 m, to limit any potentially confounding influence of hypobaric exposure on iron stores [lowlanders receiving saline and iron were tested after 9±5 and 6 ± 3 days, respectively (unpaired t-test P=0.158)].

53 197 Experimental Measures

⁵⁴ 198 *Echocardiography:* Stroke volume (SV) was estimated using the following equation: ⁵⁵ 199 $SV = (\pi \cdot [aortic diameter/2]^2) \cdot LVOT VTI$

CHEST

2		
3	200	where the left ventricular outflow tract (LVOT) velocity time integral (VTI) was measured at the
4	201	point of aortic leaflet insertion during systole using a pulsed wave Doppler signal. Cardiac output
5	202	(CO) was calculated as the product of stroke volume and heart rate (via electrocardiography).
6 7	203	Cardiac index (CI) is the quotient of CO and body surface area, calculated as ²⁶ :
8	204	Body surface area = $\sqrt{(height \times weight)/3600}$
9	205	PASP was measured by Doppler echocardiography based upon the measurement of the maximum
10	206	velocity of the tricuspid regurgitation jet (TR velocity). ²⁷ The peak systolic pressure gradient of
11	207	the right ventricle (ΔP_{max}) to the right atrium was calculated according to the simplified Bernoulli
12 13	208	equation $(4 \cdot V^2)$, where V is the peak systolic velocity of the tricuspid regurgitate. PASP was then
14	209	determined by adding the right atrial pressure (RAP), which was estimated by evaluating inferior
15	210	vena cava diameter and collapsibility index – in line with the standard American Society of
16	211	Echocardiography guidelines. ²⁸
17	212	$PASP = (4 \cdot V^2) + RAP$
18 19	213	PASP was normalized to a hematocrit (Hct) of 45% in all individuals using the following
20	214	equation: ²⁹
21	215	$PASP_{[Hct]} = PASP/exp[2(\varphi - 0.45)]$
22	216	Where φ represents the measured hematocrit level. Total pulmonary resistance (TPR) was
23	217	calculated as an index of PASP against CO (i.e., PASP/CO), as previously described. ³⁰
24 25	218	
26	219	Biochemical analysis: Venous blood samples were separated by microcentrifugation, with serum
27	220	samples frozen in liquid nitrogen at -196 °C for subsequent analysis. Serum iron, ferritin,
28	221	transferrin, and erythropoietin (EPO) were analysed according to clinical laboratory standards
29	222	(Medlab clinical laboratories, Lima, Peru). Total iron binding capacity (TIBC) was calculated as ³¹ :
30 31	223	$TIBC = transferrin \cdot 1.389$
32	224	Transferrin saturation (TrF Sat) was calculated as:
33	225	Transferrin saturation = $(serum iron/TIBC) \cdot 100$
34	226	Hb and Hct were obtained from whole venous blood sample using microcentrifugation, and
35 36	227	analyzed immediately. The Hct at 2 hours, was estimated as the median value between the baseline
30 37	228	and 4-hour timepoints.
38	229	
39	230	Statistical analysis
40	231	Data were analyzed using a linear mixed effects model with a compound symmetry repeated
41 42	232	measure co-variance structure (SPSS v24, IBM Statistics). The fixed factors for the model were
42	233	ancestry and P_1O_2 (i.e., 96 to 73 mmHg) or time (i.e. pre to post infusion) – with the latter, P_1O_2 or
44	234	time, being a repeated factor with a compound symmetry repeated covariance structure. Subjects
45	235	were included as a random effect. When a significant interaction effect (e.g., altitude×ancestry)
46	236 237	was detected, Bonferroni adjusted post-hoc tests were utilized to test pairwise comparisons. Comparison of hematological measures at baseline, of pooled lowlanders and Andeans, were
47 48	237	assessed with independent samples t-test. The absolute difference between normoxia and hypoxia
49	239	(Δ) , is also presented. A linear regression was used to evaluate the prevalence of decreasing serum
50	235	iron, across days at altitude. All results are reported as mean±SD and significance was set at
51	241	P<0.05.
52 53	242	
55 54	243	Results
55	244	
56	245	Comparison of lowlanders and healthy Andeans at baseline
57		
58 59		
60		ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100 6

Iron metrics: At baseline, when all participants were pooled, ferritin was 82% higher in Andeans at baseline, compared to lowlanders (97.3±54.6 ng/ml vs. 53.5±37.1 ng/ml, respectively; P=0.003; Table 1). There were no other differences in markers of iron status (e.g., serum iron, transferrin, TIBC, TrF Sat, or EPO) at baseline between Andeans and lowlanders. Hypoxic pulmonary vasoconstriction: At baseline (prior to infusion), there was no difference in pulmonary vascular reactivity to hypoxia (P₁O₂=73 mmHg) between lowlanders and Andeans (for both uncorrected and corrected to 45% Hct; Table 2). LV SV slightly decreased during hypoxia in Andeans (75 ± 17 ml at baseline to 72 ± 18 ml during hypoxia; P=0.047); however, both lowlanders and Andeans demonstrated comparable increases in CO, CI, TPR, and MAP during hypoxia. Effects of intravenous iron Iron metrics: The iron infusion increased serum iron (by 382±193% and 288±100% in lowlanders and Andeans, respectively; main effect P<0.001), increased serum ferritin (by 18±16% and $14\pm10\%$ in lowlanders and Andeans, respectively; main effect P<0.001) and decreased transferrin (by $4\pm7\%$ and $5\pm6\%$ in lowlanders and Andeans, respectively; main effect P=0.010; Figure 1). Consistent with previous reports in CMS,¹⁴ EPO remained unaltered following iron or placebo in both groups. There were no significant changes in iron metrics during the saline condition. Time course over 4 hours at high altitude: In lowlanders and Andeans receiving saline, PASP did not significantly change across the 4 hours (main effect of time P=0.262; Table 3a). Following iron infusion, there was a decrease in PASP by 7% and 4% at 2 hours and 11% and 7% at 4 hours in lowlanders and Andeans, respectively (main effect of time P<0.001; Figure 2 and Table 3b). Following iron, both lowlanders and Andeans demonstrated a tendency for an increased MAP (main effect of time P=0.052; Table 3b). Even though there were no change in TPR across the 4 hours in lowlanders and Andeans with iron (Table 3b), TPR was higher in Andeans compared to lowlanders at 4 hours (P=0.034) – this difference is likely driven by the tendency for TPR to decrease across the 4 hours in lowlanders following iron (P=0.051). *Hypoxic pulmonary vasoconstriction:* During acute hypoxia (i.e., $P_1O_2=73$ mmHg), iron infusion attenuated PASP by 4 mmHg, in both Andeans and lowlanders (main effect P=0.01; Table 4b and Figure 3), which coincided with a decrease in TPR (main effect P=0.001) and an increase in LV SV (main effect P=0.031). The rise in PASP during hypoxia was unaltered following the placebo condition in both groups (main effect P=0.326; Table 4a). While the expected decrease in SpO₂ was apparent in the exaggerated hypoxia trial, this reduction was not altered by iron infusion in lowlanders and Andeans; however, the rise in PASP for a given drop in SpO_2 was attenuated by iron infusion (main effect P=0.011; Table 4b).

Discussion

The pulmonary vasculature of adapted Andeans remained responsive to iron infusion - a feature consistent among lowlanders and high altitude Sherpa.³ Because the pulmonary vasculature of Andeans suffering with CMS does not exhibit this responsiveness to iron,¹⁴ this may provide valuable insight into the pathological divergence of CMS. The following discussion outlines the implications of these findings, including the physiological significance of elevated ferritin levels in the Andeans.

CHEST

Pulmonary vascular responsiveness to hypoxia and iron

Aligning with our hypothesis, this is the first study to confirm that the pulmonary vasculature of adapted and otherwise healthy Andeans is responsive to iron infusion in hypoxia - a feature akin to the well adapted Sherpa and lowlanders.³ Such congruent responses across different populations (i.e. acclimatizing lowlanders and high altitude adapted Andeans and Sherpa), highlight a conserved phenotype reflected in an otherwise healthy pulmonary vasculature. Healthy Andeans have demonstrated either slightly higher PASP (at rest and during exercise)³², or similar PASP (at rest),^{33,34} compared to partially acclimatized lowlanders at the same altitude. Therefore, it is perhaps not surprising in the current study that PASP at rest and during further hypoxia was again similar between partially acclimatized lowlanders and healthy Andeans.

- The unremarkable influence of a comparable iron infusion on PASP in Andeans with CMS¹⁴ is intriguing. Certainly, CMS has long been established to coincide with pulmonary vascular remodeling and persistence of pulmonary hypertension (during rest and exercise)^{32,35-39}. However, CMS has also been linked to the dysfunction of a myriad of HIF-related factors [including sentrin-specific protease 1⁴⁰, prevailing circulatory status of vasoactive peptides (i.e. vascular endothelial growth factor and endothelin-1⁴¹), methylation of propyl hydroxylase activity⁴², and/or mutations to the von Hippel-Lindau protein⁴³ – these factors could blunt or counteract the efficacy of iron infusion on pulmonary vascular tone. Ultimately, the notable divergence of healthy adapted Andeans from the CMS pulmonary phenotype, hints at some facet of HIF-dysregulation, that may share mechanistic basis with other clinical pathologies.

Iron metabolism – higher ferritin levels in Andeans

Ascent to high altitude is associated with a progressive decline in iron bioavailability,¹⁻³ which can exaggerate hypoxia-induced HIF stabilization and contribute to pulmonary hypertension.⁴⁴ Therefore, in the context of iron regulation, the observed higher ferritin (a stimulus for iron storage) in Andeans could imply a greater state of iron sufficiency and a lower iron/erythropoietic demand, compared to lowlanders. While this feature might have resonance in the interesting dialogue of enhanced iron metabolism in adapted highlanders,^{3,23} using ferritin as an index of iron sufficiency is limited, as elevated ferritin levels (e.g., >200-300 ng/ml) are indicative of a myriad of medical concerns [e.g., liver disease, hepatitis, infection, state of inflammation, and hemochromatosis].^{45,46} As such, Sherpa do not present with elevated ferritin levels. For example, in the study by Willie and colleagues, serum ferritin of Sherpa was 46.7 ± 37.8 ng/ml³ – values which more closely resemble our lowlander data at 4300 m, rather than healthy Andeans (Table 1). Coincidingly, similar to lowlanders, Sherpa also did not exhibit any obvious inflammatory profile.³ Conversely, previous reports of Andeans with CMS (and/or excessive erythrocytosis), show ferritin levels of 169±90 ng/ml (n=11),¹⁴ 184±28 ng/ml (n=42)⁴⁷ and 156±132 ng/ml (n=41).48 However, in the latter two studies, ferritin in healthy Andeans were comparable to Andeans with CMS.^{47,48} While it is unclear why the ferritin in our "healthy" Andeans appear substantially lower than the ferritin values in other "healthy" Andeans^{47,48}, one possibility may be related to CMS score severity (0.5 ± 0.8 in this study; 2.7 ± 0.38 in⁴⁷; no score reported in⁴⁸). Future studies are needed to consider how and why CMS severity might influence ferritin levels, or why ferritin level can be so variable between otherwise healthy individuals.

 The factors potentially mediating these elevations in ferritin, in both healthy and CMS Andeans compared to lowlanders, may have some basis when considering the city of Cerro de Pasco itself. First, it has been demonstrated that more than half of the soil sample sites evaluated in Cerro de Pasco, had lead (Pb) levels exceeding 1200mg/kg,49 which is ~10-fold higher the health recommendations in Canada [140 mg/kg⁵⁰]. Recently, and not surprisingly, whole blood Pb concentrations in residents of Cerro de Pasco (with Hb 10-25 g/dl) were >2-fold greater than Pb concentrations in sea-level residents of Lima [4.75±1.53 ug/dl, range: 1.5-9.8 ug/dl versus 2.03±0.62 ug/dl, range: 1.0-4.6 ug/dl, respectively⁵¹]. While Pb toxicity may not be prevalent in our cohort [due to the lack of iron deficiency and anemia (reviewed in: ⁵²)], consequence(s) of Pb exposure on upstream inflammatory factors⁵³ and ferroportin activity,⁵⁴ have been demonstrated in animal and cell-preparation models. Whether Pb exposure could extend beyond iron deficiency/anemia and potentially contribute to the elevated ferritin levels in Andeans, compared lowlanders, remains to be determined. Second, the city of Cerro de Pasco starkly contrasts those of small towns/villages in the Himalayan highlands, in terms of lifestyle (e.g. diet, physical activity) and level of industrialization (e.g. drive-in and mining versus hike-in and agriculture/tourism, respectively). As such, comparisons between populations are certainly multifaceted and future studies are needed to consider the potential detrimental influence of even mildly elevated Pb levels on inflammation^{53,55} and explore the mechanistic links to contributing to the elevated ferritin levels in Andeans

Importantly, our findings that iron attenuated the rise in PASP during hypoxia, with a coinciding increase in left ventricular SV and decrease in TPR (Table 4), is broadly consistent with the recent study by Holdsworth and colleagues.¹³ Here, the authors reported that increasing iron bioavailability (via infusion of 1g of ferric carboxymaltose) in lowlanders, *prior* to ascent to high altitude, translated into enhanced right ventricular SV and lower pulmonary vascular resistance at 5050 m.

Considerations of iron status during prolonged stay at high altitude

In our lowlander cohort, a pattern of decreasing serum iron levels appeared to develop over the 17 days at 4300 m ($r^2=0.204$, P=0.035; Figure 4) – a reproducible feature of high-altitude sojourn.¹⁻³ Even though our cohort of Andeans did not travel and resided at 4300 m, our groups were also appropriately weighted for serum iron (unpaired t-test P=0.522; Figure 4). Our study appropriately weighted lowlanders to saline and iron conditions, so the confounding influence of time at altitude would be less. However, the progressive reduction in iron with stay at altitude, highlights the need to be cognisant of such changes in iron status, if the outcome variable of interest hinges or relies upon downstream iron-regulatory processes.

Interpretation

Unlike Andeans with CMS,¹⁴ yet aligning with Sherpa,³ the pulmonary vasculature of adapted Andeans remained responsive to iron infusion. Therefore, these findings highlight a feature of healthy pulmonary vascular regulation, and a trait of high-altitude adaptation that remains divergent from the typical pathological characteristics of high-altitude maladaptation (i.e., CMS).

Acknowledgements

This study was conducted within the framework of Global REACH 2018. The authors are grateful to the expedition team members and collaborators in Cerro de Pasco for their support in the weeks

1 2		
3 4 5	384 385	leading up to, and during data collection in Peru. We would also like to thank the Andean residents of Cerro de Pasco for their participation.
6	386 387	Author contributions
7 8	388	All authors were involved in data collection. AP and PNA were involved in data analyses and
9	389	interpretation. AP drafted the manuscript. All authors provided intellectual feedback, approved the
10	390	final version of this manuscript and agree to be accountable for all aspects of the work. All persons
11 12	391	designated as authors qualify for authorship, and all those who qualify for authorship are listed.
13	392	
14	393 394	<u>Financial/nonfinancial disclosures</u> None to declare
15 16	394 395	None to declare
17	396	
18		
19 20		
21		
22 23		
23 24		
25		
26 27		
28		
29 30		
30 31		
32		
33 34		
35		
36 37		
37 38		
39		
40 41		
42		
43		
44 45		
46		
47 48		
40 49		
50		
51 52		
52 53		
54		
55 56		
50 57		
58		
59 60		ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100 ${f 1}$

2		
3	397	Tables
4	398	

7	Table 1. Baseline summary of	pooled lowlanders and	pooled Andeans.
---	------------------------------	-----------------------	-----------------

7	Table 1. Baseline summary of pooled lowlanders and pooled Andeans.					
3		Lowlander	Andean	p-value		
)	Sex (males/females)	16 / 6	21 / 3			
0	Age (years)	29 ± 7	29 ± 11	0.898		
1 2	Height (cm)	175 ± 8	162 ± 5	<0.001		
3	Weight (kg)	71 ± 10	63 ± 7	<0.001		
4	BMI (kg/m^2)	23.3 ± 2.3	23.8 ± 2.8	0.530		
5	Hb (g/dl)	16.2 ± 1.4 [17]	16.9 ± 1.9 [14]	0.235		
6	Hct (%)	48.4 ± 3.9. [20]	53.2 ± 4.1 [18]	0.001		
7	EPO (mIU/ml)	17.3 ± 9.5	14.1 ± 8.9	0.257		
8	Serum Ferritin (ng/ml)	53.5 ± 37.1	97.3 ± 54.6 [23]	0.003		
9	Serum Iron (ug/dL)	81.8 ± 40.9	94.2 ± 29.7 [23]	0.250		
20 21	Serum Transferrin (mg/dl)	275.4 ± 24.4	268 ± 28.3 [23]	0.353		
22	TIBC (ug/dl)	382.5 ± 33.9	372.2 ± 39.3 [23]	0.353		
23	TrF Sat (%)	21.9 ± 11.5	25.3 ± 7.6 [23]	0.240		
24	SpO_2 (%)	89 ± 3	88 ± 3	0.528		
25	PASP (mmHg)	31.0 ± 6.4 [21]	29.5 ± 5.9 [23]	0.403		
26	PASP _[Hct] (mmHg)	29.5 ± 7.3 [19]	25.4 ± 5.8 [17]	0.072		
27	Mean \pm SD in 22 Lowlanders					
28 29	samples t-test.					
30	400					
31	401					
32	101					
33						
34						
85 86						
87						
8						
39						
10						
11						
12						
13						
14 15						
+5 16						
17						
18						
19						
50						
51						

 CHEST

Table 2. Cardiopulmonary measures in pooled lowlanders and Andeans (prior to infusion) during room air

		Room air	Hypoxia	Ancestry	P_IO_2	Inter
DACD (mm II_2)	Lowlander	31.0 ± 6.4 [21]	40.2 ± 8.4 [21]	0.866	<0.001	0.343
PASP (mmHg)	Andean	29.5 ± 5.9 [23]	40.9 ± 12.9 [23]			
PASP _[hct]	Lowlander	29.5 ± 7.3 [19]	38.4 ± 10.7 [19]	0.242	<0.001	0.586
(mmHg)	Andean	25.4 ± 5.8 [17]	35.7 ± 12.3 [17]			
TDD (mm Ha/l)	Lowlander	6.4 ± 1.5 [21]	7.0 ± 1.8 [21]	0.401	<0.001	0.120
TPR (mmHg/l)	Andean	6.5 ± 1.6 [23]	7.7 ± 2.3 [23]			
IVCV(ml)	Lowlander	83 ± 18	86 ± 19	0.041	0.931	0.009
LV SV (ml)	Andean	75 ± 17	$72 \pm 18*$ †			
IID (heats/min)	Lowlander	62 ± 12	71 ± 15	0.320	<0.001	0.061
HR (beats/min)	Andean	63 ± 9	77 ± 12			
CO(1/min)	Lowlander	5.0 ± 1.0	6.0 ± 1.3	0.173	<0.001	0.167
CO (l/min)	Andean	4.7 ± 0.9	5.4 ± 1.2			
$CI(m1/min/m^2)$	Lowlander	2.7 ± 0.5	3.2 ± 0.7	0.751	<0.001	0.349
CI (ml/min/m ²)	Andean	2.8 ± 0.5	3.2 ± 0.7			
MAD (mmIIa)	Lowlander	90 ± 8	94 ± 10	<0.001	0.001	0.813
MAP (mmHg)	Andean	78 ± 8	82 ± 10			
$S_{m}O_{m}(0/1)$	Lowlander	89 ± 3	72 ± 7	0.916	<0.001	0.506
SpO_2 (%)	Andean	88 ± 3	73 ± 10 [23]			

Mean ± SD in 22 Lowlanders and 24 Andeans (unless otherwise noted [n]). Linear mixed model. * Significant difference from baseline, P<0.05; † Significant difference between Andeans and Lowlanders, P<0.05.

1	
2	

3	
4	

Table 3a. Resting cardiopulmonary measures at baseline and following the infusion of saline at 4300 m

		onary measures at Baseline	2 hours	4 hours	Ancestry	Time	Inter
PASP	Lowlander	32.1 ± 7.5	31.5 ± 6.2	31.1 ± 5.8	0.366	0.262	0.751
(mmHg)	Andean	29.7 ± 6.4 [11]	29.6 ± 7.8 [11]	27.8 ± 8.1 [11]			
PASP _[hct]	Lowlander	30.5 ± 9.0	29.7 ± 7.7	29.3 ± 8.4	0.094	0.174	0.549
(mmHg)	Andean	24.8 ± 6.3 [11]	25.5 ± 6.1 [9]	23.1 ± 7 [9]			
TPR	Lowlander	6.1 ± 1.4	6 ± 1.2	5.8 ± 1.1	0.739	0.307	0.594
(mmHg/l)	Andean	6.1 ± 1.5 [11]	6.5 ± 1.7 [11]	5.5 ± 2.4			
HR	Lowlander	60 ± 10	59 ± 13	57 ± 13	0.592	0.067	0.648
(beats/min)	Andean	63 ± 10	59 ± 9	60 ± 9			
LV SV (ml)	Lowlander	90 ± 17	92 ± 11	98 ± 22	0.021	0.129	0.099
LV SV (ml)	Andean	80 ± 16	78 ± 9	79 ± 11			
CO(1/min)	Lowlander	5.3 ± 1.0	5.3 ± 1	5.4 ± 1.3	0.079	0.430	0.278
	Andean	5.0 ± 0.8	4.6 ± 0.7	4.7 ± 0.5			
CI (l/min/m ²)	Lowlander	2.8 ± 0.6	2.8 ± 0.6	2.9 ± 0.7	0.855	0.398	0.227
	Andean	2.9 ± 0.6	2.7 ± 0.5	2.7 ± 0.4			
MAP	Lowlander	92 ± 8	90 ± 7	91 ± 10	0.027	0.914	0.305
(mmHg)	Andean	81 ± 8	84 ± 11	83 ± 14			
$S_{pO_{1}}(0/2)$	Lowlander	89 ± 3	89 ± 3	88 ± 4	0.607	0.557	0.806
SpO ₂ (%)	Andean	88 ± 2	88 ± 3	88 ± 2			

Mean \pm SD in 11 lowlanders and 12 Andeans (unless otherwise noted [n]). P_IO₂=96mmHg. Significant p-values are denoted in bold. Linear mixed model.

CHEST

		Baseline	2 hours	4 hours	Ancestry	Time	Inter
PASP	Lowlander	29.8 ± 5.1 [10]	27.7 ± 5.6 [10]	26.6 ± 6.3 [10]	0.967	<0.001	0.587
(mmHg)	Andean	29.3 ± 5.6	28.1 ± 7.2	27.2 ± 6.9			
PASP _[hct]	Lowlander	28.2 ± 4.3 [8]	26.5 ± 4.8 [8]	25.1 ± 5.5 [10]	0.183	0.001	0.48
(mmHg)	Andean	26.5 ± 5.2 [6]	26.6 ± 6.9 [4]	21.3 ± 4.3 [8]			
TPR	Lowlander	6.7 ± 1.6 [10]	6.4 ± 1.8 [10]	$5.3 \pm 2.6 \ddagger$	0.19 <mark>0</mark>	0.867	0.00
(mmHg/l)	Andean	6.8 ± 1.7	7 ± 2	7.5 ± 2.9			
HR	Lowlander	63 ± 14	63 ± 20	64 ± 16	0.483	0.098	0.12
(beats/min)	Andean	63 ± 7	58 ± 8	58 ± 8			
LV SV (ml)	Lowlander	76 ± 17	75 ± 15	77 ± 19	0.439	0.764	0.18
	Andean	71 ± 18	73 ± 18	68 ± 19			
CO (l/min)	Lowlander	4.7 ± 0.9	4.5 ± 1	4.7 ± 0.9	0.262	0.277	0.13
	Andean	4.4 ± 0.9	4.2 ± 1.2	3.9 ± 1.3			
$CL(1/min/m^2)$	Lowlander	2.6 ± 0.4	2.5 ± 0.5	2.6 ± 0.5	0.854	0.256	0.09
CI (l/min/m ²)	Andean	2.7 ± 0.5	2.5 ± 0.6	2.4 ± 0.7			
MAP	Lowlander	89 ± 8	89 ± 10	91 ± 7	0.001	0.052	0.64
(mmHg)	Andean	75 ± 6	76 ± 8	79 ± 11			
SpO ₂ (%)	Lowlander	88 ± 3	88 ± 2	88 ± 3 [10]	0.444	0.160	0.31
$SpO_2(\%)$	Andean	88 ± 4	87 ± 3	87 ± 3			
denoted in bold 412 413 414	1. Linear mixed	model.					

415

		Pre-saline	Post-saline	Ancestry	Time	Inter
$\Delta \text{SpO}_2(\%)$	Lowlander	-14.9 ± 6.9	-15.5 ± 6.7	0.949	0.899	0.610
$\Delta SpO_2(\%)$	Andean	-15.8 ± 9.1	-14.9 ± 8			
$\Delta PASP (mmHg)$	Lowlander	9 ± 5.3	10.6 ± 5.6	0.995	0.326	0.989
ΔrASr (mming)	Andean	9.1 ± 5.7	10.6 ± 8.5			
$\Delta PASP / \Delta SpO_2$	Lowlander	-0.6 ± 0.4	-0.9 ± 0.9	0.565	0.070	0.691
(mmHg/%)	Andean	-0.5 ± 0.7 [10]	-0.9 ± 0.5			
ΔPASP[hct]	Lowlander	8.7 ± 5.8	10.1 ± 5.9	0.654	0.258	0.854
(mmHg)	Andean	7.5 ± 4.9	9.8 ± 6.4 [9]			
$\Delta PASP[hct]/\Delta SpO_2$	Lowlander	-0.6 ± 0.4	-0.9 ± 0.8	0.427	0.045	0.477
(mmHg/%)	Andean	-0.3 ± 0.6 [9]	-0.8 ± 0.3 [9]			
Δ TPR (mmHg/l)	Lowlander	0.4 ± 0.8	1.0 ± 1.9	0.420	0.137	0.922
$\Delta 1 \mathrm{FK} (\mathrm{mm1g}/1)$	Andean	0.9 ± 1.3	1.4 ± 2			
AUD (hosts/min)	Lowlander	10.0 ± 9.5	9.6 ± 7.2	0.091	0.702	0.849
Δ HR (beats/min)	Andean	15.0 ± 4.8	13.9 ± 8.6			
$\Delta CU (m1)$	Lowlander	3.6 ± 8.1	1.5 ± 7.5	0.004	0.433	0.651
$\Delta SV (ml)$	Andean	-6.2 ± 8.8	-6.8 ± 6.9			
$\Lambda CO(m1/min)$	Lowlander	1.1 ± 0.6	1.1 ± 0.9	0.055	0.665	0.591
$\Delta CO (ml/min)$	Andean	0.7 ± 0.6	0.6 ± 0.4			
$\Lambda CL (m1/min/m^2)$	Lowlander	0.6 ± 0.4	0.6 ± 0.5	0.123	0.624	0.657
$\Delta CI (ml/min/m^2)$	Andean	0.4 ± 0.3	0.3 ± 0.3			
AMAD (mmIIc)	Lowlander	5.1 ± 6.6	5.9 ± 5.5	0.495	0.760	0.888
$\Delta MAP (mmHg)$	Andean	3.9 ± 8.1	4.2 ± 5.1			

Mean \pm SD. N=10-11 and n=11-12 for lowlanders and Andeans respectively, unless otherwise noted [n]. Δ , the absolute change between normoxia and hypoxia. T

58 59

60

		Pre-iron	Post-iron	Ancestry	Time	Inter.
ΔSpO_2 (%)	Lowlander Andean	-18.4 ± 3.3 -14.8 ± 7.7	-18 ± 4.2 -15.2 ± 9.8	0.238	0.966	0.749
ΔPASP (mmHg)	Lowlander Andean	$9.2 \pm 3.9 \\ 13.6 \pm 12.9$	$6.8 \pm 3.1 \\ 7.4 \pm 8.4$	0.451	0.010	0.219
$\Delta PASP/\Delta SpO_2$ (mmHg/%)	Lowlander Andean	-0.5 ± 0.2 -0.9 ± 0.7	-0.4 ± 0.2 [9] -0.2 ± 0.9	0.979	0.011	0.051
$\frac{\Delta PASP_{[Hct]}}{(mmHg)}$	Lowlander Andean	9 ± 4.4 [8] 15.5 ± 16.6 [5]	6.6 ± 3.1 [10] 7.7 ± 10 [6]	0.556	0.075	0.300
$\frac{\Delta PASP_{[Hct]}/\Delta SpO_2}{(mmHg/\%)}$	Lowlander Andean	-0.51 ± 0.25 [8] -0.85 ± 0.7 [5]	-0.4 ± 0.23 [9] -0.001 ± 1.04 [6]	0.509	0.057	0.176
Δ TPR (mmHg/l)	Lowlander Andean	0.7 ± 1.3 1.5 ± 1.9	0.02 ± 1.4 -0.1 ± 2.1	0.62	0.001	0.16
ΔHR (beats/min)	Lowlander Andean	9.1 ± 5.9 11.9 ± 6.8	$6.9 \pm 10.9 \\ 11 \pm 7.2$	0.256	0.303	0.671
ΔSV (ml)	Lowlander Andean	2.8 ± 5.6 -0.6 ± 9.3	7.3 ± 8.3 2.7 ± 11	0.234	0.031	0.729
ΔCO (l/min)	Lowlander Andean	0.9 ± 0.5 0.8 ± 0.7	$1.1 \pm 0.6 \\ 0.9 \pm 0.7$	0.505	0.264	0.929
$\Delta CI (ml/min/m^2)$	Lowlander Andean	$\begin{array}{c} 0.5 \pm 0.3 \\ 0.5 \pm 0.4 \end{array}$	0.6 ± 0.3 0.6 ± 0.4	0.809	0.244	0.997
$\frac{\Delta MAP (mmHg)}{Mean \pm SD. N=10-12}$	Lowlander Andean 1 and n=11-12	2.6 ± 9.3 4.9 ± 6.9 for lowlanders and	$\begin{array}{c} 1.1 \pm 5.9 \\ 0.5 \pm 6.1 \end{array}$	0.718 y, unless othe	0.145 erwise note	0.468 ed [n]. Δ
	Lowlander Andean 1 and n=11-12	2.6 ± 9.3 4.9 ± 6.9 for lowlanders and	$\begin{array}{c} 1.1 \pm 5.9 \\ 0.5 \pm 6.1 \end{array}$			

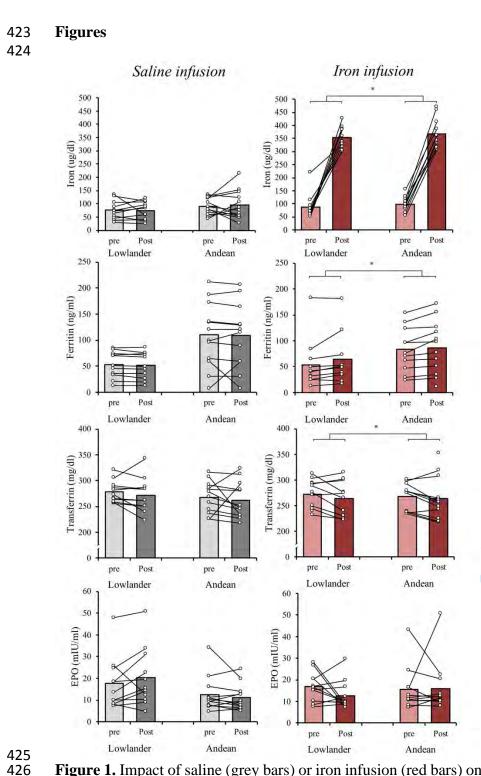
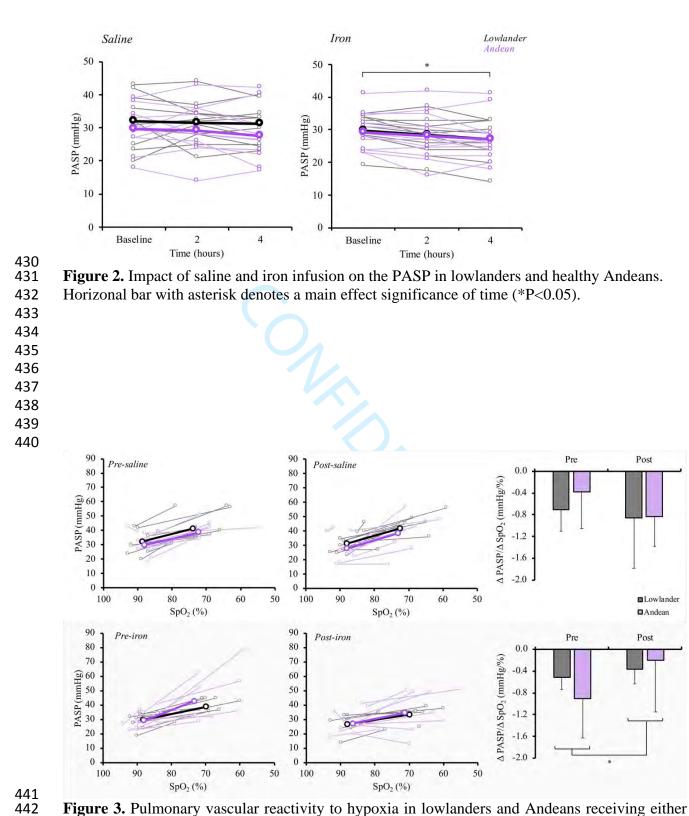



Figure 1. Impact of saline (grey bars) or iron infusion (red bars) on iron metrics in lowlanders and
healthy Andeans. *P<0.05 main effect of time.

 CHEST

443 saline or iron infusion. * main effect P < 0.05.

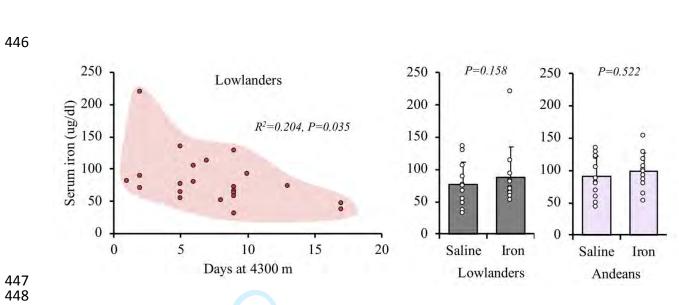


Figure 4. Baseline serum iron measurements in lowlanders and Andeans. Lowlander data is presented as 1) to correspond to the number of days at 4300 m, before being tested (with linear regression; *left panel*) and 2) highlight the equal weighting of iron status between the saline and iron groups (with unpaired t-test; *middle panel*). Andean data demonstrates iron levels in the saline and iron groups at baseline were comparable (with unpaired t-test; *right panel*).

References

- Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced 1. erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood. 2007;109(11):4724-4731. 2. Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985). 2015;119(12):1432-1440. 3. Willie CK, Patrician A, Hoiland RL, et al. Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050 m. J Physiol. 2021;599(5):1685-1708. 4. Frise MC, Robbins PA. Iron, oxygen, and the pulmonary circulation. J Appl Physiol (1985). 2015;119(12):1421-1431. 5. Kaelin WG, Ratcliffe PJ. Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway. *Molecular Cell.* 2008;30(4):393-402. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity of 6. hypoxia-inducible factor in cancer cells. Cancer Res. 2003;63(8):1764-1768. Semenza GL, Agani F, Iyer N, et al. Hypoxia-inducible factor 1: from molecular biology to 7. cardiopulmonary physiology. Chest. 1998;114(1 Suppl):40s-45s. Prabhakar NR, Semenza GL. Oxygen Sensing and Homeostasis. Physiology (Bethesda). 8. 2015;30(5):340-348. 9. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367-520.

Page 21 of 48

CHEST

1			
2 3	470	10	Deut NIK Countie NIK Change UV at al. Elevention of incur standard in homeone attactuates the
4	478 470	10.	Bart NK, Curtis MK, Cheng HY, et al. Elevation of iron storage in humans attenuates the
5	479 480	11.	pulmonary vascular response to hypoxia. <i>J Appl Physiol (1985).</i> 2016;121(2):537-544. Smith TG, Balanos GM, Croft QP, et al. The increase in pulmonary arterial pressure
6 7	480 481	11.	caused by hypoxia depends on iron status. <i>J Physiol.</i> 2008;586(24):5999-6005.
8	481	12.	Talbot NP, Smith TG, Privat C, et al. Intravenous Iron Supplementation May Protect
9	483	12.	Against Acute Mountain Sickness: A Randomized, Double-Blinded, Placebo-Controlled
10	484		Trial. High Alt. Med. Biol. 2011;12(3):265-269.
11 12	485	13.	Holdsworth DA, Frise MC, Bakker-Dyos J, et al. Iron bioavailability and cardiopulmonary
12	486	15.	function during ascent to very high altitude. <i>Eur Respir J.</i> 2020;56(3).
14	487	14.	Smith TG, Talbot NP, Privat C, et al. Effects of iron supplementation and depletion on
15	488	±	hypoxic pulmonary hypertension: two randomized controlled trials. <i>Jama</i> .
16 17	489		2009;302(13):1444-1450.
18	490	15.	Balanos GM, Dorrington KL, Robbins PA. Desferrioxamine elevates pulmonary vascular
19	491		resistance in humans: potential for involvement of HIF-1. J Appl Physiol (1985).
20	492		2002;92(6):2501-2507.
21 22	493	16.	Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy
22	494	-	highlanders and chronic mountain sickness. <i>Circulation</i> . 2007;115(9):1132-1146.
24	495	17.	Aldenderfer MS. Moving Up in the World: Archaeologists seek to understand how and
25	496		when people came to occupy the Andean and Tibetan plateaus. Am Sci. 2003;91(6):542-
26	497		549.
27 28	498	18.	Moore LG, Shriver M, Bemis L, et al. Maternal adaptation to high-altitude pregnancy: an
29	499		experiment of naturea review. <i>Placenta.</i> 2004;25 Suppl A:S60-71.
30	500	19.	Beall CM, Laskowski D, Strohl KP, et al. Pulmonary nitric oxide in mountain dwellers.
31	501		Nature. 2001;414(6862):411-412.
32 33	502	20.	Lenfant C, Sullivan K. Adaptation to high altitude. N Engl J Med. 1971;284(23):1298-
34	503		1309.
35	504	21.	Frisancho AR. Developmental functional adaptation to high altitude: review. Am J Hum
36	505		Biol. 2013;25(2):151-168.
37 38	506	22.	Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and
39	507		Physiology. <i>Mol Biol Evol</i> . 2021;msab064.
40	508	23.	Muckenthaler MU, Mairbäurl H, Gassmann M. Iron metabolism in high altitude
41	509		residents. <i>J Appl Physiol (1985).</i> 2020;129(4):920-925.
42 43	510	24.	León-Velarde F, Maggiorini M, Reeves JT, et al. Consensus statement on chronic and
44	511		subacute high altitude diseases. <i>High Alt Med Biol.</i> 2005;6(2):147-157.
45	512	25.	Tymko MM, Hoiland RL, Tremblay JC, et al. The 2018 Global Research Expedition on
46	513		Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an
47 48	514		Experimental Overview. Exp Physiol. 2020.
49	515	26.	Mosteller RD. Simplified calculation of body-surface area. N Engl J Med.
50	516		1987;317(17):1098.
51	517	27.	Bertini M, Sengupta PP, Nucifora G, et al. Role of left ventricular twist mechanics in the
52 53	518		assessment of cardiac dyssynchrony in heart failure. JACC Cardiovasc Imaging.
55	519		2009;2(12):1425-1435.
55	520	28.	Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber
56	521		quantification by echocardiography in adults: an update from the American Society of
57 58			
59			2
60			ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100

2			
3	522		Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J
4 5	523		Cardiovasc Imaging. 2015;16(3):233-270.
6	524	29.	Vanderpool RR, Naeije R. Hematocrit-corrected Pulmonary Vascular Resistance. Am J
7	525		Respir Crit Care Med. 2018;198(3):305-309.
8	526	30.	Foster GE, Ainslie PN, Stembridge M, et al. Resting pulmonary haemodynamics and
9	527		shunting: a comparison of sea-level inhabitants to high altitude Sherpas. J Physiol.
10	528		2014;592(6):1397-1409.
11 12	529	31.	Auerbach M, Adamson JW. How we diagnose and treat iron deficiency anemia. Am J
13	530	51.	Hematol. 2016;91(1):31-38.
14	531	32.	Groepenhoff H, Overbeek MJ, Mulè M, et al. Exercise pathophysiology in patients with
15	532	52.	chronic mountain sickness exercise in chronic mountain sickness. <i>Chest.</i>
16	533		2012;142(4):877-884.
17 18	534	33.	de Bisschop C, Kiger L, Marden MC, et al. Pulmonary capillary blood volume and
19	534 535	55.	
20			membrane conductance in Andeans and lowlanders at high altitude: a cross-sectional
21	536	24	study. <i>Nitric Oxide</i> . 2010;23(3):187-193.
22	537	34.	Schwab M, Jayet PY, Stuber T, et al. Pulmonary-artery pressure and exhaled nitric oxide
23	538	<u> </u>	in Bolivian and Caucasian high altitude dwellers. <i>High Alt Med Biol</i> . 2008;9(4):295-299.
24 25	539	35.	Peñaloza D, Sime F, Banchero N, Gamboa R, Cruz J, Marticorena E. Pulmonary
26	540		hypertension in healthy men born and living at high altitudes. Am J Cardiol.
27	541		1963;11(2):150-157.
28	542	36.	Rotta A, Cánepa A, Hurtado A, Velásquez T, Chávez R. Pulmonary circulation at sea level
29	543		and at high altitudes. Journal of Applied Physiology. 1956;9(3):328-336.
30	544	37.	Arias-Stella J, Saldana M. The terminal portion of the pulmonary arterial tree in people
31 32	545		native to high altitudes. Circulation. 1963;28:915-925.
33	546	38.	Lockhart A, Zelter M, Mensch-Dechene J, et al. Pressure-flow-volume relationships in
34	547		pulmonary circulation of normal highlanders. <i>J Appl Physiol</i> . 1976;41(4):449-456.
35	548	39.	Grover R. Chronic hypoxic pulmonary hypertension. In: Fishman AP, ed. The pulmonary
36	549		circulation: normal and abnormal. Philadelphia: University of Pennsylvania Press;
37 38	550		1990:283-299.
39	551	40.	Villafuerte FC. New genetic and physiological factors for excessive erythrocytosis and
40	552		Chronic Mountain Sickness. J Appl Physiol (1985). 2015;119(12):1481-1486.
41	553	41.	Ge RL, Mo VY, Januzzi JL, et al. B-type natriuretic peptide, vascular endothelial growth
42	554		factor, endothelin-1, and nitric oxide synthase in chronic mountain sickness. Am J
43 44	555		Physiol Heart Circ Physiol. 2011;300(4):H1427-1433.
45	556	42.	Julian CG. Epigenomics and human adaptation to high altitude. J Appl Physiol (1985).
46	557		2017;123(5):1362-1370.
47	558	43.	Ang SO, Chen H, Hirota K, et al. Disruption of oxygen homeostasis underlies congenital
48	559		Chuvash polycythemia. <i>Nat Genet</i> . 2002;32(4):614-621.
49 50	560	44.	Frise MC, Cheng HY, Nickol AH, et al. Clinical iron deficiency disturbs normal human
50	561		responses to hypoxia. J Clin Invest. 2016;126(6):2139-2150.
52	562	45.	Wallace DF, Subramaniam VN. Co-factors in liver disease: the role of HFE-related
53	563	45.	hereditary hemochromatosis and iron. <i>Biochim Biophys Acta Gen Subj.</i>
54	564		2009;1790(7):663-670.
55	504		2009,1790(7).005-070.
56 57			
58			
59			2
60			ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100

Page 23 of 48

60

CHEST

1			
2 3	565	46.	Wassling Pasnick M. Iron homoostasis and the inflammatory response. Anny Roy Nutr
4	565 566	40.	Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105-122.
5 6	567	47.	Villafuerte FC, Macarlupú JL, Anza-Ramírez C, et al. Decreased plasma soluble
7	568	.,.	erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain
8	569		Sickness. J Appl Physiol (1985). 2014;117(11):1356-1362.
9	570	48.	De Ferrari A, Miranda JJ, Gilman RH, et al. Prevalence, clinical profile, iron status, and
10 11	571		subject-specific traits for excessive erythrocytosis in Andean adults living permanently at
12	572		3,825 meters above sea level. <i>Chest</i> . 2014;146(5):1327-1336.
13	573	49.	Van Geen A, Bravo C, Gil V, Sherpa S, Jack D. Lead exposure from soil in Peruvian mining
14 15	574		towns: a national assessment supported by two contrasting examples. Bull World Health
16	575		Organ. 2012;90:878-886.
17	576	50.	Health Canada. Final Human Health State of the Science Report on Lead. Ottawa:
18 19	577		Minister of Health; 2013.
20	578	51.	Childebayeva A, Goodrich JM, Chesterman N, et al. Blood lead levels in Peruvian adults
21	579		are associated with proximity to mining and DNA methylation. <i>Environ Int.</i>
22	580 581	52.	2021;155:106587. Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead
23 24	582	52.	poisoning: epidemiology and pathogenesis. <i>Sci Total Environ.</i> 2004;330(1-3):21-37.
25	583	53.	Hosseinirad H, Shahrestanaki JK, Moosazadeh Moghaddam M, Mousazadeh A, Yadegari
26	584	55.	P, Afsharzadeh N. Protective Effect of Vitamin D3 Against Pb-Induced Neurotoxicity by
27 28	585		Regulating the Nrf2 and NF- κ B Pathways. <i>Neurotox Res.</i> 2021;39(3):687-696.
29	586	54.	Harada N, Kanayama M, Maruyama A, et al. Nrf2 regulates ferroportin 1-mediated iron
30	587		efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in
31 32	588		macrophages. Arch Biochem Biophys. 2011;508(1):101-109.
32 33	589	55.	Brewster LM, Bain AR, Garcia VP, et al. Global REACH 2018: dysfunctional extracellular
34	590		microvesicles in Andean highlander males with excessive erythrocytosis. Am J Physiol
35	591		Heart Circ Physiol. 2021;320(5):H1851-h1861.
36 37	592		
38			
39			
40 41			
41			
43			
44 45			
45 46			
47			
48			
49 50			
51			
52			
53 54			
54 55			
56			
57			
58 59			2
60			ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100

1		
2		
3	1	Title: GLOBAL REACH 2018: Iron infusion at high altitude reduces hypoxic pulmonary
4	2	vasoconstriction equally in both lowlanders and healthy Andean highlanders
5		vasoconstruction equality in both low landers and nearting Andean inginanders
6	3	
7	4	Alexander Patrician MSc ¹ , Tony Dawkins PhD ² , Geoff B Coombs PhD ¹ , Benjamin Stacey PhD ³ ,
8	5	Christopher Gasho MD ⁴ , Travis Gibbons MSc ⁵ , Connor A Howe MSc ¹ , Joshua C Tremblay PhD ¹ ,
9	6	Rachel Stone BHK ¹ , Kaitlyn Tymko BKin ¹ , Courtney Tymko BSN ¹ , John D Akins PhD ⁶ , Ryan L
10	7	Hoiland PhD ¹ , Gustavo A. Vizcardo-Galindo BSc ^{1,7} , Rómulo Figueroa-Mujíca BSc ⁷ , Francisco C.
11	8	Villafuerte PhD ⁷ , Damian M. Bailey PhD ³ , Michael Stembridge PhD ² , James D. Anholm MD ⁴ ,
12	9	Michael M Tymko PhD ^{1,8} , Philip N Ainslie PhD ¹ .
13 14	10	
14 15	11	¹ Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences,
16	12	University of British Columbia – Okanagan, Kelowna, British Columbia, Canada
17	13	² Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
18		
19	14	³ Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of
20	15	South Wales, Glamorgan, UK
21	16	⁴ Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University
22	17	School of Medicine, Loma Linda, CA, USA
23	18	⁵ School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, New
24	19	Zealand
25	20	⁶ Department of Kinesiology, University of Texas, Arlington, TX, USA.
26	21	⁷ Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de
27	22	Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
28	23	⁸ Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta,
29		
30	24	Edmonton, Alberta, Canada.
31	25	
32	26	Abstract word count: 285
33	27	Text word count: 3071
34 25	28	
35 36	29	Corresponding author:
30 37	30	Alexander Patrician, Centre for Heart, Lung and Vascular Health, University of British Columbia,
38	31	3333 University Way, Kelowna, BC, V1V 1V7.
39	32	Email: <u>alexander.patrician@alumni.ubc.ca</u>
40	33	
41	33 34	Running title: Iron and the pulmonary vasculature in healthy Andeans
42		<u>Kunning tute.</u> Iton and the puthonary vasculature in heating Andeans
43	35	
44	36	
45	37	
46		
47		
48		
49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		

59

~	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
10	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
22	
55	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

63

67

68 69 70

Abstract 38 39 40 **Background:** Increasing iron bioavailability attenuates hypoxic pulmonary vasoconstriction in 41 both lowlanders and Sherpa at high altitude. In contrast, the pulmonary vasculature of Andeans suffering with chronic mountain sickness is resistant to iron administration. While pulmonary 42 vascular remodeling and hypertension are characteristic features of chronic mountain sickness, the 43 impact of iron administration in healthy Andeans has not been investigated. If the interplay 44 45 between iron status and pulmonary vascular tone in healthy Andeans remains intact, this could provide valuable clinical insight into the role of iron regulation at high altitude. 46 47

48 Research question: Is the pulmonary vasculature in healthy Andeans responsive to iron infusion?49

50 **Study Design and Methods:** In a double-blinded, block-randomized design, 24 healthy high-51 altitude Andeans and 22 partially acclimatized lowlanders at 4300 m (Cerro de Pasco, Peru), 52 received an *i.v.* infusion of either iron [iron (III)-hydroxide sucrose; 200mg] or saline. Markers of 53 iron status were collected at baseline and 4 hours after infusion. Echocardiography was performed 54 during room-air breathing ($P_1O_2 = ~96 \text{ mmHg}$) and during exaggerated hypoxia ($P_1O_2 = ~73 \text{ mmHg}$), 55 at baseline, and at 2 and 4 hours following the infusion. 56

Results: Iron infusion reduced pulmonary artery systolic pressure (PASP) by ~2.5 mmHg in room
air (main effect P<0.001), and by ~7 mmHg during exaggerated hypoxia (main effect P<0.001) in
both lowlanders and healthy Andean highlanders. There was no change in PASP following the
infusion of saline. Iron metrics were comparable between groups, except for serum ferritin, which
was 1.8-fold higher at baseline in the Andeans when compared to lowlanders [95% confidence
interval (CI) 74-121 ng/ml vs. 37-70 ng/ml, respectively; P=0.003].

64 Interpretation: The pulmonary vasculature of healthy Andeans and lowlanders remains sensitive
 65 to iron infusion and this response seems to differ from the pathological characteristics of chronic
 66 mountain sickness.

Keywords: Andeans, iron, high altitude, pulmonary

Take home points

Study question: Is the pulmonary vasculature in healthy Andeans responsive to iron infusion?

Results: Iron infusion reduced pulmonary artery systolic pressure (PASP) by ~2.5 mmHg in room air (main effect P<0.001), and by ~7 mmHg during exaggerated hypoxia (main effect P<0.001) in both lowlanders and healthy Andean highlanders.

Interpretation: The pulmonary vasculature of healthy Andeans and lowlanders remains sensitive to iron infusion and this response seems to differ from the pathological characteristics of chronic mountain sickness.

Abbreviations:

- CI, cardiac index
- CMS, chronic mountain sickness
- CO, cardiac output
- EPO, erythropoietin
- Hb, hemoglobin
- Hct, hematocrit
- HIF, hypoxia inducible factor
- F_1O_2 , fraction of inspired oxygen
- LVOT VTI, left ventricular outflow tract velocity time integral ZZ
- MAP, mean arterial pressure
- NaCl, sodium chloride
- PASP, Pulmonary artery systolic pressure
- Pb, lead
- P_1O_2 , partial pressure of inspired oxygen
- RAP, Right atrial pressure
- SV, stroke volume
- SpO₂, peripheral arterial oxygen saturation
- TIBC, Total iron binding capacity
- TPR, Total pulmonary resistance
- TrF Sat, Transferrin saturation

³ 108 Introduction

With ascent to high altitude, there is a progressive reduction in the partial pressure of oxygen (PO_2) and a progressive decline in iron bioavailability.¹⁻³ As such, there is a robust inverse relationship between iron status and the pulmonary vasculature in hypoxia (reviewed in ⁴). Part of this relationship stems from the integral role of iron on propyl hydroxylase activity^{5,6} and contribution to the stabilization of hypoxia inducible factors (HIF). The HIF pathway acts as a cellular oxygen sensor,^{7,8} and controls a broad range of transcriptional responses to hypoxic exposure, including a variety of down-stream gene products that can influence hypoxic pulmonary vasoconstriction (e.g. endothelin, vascular endothelial grown factor and transient receptor potential channels).^{4,9} Experimentally, iron manipulation has been used as: 1) a tool to attenuate pulmonary vascular responsiveness of lowlanders exposed to acute normobaric hypoxia,¹⁰ and upon ascent and stay at high altitude;^{3,11-14} and 2) a method to interrogate HIF-dependent differences associated with clinical pulmonary hypertension¹⁵ and adaptation to high altitude – such as Sherpa of Tibetan descent,³ and Andeans suffering with chronic mountain sickness (CMS).¹⁴ In both lowlanders and Sherpa, iron infusion attenuates hypoxic pulmonary vasoconstriction at high altitude; however, this does not occur in Andeans with CMS. Andeans with CMS characteristically display marked pulmonary remodeling and hypertension (reviewed in ¹⁶). Therefore, in the study by Smith and colleagues,¹⁴ it is perhaps not surprising that 400 mg of iron(III)-sucrose [200 mg·day⁻¹ over 2 days preceded by 4 days of venesection (at 500 ml·day⁻¹)], was ineffective at reducing pulmonary artery systolic pressure (PASP), even after 5 days.¹⁴

²⁶ 27 128

While Andeans have had a putatively shorter high-altitude lineage, especially compared to Sherpa/Tibetans,¹⁷ healthy Andeans still demonstrate numerous attributes that enhance their hypoxic tolerance compared to lowlanders including: elevated birth weights, increased exhaled nitric oxide concentrations, larger lungs, improved aerobic capacity and genotypic adaptations¹⁸⁻ 22 . With the recently proposed notion that high altitude adaptation may proffer an enhanced state of iron metabolism,^{3,23} exploring whether healthy Andeans are receptive to iron would provide insight into the pathological divergence of CMS on the pulmonary vasculature. Therefore, the aim of this study was to examine the role of iron bioavailability on the pulmonary vascular regulation to hypoxia in high-altitude adapted Andeans, with and without, acute reductions in inspired PO_2 (P_IO₂). To address this aim, partially acclimatized lowlanders and healthy Andeans received either an infusion of iron or saline at 4300 m, in a double-blinded and block-randomized design. Our primary hypothesis was that healthy Andeans and lowlanders would demonstrate comparable pulmonary vascular responses to hypoxia, and both groups would be sensitive to iron infusion.

$\frac{12}{43}$ 142 44 143 Methods

44 143 **Methods** 45 144 Ethical Approval

All experimental procedures were approved by the University of British Columbia Research Ethics Board (H17-02687 and H18-01404) and the Universidad Peruana Cayetano Heredia Comité de Ética (no. 101686), and conformed to the Declaration of Helsinki, except for registration in a database. All participants received both written and oral information about the study and provided written informed consent. Forms were translated into Spanish, and Andeans participants spoke with a Peruvian research assistant and provided written informed consent in Spanish before participating.

- 54 152
- 55 153 <u>Participants</u>

A cohort of 24 healthy Andean highlanders and 22 age-matched lowlanders completed the study (Table 1). All were normotensive, and did not report a history of cardiovascular, cerebrovascular, or respiratory diseases during completion of a medical history questionnaire. All Andeans were born at high altitude (n=2 at 1880-2900 m, n=20 at 4300m; as were their parents) and resided at 4300 m, were non-smokers, did not exhibit excessive erythrocytosis (Hb \leq 19 g/dl for females and \leq 21 g/dl for males) and had a Qinghai CMS questionnaire score of 0.5±0.8 – and thus were not considered to suffer from CMS.²⁴ Of the few lowlander participants who opted for high altitude prophylaxis (i.e., acetazolamide) upon immediate arrival to 4300 m, all lowlander participants had discontinued use for at least a week, prior to being tested in the current study.

13 162 14 163

This study was part of the Global Research Expedition on Altitude Related Chronic Health (REACH) to Cerro de Pasco, Peru [4300m; barometric pressure of 457 mmHg; P₁O₂ of ~96 mmHg].²⁵ Upon arrival in Lima and finalizing logistics, lowlander participants (of which were members of the expedition and sea-level residents of European descent) were driven up to Cerro de Pasco in 8 hours. Lowlanders were tested after 8 ± 4 days at 4300 m – lowlander infusion groups were equally weighted, for number of days at 4300 m – see Infusion section.

23 171 <u>Experimental Design</u>

Participants arrived at the laboratory having only eaten a small meal ~2 hours prior, and abstained from caffeine and exercise for >6 and >12 hours, respectively. Following 10 min of supine rest an indwelling venous catheter (21G needle, BD Vacutainer eclipse) was inserted into the median antecubital vein for repeated blood sampling and the infusion. Echocardiography (see Experimental Measures section) was performed at baseline, and at 2 and 4 hours after receiving an infusion of either iron or saline (see *Infusion* section). Between time-points, participants were allowed to sit up, but all participants resumed supine rest for at least 10 minutes before any measurement. At baseline and at 4 hours, echocardiography was also performed during a hypoxic stage (15 min of $F_1O_2=0.16$; $P_1O_2=73$ mmHg; simulating ~1700 m gain in elevation). At 2.5 minutes into the hypoxic stage, automated blood pressure was collected in duplicate using brachial oscillometry. After 10 min of reduced P₁O₂, echocardiographic imaging was repeated, and at the end of the hypoxic stage, peripheral oxygen saturation was recorded.

38 184

Infusion: In a double-blinded, block-randomized design, Andean and lowlander participants received an *i.v.* infusion of either iron (iron (III)-hydroxide sucrose; 200 mg in 250 ml 0.9% NaCl saline) or saline (250 ml of 0.9% NaCl saline) over 30 min. Both participants and investigators were blinded during collection (via opaque bags to cover the infusion and lines), and maintained throughout analysis. Due to the >40 day longevity of iron infusion¹⁰ and the logistic constraints of an expedition,²⁵ a cross-over design was not feasible. Therefore, the purpose of block-randomizing participants was two-fold: 1) enabled us to optimize logistics and coordination with other ongoing studies, and 2) ensured that lowlanders allocated to iron or saline conditions, were appropriately weighted, in terms of the number of days at 4300 m, to limit any potentially confounding influence of hypobaric exposure on iron stores [lowlanders receiving saline and iron were tested after 9±5 and 6 ± 3 days, respectively (unpaired t-test P=0.158)].

53 197 Experimental Measures

⁵⁴ 198 *Echocardiography:* Stroke volume (SV) was estimated using the following equation: ⁵⁵ 199 $SV = (\pi \cdot [aortic diameter/2]^2) \cdot LVOT VTI$

CHEST

2		
3	200	where the left ventricular outflow tract (LVOT) velocity time integral (VTI) was measured at the
4	201	point of aortic leaflet insertion during systole using a pulsed wave Doppler signal. Cardiac output
5 6	202	(CO) was calculated as the product of stroke volume and heart rate (via electrocardiography).
0 7	203	Cardiac index (CI) is the quotient of CO and body surface area, calculated as ²⁶ :
8	204	Body surface area = $\sqrt{(height \times weight)/3600}$
9	205	PASP was measured by Doppler echocardiography based upon the measurement of the maximum
10	206	velocity of the tricuspid regurgitation jet (TR velocity). ²⁷ The peak systolic pressure gradient of
11 12	207	the right ventricle (ΔP_{max}) to the right atrium was calculated according to the simplified Bernoulli
12	208	equation $(4 \cdot V^2)$, where V is the peak systolic velocity of the tricuspid regurgitate. PASP was then
14	209	determined by adding the right atrial pressure (RAP), which was estimated by evaluating inferior
15	210	vena cava diameter and collapsibility index – in line with the standard American Society of
16	211	Echocardiography guidelines. ²⁸
17 18	212	$PASP = (4 \cdot V^2) + RAP$
10	213	PASP was normalized to a hematocrit (Hct) of 45% in all individuals using the following
20	214	equation: ²⁹
21	215	$PASP_{[Hct]} = PASP/exp[2(\phi - 0.45)]$
22	216	Where φ represents the measured hematocrit level. Total pulmonary resistance (TPR) was
23 24	217	calculated as an index of PASP against CO (i.e., PASP/CO), as previously described. ³⁰
24 25	218	
26	219	Biochemical analysis: Venous blood samples were separated by microcentrifugation, with serum
27	220	samples frozen in liquid nitrogen at -196 °C for subsequent analysis. Serum iron, ferritin,
28	221	transferrin, and erythropoietin (EPO) were analysed according to clinical laboratory standards
29 30	222	(Medlab clinical laboratories, Lima, Peru). Total iron binding capacity (TIBC) was calculated as ³¹ :
31	223	$TIBC = transferrin \cdot 1.389$
32	224	Transferrin saturation (TrF Sat) was calculated as:
33	225	Transferrin saturation = $(serum iron/TIBC) \cdot 100$
34	226	Hb and Hct were obtained from whole venous blood sample using microcentrifugation, and
35 36	227	analyzed immediately. The Hct at 2 hours, was estimated as the median value between the baseline
37	228	and 4-hour timepoints.
38	229	
39	230	Statistical analysis
40 41	231	Data were analyzed using a linear mixed effects model with a compound symmetry repeated
41	232 233	measure co-variance structure (SPSS v24, IBM Statistics). The fixed factors for the model were ancestry and P_IO_2 (i.e., 96 to 73 mmHg) or time (i.e. pre to post infusion) – with the latter, P_IO_2 or
43	235	time, being a repeated factor with a compound symmetry repeated covariance structure. Subjects
44	234	were included as a random effect. When a significant interaction effect (e.g., altitude×ancestry)
45	235	was detected, Bonferroni adjusted post-hoc tests were utilized to test pairwise comparisons.
46 47	230	Comparison of hematological measures at baseline, of pooled lowlanders and Andeans, were
48	238	assessed with independent samples t-test. The absolute difference between normoxia and hypoxia
49	239	(Δ) , is also presented. A linear regression was used to evaluate the prevalence of decreasing serum
50	240	iron, across days at altitude. All results are reported as mean±SD and significance was set at
51 52	241	P<0.05.
52	242	
54	243	Results
55	244	
56	245	Comparison of lowlanders and healthy Andeans at baseline
57 58		
59		6
60		ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100

Iron metrics: At baseline, when all participants were pooled, ferritin was 82% higher in Andeans at baseline, compared to lowlanders (97.3±54.6 ng/ml vs. 53.5±37.1 ng/ml, respectively; P=0.003; Table 1). There were no other differences in markers of iron status (e.g., serum iron, transferrin, TIBC, TrF Sat, or EPO) at baseline between Andeans and lowlanders. Hypoxic pulmonary vasoconstriction: At baseline (prior to infusion), there was no difference in pulmonary vascular reactivity to hypoxia (P₁O₂=73 mmHg) between lowlanders and Andeans (for both uncorrected and corrected to 45% Hct; Table 2). LV SV slightly decreased during hypoxia in Andeans (75 ± 17 ml at baseline to 72 ± 18 ml during hypoxia; P=0.047); however, both lowlanders and Andeans demonstrated comparable increases in CO, CI, TPR, and MAP during hypoxia. Effects of intravenous iron Iron metrics: The iron infusion increased serum iron (by 382±193% and 288±100% in lowlanders and Andeans, respectively; main effect P<0.001), increased serum ferritin (by 18±16% and $14\pm10\%$ in lowlanders and Andeans, respectively; main effect P<0.001) and decreased transferrin (by $4\pm7\%$ and $5\pm6\%$ in lowlanders and Andeans, respectively; main effect P=0.010; Figure 1). Consistent with previous reports in CMS,¹⁴ EPO remained unaltered following iron or placebo in both groups. There were no significant changes in iron metrics during the saline condition. Time course over 4 hours at high altitude: In lowlanders and Andeans receiving saline, PASP did not significantly change across the 4 hours (main effect of time P=0.262; Table 3a). Following iron infusion, there was a decrease in PASP by 7% and 4% at 2 hours and 11% and 7% at 4 hours in lowlanders and Andeans, respectively (main effect of time P<0.001; Figure 2 and Table 3b). Following iron, both lowlanders and Andeans demonstrated a tendency for an increased MAP (main effect of time P=0.052; Table 3b). Even though there were no change in TPR across the 4 hours in lowlanders and Andeans with iron (Table 3b), TPR was higher in Andeans compared to lowlanders at 4 hours (P=0.034) – this difference is likely driven by the tendency for TPR to decrease across the 4 hours in lowlanders following iron (P=0.051). *Hypoxic pulmonary vasoconstriction:* During acute hypoxia (i.e., $P_1O_2=73$ mmHg), iron infusion attenuated PASP by 4 mmHg, in both Andeans and lowlanders (main effect P=0.01; Table 4b and Figure 3), which coincided with a decrease in TPR (main effect P=0.001) and an increase in LV SV (main effect P=0.031). The rise in PASP during hypoxia was unaltered following the placebo condition in both groups (main effect P=0.326; Table 4a). While the expected decrease in SpO₂ was apparent in the exaggerated hypoxia trial, this reduction was not altered by iron infusion in lowlanders and Andeans; however, the rise in PASP for a given drop in SpO₂ was attenuated by iron infusion (main effect P=0.011; Table 4b).

284 Discussion

The pulmonary vasculature of adapted Andeans remained responsive to iron infusion - a feature consistent among lowlanders and high altitude Sherpa.³ Because the pulmonary vasculature of Andeans suffering with CMS does not exhibit this responsiveness to iron,¹⁴ this may provide valuable insight into the pathological divergence of CMS. The following discussion outlines the implications of these findings, including the physiological significance of elevated ferritin levels in the Andeans.

CHEST

Pulmonary vascular responsiveness to hypoxia and iron

Aligning with our hypothesis, this is the first study to confirm that the pulmonary vasculature of adapted and otherwise healthy Andeans is responsive to iron infusion in hypoxia - a feature akin to the well adapted Sherpa and lowlanders.³ Such congruent responses across different populations (i.e. acclimatizing lowlanders and high altitude adapted Andeans and Sherpa), highlight a conserved phenotype reflected in an otherwise healthy pulmonary vasculature. Healthy Andeans have demonstrated either slightly higher PASP (at rest and during exercise)³², or similar PASP (at rest),^{33,34} compared to partially acclimatized lowlanders at the same altitude. Therefore, it is perhaps not surprising in the current study that PASP at rest and during further hypoxia was again similar between partially acclimatized lowlanders and healthy Andeans.

- The unremarkable influence of a comparable iron infusion on PASP in Andeans with CMS¹⁴ is intriguing. Certainly, CMS has long been established to coincide with pulmonary vascular remodeling and persistence of pulmonary hypertension (during rest and exercise)^{32,35-39}. However, CMS has also been linked to the dysfunction of a myriad of HIF-related factors [including sentrin-specific protease 1⁴⁰, prevailing circulatory status of vasoactive peptides (i.e. vascular endothelial growth factor and endothelin-1⁴¹), methylation of propyl hydroxylase activity⁴², and/or mutations to the von Hippel-Lindau protein⁴³ – these factors could blunt or counteract the efficacy of iron infusion on pulmonary vascular tone. Ultimately, the notable divergence of healthy adapted Andeans from the CMS pulmonary phenotype, hints at some facet of HIF-dysregulation, that may share mechanistic basis with other clinical pathologies.

Iron metabolism – higher ferritin levels in Andeans

Ascent to high altitude is associated with a progressive decline in iron bioavailability,¹⁻³ which can exaggerate hypoxia-induced HIF stabilization and contribute to pulmonary hypertension.⁴⁴ Therefore, in the context of iron regulation, the observed higher ferritin (a stimulus for iron storage) in Andeans could imply a greater state of iron sufficiency and a lower iron/erythropoietic demand, compared to lowlanders. While this feature might have resonance in the interesting dialogue of enhanced iron metabolism in adapted highlanders,^{3,23} using ferritin as an index of iron sufficiency is limited, as elevated ferritin levels (e.g., >200-300 ng/ml) are indicative of a myriad of medical concerns [e.g., liver disease, hepatitis, infection, state of inflammation, and hemochromatosis].^{45,46} As such, Sherpa do not present with elevated ferritin levels. For example, in the study by Willie and colleagues, serum ferritin of Sherpa was 46.7 ± 37.8 ng/ml³ – values which more closely resemble our lowlander data at 4300 m, rather than healthy Andeans (Table 1). Coincidingly, similar to lowlanders, Sherpa also did not exhibit any obvious inflammatory profile.³ Conversely, previous reports of Andeans with CMS (and/or excessive erythrocytosis), show ferritin levels of 169±90 ng/ml (n=11),¹⁴ 184±28 ng/ml (n=42)⁴⁷ and 156±132 ng/ml (n=41).48 However, in the latter two studies, ferritin in healthy Andeans were comparable to Andeans with CMS.^{47,48} While it is unclear why the ferritin in our "healthy" Andeans appear substantially lower than the ferritin values in other "healthy" Andeans^{47,48}, one possibility may be related to CMS score severity (0.5 ± 0.8 in this study; 2.7 ± 0.38 in⁴⁷; no score reported in⁴⁸). Future studies are needed to consider how and why CMS severity might influence ferritin levels, or why ferritin level can be so variable between otherwise healthy individuals.

The factors potentially mediating these elevations in ferritin, in both healthy and CMS Andeans compared to lowlanders, may have some basis when considering the city of Cerro de Pasco itself. First, it has been demonstrated that more than half of the soil sample sites evaluated in Cerro de Pasco, had lead (Pb) levels exceeding 1200mg/kg,49 which is ~10-fold higher the health recommendations in Canada [140 mg/kg⁵⁰]. Recently, and not surprisingly, whole blood Pb concentrations in residents of Cerro de Pasco (with Hb 10-25 g/dl) were >2-fold greater than Pb concentrations in sea-level residents of Lima [4.75±1.53 ug/dl, range: 1.5-9.8 ug/dl versus 2.03±0.62 ug/dl, range: 1.0-4.6 ug/dl, respectively⁵¹]. While Pb toxicity may not be prevalent in our cohort [due to the lack of iron deficiency and anemia (reviewed in: ⁵²)], consequence(s) of Pb exposure on upstream inflammatory factors⁵³ and ferroportin activity,⁵⁴ have been demonstrated in animal and cell-preparation models. Whether Pb exposure could extend beyond iron deficiency/anemia and potentially contribute to the elevated ferritin levels in Andeans, compared lowlanders, remains to be determined. Second, the city of Cerro de Pasco starkly contrasts those of small towns/villages in the Himalayan highlands, in terms of lifestyle (e.g. diet, physical activity) and level of industrialization (e.g. drive-in and mining versus hike-in and agriculture/tourism, respectively). As such, comparisons between populations are certainly multifaceted and future studies are needed to consider the potential detrimental influence of even mildly elevated Pb levels on inflammation^{53,55} and explore the mechanistic links to contributing to the elevated ferritin levels in Andeans

Importantly, our findings that iron attenuated the rise in PASP during hypoxia, with a coinciding increase in left ventricular SV and decrease in TPR (Table 4), is broadly consistent with the recent study by Holdsworth and colleagues.¹³ Here, the authors reported that increasing iron bioavailability (via infusion of 1g of ferric carboxymaltose) in lowlanders, *prior* to ascent to high altitude, translated into enhanced right ventricular SV and lower pulmonary vascular resistance at 5050 m.

Considerations of iron status during prolonged stay at high altitude

In our lowlander cohort, a pattern of decreasing serum iron levels appeared to develop over the 17 days at 4300 m ($r^2=0.204$, P=0.035; Figure 4) – a reproducible feature of high-altitude sojourn.¹⁻³ Even though our cohort of Andeans did not travel and resided at 4300 m, our groups were also appropriately weighted for serum iron (unpaired t-test P=0.522; Figure 4). Our study appropriately weighted lowlanders to saline and iron conditions, so the confounding influence of time at altitude would be less. However, the progressive reduction in iron with stay at altitude, highlights the need to be cognisant of such changes in iron status, if the outcome variable of interest hinges or relies upon downstream iron-regulatory processes.

Interpretation

Unlike Andeans with CMS,¹⁴ yet aligning with Sherpa,³ the pulmonary vasculature of adapted Andeans remained responsive to iron infusion. Therefore, these findings highlight a feature of healthy pulmonary vascular regulation, and a trait of high-altitude adaptation that remains divergent from the typical pathological characteristics of high-altitude maladaptation (i.e., CMS).

Acknowledgements

This study was conducted within the framework of Global REACH 2018. The authors are grateful to the expedition team members and collaborators in Cerro de Pasco for their support in the weeks

1 2		
3 4 5	384 385	leading up to, and during data collection in Peru. We would also like to thank the Andean residents of Cerro de Pasco for their participation.
6	386 387	Author contributions
7 8	388	All authors were involved in data collection. AP and PNA were involved in data analyses and
9 10 11	389 390 391	interpretation. AP drafted the manuscript. All authors provided intellectual feedback, approved the final version of this manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
12	391	designated as authors quarry for authorship, and an those who quarry for authorship are listed.
13 14	393	Financial/nonfinancial disclosures
15	394	None to declare
16 17	395 396	
18	000	
19 20		
21		
22 23		
24		
25 26		
27 28		
28 29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41 42		
42 43		
44 45		
45 46		
47 48		
48 49		
50 51		
52		
53		
54 55		
56 57		
58		
59 60		ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100 1
00		

2		
3	397	Tables
4	398	

7	Table 1. Baseline summary of	pooled lowlanders and	pooled Andeans.
---	------------------------------	-----------------------	-----------------

7	Table 1. Baseline summary of	pooled lowlanders and	d pooled Andeans.	
8		Lowlander	Andean	p-value
9	Sex (males/females)	16/6	21 / 3	
10	Age (years)	29 ± 7	29 ± 11	0.898
11 12	Height (cm)	175 ± 8	162 ± 5	<0.001
12 13	Weight (kg)	71 ± 10	63 ± 7	<0.001
14	BMI (kg/m^2)	23.3 ± 2.3	23.8 ± 2.8	0.530
15	Hb (g/dl)	16.2 ± 1.4 [17]	16.9 ± 1.9 [14]	0.235
16	Hct (%)	48.4 ± 3.9. [20]	53.2 ± 4.1 [18]	0.001
17	EPO (mIU/ml)	17.3 ± 9.5	14.1 ± 8.9	0.257
18	Serum Ferritin (ng/ml)	53.5 ± 37.1	97.3 ± 54.6 [23]	0.003
19 20	Serum Iron (ug/dL)	81.8 ± 40.9	94.2 ± 29.7 [23]	0.250
20 21	Serum Transferrin (mg/dl)	275.4 ± 24.4	268 ± 28.3 [23]	0.353
22	TIBC (ug/dl)	382.5 ± 33.9	372.2 ± 39.3 [23]	0.353
23	TrF Sat (%)	21.9 ± 11.5	25.3 ± 7.6 [23]	0.240
24	$SpO_2(\%)$	89 ± 3	88 ± 3	0.528
25	PASP (mmHg)	31.0 ± 6.4 [21]	29.5 ± 5.9 [23]	0.403
26	PASP _[Hct] (mmHg)	29.5 ± 7.3 [19]	25.4 ± 5.8 [17]	0.072
27 28	Mean \pm SD in 22 Lowlanders			
20 29	samples t-test.	``		1
30	400			
31	401			
32				
33				
34 25				
35 36				
37				
38				
39				
40				
41				
42				
43 44				
45				
46				
47				
48				
49				
50				
51				

 CHEST

Table 2. Cardiopulmonary measures in pooled lowlanders and Andeans (prior to infusion) during room air

		Room air	Hypoxia	Ancestry	P_IO_2	Inter
	Lowlander	31.0 ± 6.4 [21]	40.2 ± 8.4 [21]	0.866	<0.001	0.343
PASP (mmHg)	Andean	29.5 ± 5.9 [23]	40.9 ± 12.9 [23]			
PASP _[hct]	Lowlander	29.5 ± 7.3 [19]	38.4 ± 10.7 [19]	0.242	<0.001	0.586
(mmHg)	Andean	25.4 ± 5.8 [17]	35.7 ± 12.3 [17]			
TPR (mmHg/l)	Lowlander	6.4 ± 1.5 [21]	7.0 ± 1.8 [21]	0.401	<0.001	0.120
IPR (IIIIIFIg/I)	Andean	6.5 ± 1.6 [23]	7.7 ± 2.3 [23]			
IVCV(ml)	Lowlander	83 ± 18	86 ± 19	0.041	0.931	0.009
LV SV (ml)	Andean	75 ± 17	$72 \pm 18*$ †			
IID (heats/min)	Lowlander	62 ± 12	71 ± 15	0.320	<0.001	0.061
HR (beats/min)	Andean	63 ± 9	77 ± 12			
	Lowlander	5.0 ± 1.0	6.0 ± 1.3	0.173	<0.001	0.167
CO (l/min)	Andean	4.7 ± 0.9	5.4 ± 1.2			
OI(1)	Lowlander	2.7 ± 0.5	3.2 ± 0.7	0.751	<0.001	0.349
CI (ml/min/m ²)	Andean	2.8 ± 0.5	3.2 ± 0.7			
MAD (mmII_)	Lowlander	90 ± 8	94 ± 10	<0.001	0.001	0.813
MAP (mmHg)	Andean	78 ± 8	82 ± 10			
$\mathbf{S} = \mathbf{O} \left(0 \right)$	Lowlander	89 ± 3	72 ± 7	0.916	<0.001	0.506
SpO_2 (%)	Andean	88 ± 3	73 ± 10 [23]			

Mean ± SD in 22 Lowlanders and 24 Andeans (unless otherwise noted [n]). Linear mixed model. * Significant difference from baseline, P<0.05; † Significant difference between Andeans and Lowlanders, P<0.05.

1	
2	

3	
4	

Table 3a. Resting cardiopulmonary measures at baseline and following the infusion of saline at 4300 m

	ing cardiopunn	onary measures at Baseline	2 hours	4 hours	Ancestry	Time	Inter
PASP	Lowlander	32.1 ± 7.5	31.5 ± 6.2	31.1 ± 5.8	0.366	0.262	0.751
(mmHg)	Andean	29.7 ± 6.4 [11]	29.6 ± 7.8 [11]	27.8 ± 8.1 [11]			
PASP _[hct]	Lowlander	30.5 ± 9.0	29.7 ± 7.7	29.3 ± 8.4	0.094	0.174	0.549
(mmHg)	Andean	24.8 ± 6.3 [11]	25.5 ± 6.1 [9]	23.1 ± 7 [9]			
TPR	Lowlander	6.1 ± 1.4	6 ± 1.2	5.8 ± 1.1	0.739	0.307	0.594
(mmHg/l)	Andean	6.1 ± 1.5 [11]	6.5 ± 1.7 [11]	5.5 ± 2.4			
HR	Lowlander	60 ± 10	59 ± 13	57 ± 13	0.592	0.067	0.648
(beats/min)	Andean	63 ± 10	59 ± 9	60 ± 9			
LV SV (ml)	Lowlander	90 ± 17	92 ± 11	98 ± 22	0.021	0.129	0.099
LV SV (ml)	Andean	80 ± 16	78 ± 9	79 ± 11			
CO(1/min)	Lowlander	5.3 ± 1.0	5.3 ± 1	5.4 ± 1.3	0.079	0.430	0.278
CO (I/min)	Andean	5.0 ± 0.8	4.6 ± 0.7	4.7 ± 0.5			
CI (l/min/m ²)	Lowlander	2.8 ± 0.6	2.8 ± 0.6	2.9 ± 0.7	0.855	0.398	0.227
· · · · · ·	Andean	2.9 ± 0.6	2.7 ± 0.5	2.7 ± 0.4			
MAP	Lowlander	92 ± 8	90 ± 7	91 ± 10	0.027	0.914	0.305
(mmHg)	Andean	81 ± 8	84 ± 11	83 ± 14			
$SpO_{2}(\%)$	Lowlander	89 ± 3	89 ± 3	88 ± 4	0.607	0.557	0.806
SpO ₂ (%)	Andean	88 ± 2	88 ± 3	88 ± 2			

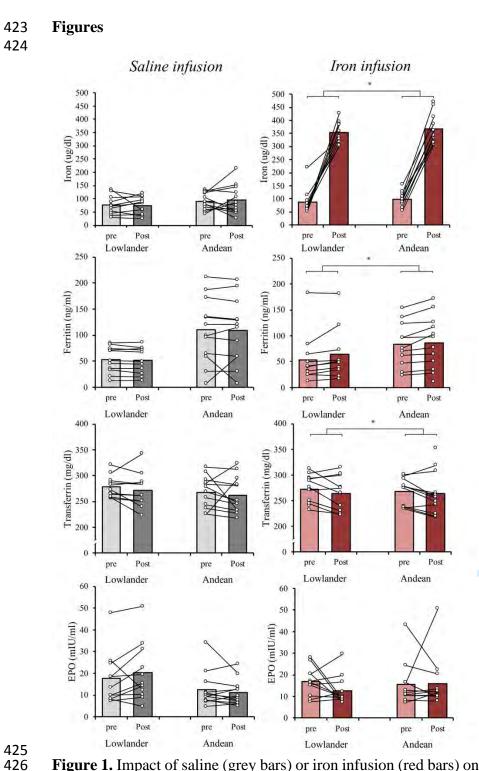
Mean ± SD in 11 lowlanders and 12 Andeans (unless otherwise noted [n]). P_IO₂=96mmHg. Significant p-values are denoted in bold. Linear mixed model.

CHEST

		Baseline	2 hours	4 hours	Ancestry	Time	Inter
PASP	Lowlander	29.8 ± 5.1 [10]	27.7 ± 5.6 [10]	26.6 ± 6.3 [10]	0.967	<0.001	0.58
(mmHg)	Andean	29.3 ± 5.6	28.1 ± 7.2	27.2 ± 6.9			
PASP _[hct]	Lowlander	28.2 ± 4.3 [8]	26.5 ± 4.8 [8]	25.1 ± 5.5 [10]	0.183	0.001	0.48
(mmHg)	Andean	26.5 ± 5.2 [6]	26.6 ± 6.9 [4]	21.3 ± 4.3 [8]			
TPR	Lowlander	6.7 ± 1.6 [10]	6.4 ± 1.8 [10]	$5.3 \pm 2.6 \ddagger$	0.190	0.867	0.00
(mmHg/l)	Andean	6.8 ± 1.7	7 ± 2	7.5 ± 2.9			
HR	Lowlander	63 ± 14	63 ± 20	64 ± 16	0.483	0.098	0.12
(beats/min)	Andean	63 ± 7	58 ± 8	58 ± 8			
LV SV (ml)	Lowlander	76 ± 17	75 ± 15	77 ± 19	0.439	0.764	0.18
	Andean	71 ± 18	73 ± 18	68 ± 19			
CO(1/min)	Lowlander	4.7 ± 0.9	4.5 ± 1	4.7 ± 0.9	0.262	0.277	0.13
CO (l/min)	Andean	4.4 ± 0.9	4.2 ± 1.2	3.9 ± 1.3			
$CI (1/min/m^2)$	Lowlander	2.6 ± 0.4	2.5 ± 0.5	2.6 ± 0.5	0.854	0.256	0.09
CI (l/min/m ²)	Andean	2.7 ± 0.5	2.5 ± 0.6	2.4 ± 0.7			
MAP	Lowlander	89 ± 8	89 ± 10	91 ± 7	0.001	0.052	0.64
(mmHg)	Andean	75 ± 6	76 ± 8	79 ± 11			
$S_{m}O_{m}(0/1)$	Lowlander	88 ± 3	88 ± 2	88 ± 3 [10]	0.444	0.160	0.31
SpO_2 (%)	Andean	88 ± 4	87 ± 3	87 ± 3			
412 413 414							

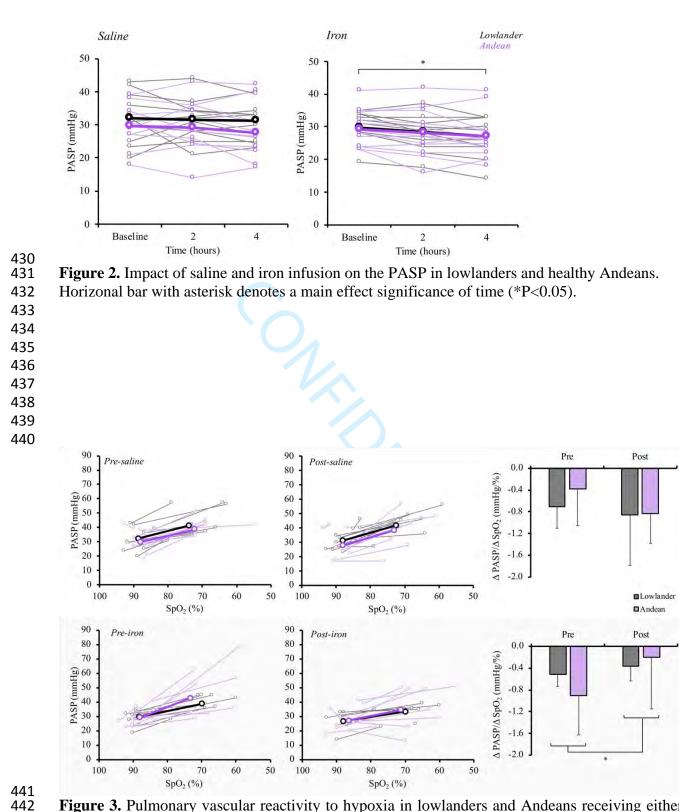
415

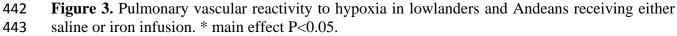
		Pre-saline	Post-saline	Ancestry	Time	Inter
$\Delta S_{mO}(0/)$	Lowlander	-14.9 ± 6.9	-15.5 ± 6.7	0.949	0.899	0.610
ΔSpO_2 (%)	Andean	-15.8 ± 9.1	-14.9 ± 8			
$\Delta PASP (mmHg)$	Lowlander	9 ± 5.3	10.6 ± 5.6	0.995	0.326	0.989
ΔFASF (IIIIIIIII)	Andean	9.1 ± 5.7	10.6 ± 8.5			
$\Delta PASP / \Delta SpO_2$	Lowlander	-0.6 ± 0.4	-0.9 ± 0.9	0.565	0.070	0.691
(mmHg/%)	Andean	-0.5 ± 0.7 [10]	-0.9 ± 0.5			
$\Delta PASP[hct]$	Lowlander	8.7 ± 5.8	10.1 ± 5.9	0.654	0.258	0.854
(mmHg)	Andean	7.5 ± 4.9	9.8 ± 6.4 [9]			
$\Delta PASP[hct]/\Delta SpO_2$	Lowlander	-0.6 ± 0.4	-0.9 ± 0.8	0.427	0.045	0.477
(mmHg/%)	Andean	-0.3 ± 0.6 [9]	-0.8 ± 0.3 [9]			
Δ TPR (mmHg/l)	Lowlander	0.4 ± 0.8	1.0 ± 1.9	0.420	0.137	0.922
ΔIFK (IIIIIIIII/g/I)	Andean	0.9 ± 1.3	1.4 ± 2			
Δ HR (beats/min)	Lowlander	10.0 ± 9.5	9.6 ± 7.2	0.091	0.702	0.849
$\Delta \Pi R$ (beats/mm)	Andean	15.0 ± 4.8	13.9 ± 8.6			
$\Lambda \mathbf{C} \mathbf{V} (\mathbf{m})$	Lowlander	3.6 ± 8.1	1.5 ± 7.5	0.004	0.433	0.651
$\Delta SV (ml)$	Andean	-6.2 ± 8.8	-6.8 ± 6.9			
$\Lambda CO(m1/min)$	Lowlander	1.1 ± 0.6	1.1 ± 0.9	0.055	0.665	0.591
$\Delta CO (ml/min)$	Andean	0.7 ± 0.6	0.6 ± 0.4			
$ACL (m1/min/m^2)$	Lowlander	0.6 ± 0.4	0.6 ± 0.5	0.123	0.624	0.657
$\Delta CI (ml/min/m^2)$	Andean	0.4 ± 0.3	0.3 ± 0.3			
AMAD (mmII~)	Lowlander	5.1 ± 6.6	5.9 ± 5.5	0.495	0.760	0.888
Δ MAP (mmHg)	Andean	3.9 ± 8.1	4.2 ± 5.1			


Mean \pm SD. N=10-11 and n=11-12 for lowlanders and Andeans respectively, unless otherwise noted [n]. Δ , the absolute change between normoxia and hypoxia. T

Page	39 of 4
1 2 3 4 5 6 7	418 _T
, 8 9 10	
10 11 12	
13 14	
15 16	
17 18	
19 20 21	
22 23 24	
24 25 26	
27 28	
29 30	
31 32 33	N
34 35	tł 419
36 37	420
38 39	421 422
40 41	
41 42 43	
44	
45 46 47	
48	
49 50	
51 52	
53 54	
55 56	

-	Table 4b. Cardio	pulmonary	reactivities		-	and Iollowii				
	Table Ab Cardia			40 1000		 and fallowin	. 1	infinite	ef:	


		Pre-iron	Post-iron	Ancestry	Time	Inter
ΔS_{mO} (0/)	Lowlander	-18.4 ± 3.3	-18 ± 4.2	0.238	0.966	0.749
ΔSpO_2 (%)	Andean	-14.8 ± 7.7	-15.2 ± 9.8			
$\Delta D \Delta S D (mm Ha)$	Lowlander	9.2 ± 3.9	6.8 ± 3.1	0.451	0.010	0.219
$\Delta PASP (mmHg)$	Andean	13.6 ± 12.9	7.4 ± 8.4			
$\Delta PASP / \Delta SpO_2$	Lowlander	-0.5 ± 0.2	-0.4 ± 0.2 [9]	0.979	0.011	0.05
(mmHg/%)	Andean	$\textbf{-0.9}\pm0.7$	-0.2 ± 0.9			
$\Delta PASP_{[Hct]}$	Lowlander	9 ± 4.4 [8]	6.6 ± 3.1 [10]	0.556	0.075	0.300
(mmHg)	Andean	15.5 ± 16.6 [5]	7.7 ± 10 [6]			
$\Delta PASP_{[Hct]}/\Delta SpO_2$	Lowlander	-0.51 ± 0.25 [8]	-0.4 ± 0.23 [9]	0.509	0.057	0.17
(mmHg/%)	Andean	-0.85 ± 0.7 [5]	-0.001 ± 1.04 [6]			
ATDD (mmIIa/l)	Lowlander	0.7 ± 1.3	0.02 ± 1.4	0.62	0.001	0.16
Δ TPR (mmHg/l)	Andean	1.5 ± 1.9	-0.1 ± 2.1			
AIID (heata/main)	Lowlander	9.1 ± 5.9	6.9 ± 10.9	0.256	0.303	0.67
Δ HR (beats/min)	Andean	11.9 ± 6.8	11 ± 7.2			
	Lowlander	2.8 ± 5.6	7.3 ± 8.3	0.234	0.031	0.72
$\Delta SV (ml)$	Andean	-0.6 ± 9.3	2.7 ± 11			
ACO(1/min)	Lowlander	0.9 ± 0.5	1.1 ± 0.6	0.505	0.264	0.92
$\Delta CO (l/min)$	Andean	0.8 ± 0.7	0.9 ± 0.7			
$ACL (m) / m (m^2)$	Lowlander	0.5 ± 0.3	0.6 ± 0.3	0.809	0.244	0.99
$\Delta CI (ml/min/m^2)$	Andean	0.5 ± 0.4	0.6 ± 0.4			
	Lowlander	2.6 ± 9.3	1.1 ± 5.9	0.718	0.145	0.46
Δ MAP (mmHg)	Andean	4.9 ± 6.9	0.5 ± 6.1			


Mean \pm SD. N=10-11 and n=11-12 for lowlanders and Andeans respectively, unless otherwise noted [n]. Δ , the absolute change between normoxia and hypoxia.

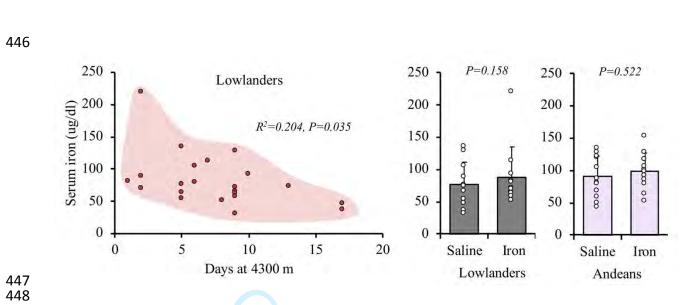


Figure 1. Impact of saline (grey bars) or iron infusion (red bars) on iron metrics in lowlanders and healthy Andeans. *P<0.05 main effect of time.

 CHEST

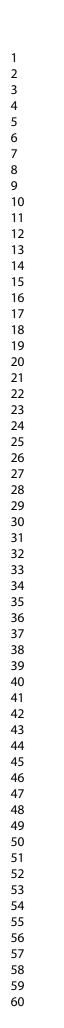
Figure 4. Baseline serum iron measurements in lowlanders and Andeans. Lowlander data is presented as 1) to correspond to the number of days at 4300 m, before being tested (with linear regression; *left panel*) and 2) highlight the equal weighting of iron status between the saline and iron groups (with unpaired t-test; *middle panel*). Andean data demonstrates iron levels in the saline and iron groups at baseline were comparable (with unpaired t-test; *right panel*).

References

- Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced 1. erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood. 2007;109(11):4724-4731. 2. Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985). 2015;119(12):1432-1440. 3. Willie CK, Patrician A, Hoiland RL, et al. Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050 m. J Physiol. 2021;599(5):1685-1708. 4. Frise MC, Robbins PA. Iron, oxygen, and the pulmonary circulation. J Appl Physiol (1985). 2015;119(12):1421-1431. 5. Kaelin WG, Ratcliffe PJ. Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway. Molecular Cell. 2008;30(4):393-402. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity of 6. hypoxia-inducible factor in cancer cells. Cancer Res. 2003;63(8):1764-1768. Semenza GL, Agani F, Iyer N, et al. Hypoxia-inducible factor 1: from molecular biology to 7. cardiopulmonary physiology. Chest. 1998;114(1 Suppl):40s-45s. Prabhakar NR, Semenza GL. Oxygen Sensing and Homeostasis. Physiology (Bethesda). 8. 2015;30(5):340-348. 9. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367-520.

Page 43 of 48

1 2			
3	478	10.	Bart NK, Curtis MK, Cheng HY, et al. Elevation of iron storage in humans attenuates the
4	479	10.	pulmonary vascular response to hypoxia. J Appl Physiol (1985). 2016;121(2):537-544.
5 6	480	11.	Smith TG, Balanos GM, Croft QP, et al. The increase in pulmonary arterial pressure
7	481		caused by hypoxia depends on iron status. <i>J Physiol.</i> 2008;586(24):5999-6005.
8	482	12.	Talbot NP, Smith TG, Privat C, et al. Intravenous Iron Supplementation May Protect
9	483		Against Acute Mountain Sickness: A Randomized, Double-Blinded, Placebo-Controlled
10 11	484		Trial. High Alt. Med. Biol. 2011;12(3):265-269.
12	485	13.	Holdsworth DA, Frise MC, Bakker-Dyos J, et al. Iron bioavailability and cardiopulmonary
13	486		function during ascent to very high altitude. <i>Eur Respir J.</i> 2020;56(3).
14	487	14.	Smith TG, Talbot NP, Privat C, et al. Effects of iron supplementation and depletion on
15 16	488		hypoxic pulmonary hypertension: two randomized controlled trials. Jama.
17	489		2009;302(13):1444-1450.
18	490	15.	Balanos GM, Dorrington KL, Robbins PA. Desferrioxamine elevates pulmonary vascular
19	491		resistance in humans: potential for involvement of HIF-1. J Appl Physiol (1985).
20 21	492		2002;92(6):2501-2507.
22	493	16.	Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy
23	494		highlanders and chronic mountain sickness. <i>Circulation</i> . 2007;115(9):1132-1146.
24	495	17.	Aldenderfer MS. Moving Up in the World: Archaeologists seek to understand how and
25 26	496		when people came to occupy the Andean and Tibetan plateaus. Am Sci. 2003;91(6):542-
20	497		549.
28	498	18.	Moore LG, Shriver M, Bemis L, et al. Maternal adaptation to high-altitude pregnancy: an
29	499		experiment of naturea review. <i>Placenta</i> . 2004;25 Suppl A:S60-71.
30	500	19.	Beall CM, Laskowski D, Strohl KP, et al. Pulmonary nitric oxide in mountain dwellers.
31 32	501		Nature. 2001;414(6862):411-412.
33	502	20.	Lenfant C, Sullivan K. Adaptation to high altitude. N Engl J Med. 1971;284(23):1298-
34	503		1309.
35	504	21.	Frisancho AR. Developmental functional adaptation to high altitude: review. Am J Hum
36 37	505		<i>Biol.</i> 2013;25(2):151-168.
38	506	22.	Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and
39	507		Physiology. <i>Mol Biol Evol.</i> 2021;msab064.
40	508	23.	Muckenthaler MU, Mairbäurl H, Gassmann M. Iron metabolism in high altitude
41 42	509	• •	residents. J Appl Physiol (1985). 2020;129(4):920-925.
43	510	24.	León-Velarde F, Maggiorini M, Reeves JT, et al. Consensus statement on chronic and
44	511	~-	subacute high altitude diseases. <i>High Alt Med Biol.</i> 2005;6(2):147-157.
45	512	25.	Tymko MM, Hoiland RL, Tremblay JC, et al. The 2018 Global Research Expedition on
46 47	513		Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an
48	514	26	Experimental Overview. <i>Exp Physiol.</i> 2020.
49	515	26.	Mosteller RD. Simplified calculation of body-surface area. <i>N Engl J Med.</i>
50	516		1987;317(17):1098.
51 52	517	27.	Bertini M, Sengupta PP, Nucifora G, et al. Role of left ventricular twist mechanics in the
53	518		assessment of cardiac dyssynchrony in heart failure. <i>JACC Cardiovasc Imaging</i> .
54	519	20	2009;2(12):1425-1435.
55	520	28.	Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber
56 57	521		quantification by echocardiography in adults: an update from the American Society of
57 58			
59			2
60			ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100


1 2

2			
3 4	522		Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J
4 5	523		Cardiovasc Imaging. 2015;16(3):233-270.
6	524	29.	Vanderpool RR, Naeije R. Hematocrit-corrected Pulmonary Vascular Resistance. Am J
7	525		Respir Crit Care Med. 2018;198(3):305-309.
8	526	30.	Foster GE, Ainslie PN, Stembridge M, et al. Resting pulmonary haemodynamics and
9	527		shunting: a comparison of sea-level inhabitants to high altitude Sherpas. J Physiol.
10	528		2014;592(6):1397-1409.
11 12	529	31.	Auerbach M, Adamson JW. How we diagnose and treat iron deficiency anemia. Am J
13	530	011	Hematol. 2016;91(1):31-38.
14	531	32.	Groepenhoff H, Overbeek MJ, Mulè M, et al. Exercise pathophysiology in patients with
15	532	52.	chronic mountain sickness exercise in chronic mountain sickness. <i>Chest.</i>
16	533		2012;142(4):877-884.
17 18	534	22	
10	535 535	33.	de Bisschop C, Kiger L, Marden MC, et al. Pulmonary capillary blood volume and
20			membrane conductance in Andeans and lowlanders at high altitude: a cross-sectional
21	536	~ ~	study. Nitric Oxide. 2010;23(3):187-193.
22	537	34.	Schwab M, Jayet PY, Stuber T, et al. Pulmonary-artery pressure and exhaled nitric oxide
23	538	_	in Bolivian and Caucasian high altitude dwellers. <i>High Alt Med Biol.</i> 2008;9(4):295-299.
24 25	539	35.	Peñaloza D, Sime F, Banchero N, Gamboa R, Cruz J, Marticorena E. Pulmonary
25	540		hypertension in healthy men born and living at high altitudes. Am J Cardiol.
27	541		1963;11(2):150-157.
28	542	36.	Rotta A, Cánepa A, Hurtado A, Velásquez T, Chávez R. Pulmonary circulation at sea level
29	543		and at high altitudes. Journal of Applied Physiology. 1956;9(3):328-336.
30	544	37.	Arias-Stella J, Saldana M. The terminal portion of the pulmonary arterial tree in people
31 32	545		native to high altitudes. Circulation. 1963;28:915-925.
33	546	38.	Lockhart A, Zelter M, Mensch-Dechene J, et al. Pressure-flow-volume relationships in
34	547		pulmonary circulation of normal highlanders. <i>J Appl Physiol.</i> 1976;41(4):449-456.
35	548	39.	Grover R. Chronic hypoxic pulmonary hypertension. In: Fishman AP, ed. The pulmonary
36	549		circulation: normal and abnormal. Philadelphia: University of Pennsylvania Press;
37 38	550		1990:283-299.
38 39	551	40.	Villafuerte FC. New genetic and physiological factors for excessive erythrocytosis and
40	552		Chronic Mountain Sickness. J Appl Physiol (1985). 2015;119(12):1481-1486.
41	553	41.	Ge RL, Mo VY, Januzzi JL, et al. B-type natriuretic peptide, vascular endothelial growth
42	554		factor, endothelin-1, and nitric oxide synthase in chronic mountain sickness. Am J
43	555		<i>Physiol Heart Circ Physiol.</i> 2011;300(4):H1427-1433.
44 45	556	42.	Julian CG. Epigenomics and human adaptation to high altitude. J Appl Physiol (1985).
46	557	12.	2017;123(5):1362-1370.
47	558	43.	Ang SO, Chen H, Hirota K, et al. Disruption of oxygen homeostasis underlies congenital
48	559	45.	Chuvash polycythemia. <i>Nat Genet.</i> 2002;32(4):614-621.
49		44	
50	560	44.	Frise MC, Cheng HY, Nickol AH, et al. Clinical iron deficiency disturbs normal human
51 52	561	4 5	responses to hypoxia. J Clin Invest. 2016;126(6):2139-2150.
52	562	45.	Wallace DF, Subramaniam VN. Co-factors in liver disease: the role of HFE-related
54	563		hereditary hemochromatosis and iron. <i>Biochim Biophys Acta Gen Subj.</i>
55	564		2009;1790(7):663-670.
56			
57 58			
58 59			2
60			ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100

Page 45 of 48

60

1			
2 3	FCF	40	Maceline Desciption have been estable and the influence term as a second during the
4	565 566	46.	Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105-122.
5 6	567	47.	Villafuerte FC, Macarlupú JL, Anza-Ramírez C, et al. Decreased plasma soluble
о 7	568	47.	erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain
8	569		Sickness. J Appl Physiol (1985). 2014;117(11):1356-1362.
9	570	48.	De Ferrari A, Miranda JJ, Gilman RH, et al. Prevalence, clinical profile, iron status, and
10 11	571		subject-specific traits for excessive erythrocytosis in Andean adults living permanently at
12	572		3,825 meters above sea level. <i>Chest</i> . 2014;146(5):1327-1336.
13	573	49.	Van Geen A, Bravo C, Gil V, Sherpa S, Jack D. Lead exposure from soil in Peruvian mining
14 15	574		towns: a national assessment supported by two contrasting examples. Bull World Health
16	575	_	Organ. 2012;90:878-886.
17	576	50.	Health Canada. Final Human Health State of the Science Report on Lead. Ottawa:
18 19	577	F 4	Minister of Health; 2013.
20	578 579	51.	Childebayeva A, Goodrich JM, Chesterman N, et al. Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation. <i>Environ Int.</i>
21	579 580		2021;155:106587.
22 23	581	52.	Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead
23	582	52.	poisoning: epidemiology and pathogenesis. <i>Sci Total Environ</i> . 2004;330(1-3):21-37.
25	583	53.	Hosseinirad H, Shahrestanaki JK, Moosazadeh Moghaddam M, Mousazadeh A, Yadegari
26 27	584		P, Afsharzadeh N. Protective Effect of Vitamin D3 Against Pb-Induced Neurotoxicity by
27	585		Regulating the Nrf2 and NF-кВ Pathways. <i>Neurotox Res.</i> 2021;39(3):687-696.
29	586	54.	Harada N, Kanayama M, Maruyama A, et al. Nrf2 regulates ferroportin 1-mediated iron
30	587		efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in
31 32	588		macrophages. Arch Biochem Biophys. 2011;508(1):101-109.
33	589	55.	Brewster LM, Bain AR, Garcia VP, et al. Global REACH 2018: dysfunctional extracellular
34	590		microvesicles in Andean highlander males with excessive erythrocytosis. Am J Physiol
35 36	591 592		Heart Circ Physiol. 2021;320(5):H1851-h1861.
37	392		
38			
39 40			
41			
42			
43 44			
45			
46			
47 48			
49			
50			
51 52			
53			
54			
55 56			
50 57			
58			
59 60			ScholarOne - http://mchelp.manuscriptcentral.com/gethelpnow/index.html - (434) 964-4100

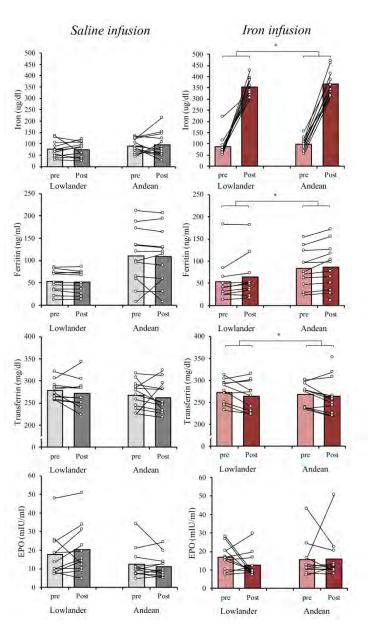
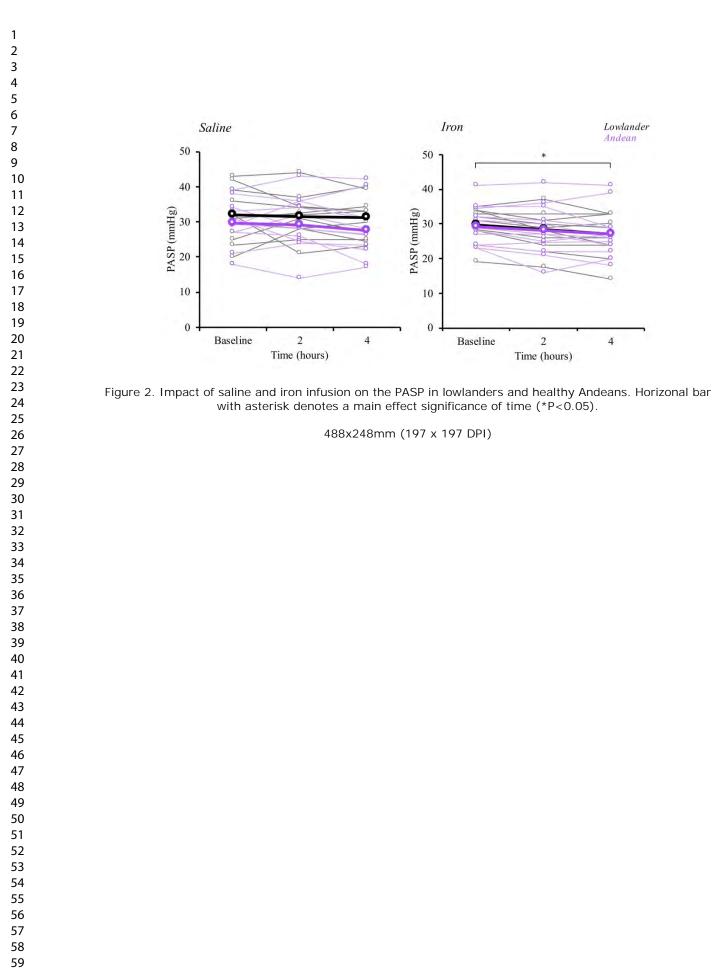
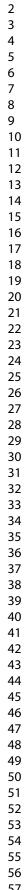




Figure 1. Impact of saline (grey bars) or iron infusion (red bars) on iron metrics in lowlanders and healthy Andeans. *P<0.05 main effect of time.

535x884mm (197 x 197 DPI)

1

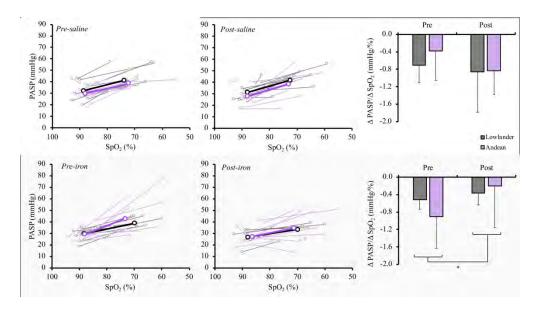
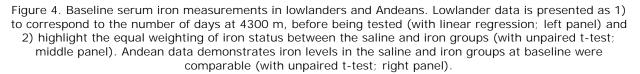



Figure 3. Pulmonary vascular reactivity to hypoxia in lowlanders and Andeans receiving either saline or iron infusion. * main effect P<0.05.

818x456mm (121 x 121 DPI)

553x208mm (118 x 118 DPI)