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Abstract

This thesis examined the multifaceted relationship between stress and sports injury. Study

1 explored the relationships between psychological sources of stress (major life events and

personality characteristics) and stress-related physiological markers (heart rate variability,

muscle stiffness and postural control) using a prospective, repeated measures design. Two

Bayesian networks were used to perform the analysis and provided probabilistic statements

regarding the effect of different combinations of variables in the network on injury

occurrence. The first network revealed that “High” levels of muscle stiffness resulted in the

greatest probability (Pr) of injury (Pr = 0.31). However, there was no meaningful

difference between “Low” and “High” levels of negative life events on the probability of

sustaining an injury (“Low” Pr = 0.24, “High” Pr = 0.26), despite a large body of research

finding evidence to the contrary. The second network explicitly modelled changes between

time points and found that the combination of increases in muscle stiffness and negative

life events resulted in the greatest probability of sustaining an injury (Pr = 0.71). Study 2

addressed a number of research questions that built on those of Study 1, including;

whether additional measures such as the stress hormone cortisol was associated with major

life events and injury; whether an alternative method of scoring major life events would be

related to injury; and how these variables related to both injury occurrence and severity. A

subsample from the first study of male football and male rugby players were recruited for

the study. Both Bayesian hurdle regression and Bayesian linear regression models were

used to analyse the data. Findings revealed that higher levels of both average negative life

event score and muscle stiffness increased the probability of injury occurrence and the

number of days lost due to injury, although large credible intervals (CrI) were present. The

relationship between cortisol and injury was less clear, with each of the two teams involved

in the study demonstrating a different response (football, estimate = 0.10, 95% CrI =

[-0.43, 0.62]; rugby, estimate = 0.54, 95% CrI = [0.05, 1.05]). The thesis concludes with a

discussion of conceptual and theoretical issues, practical implications, strengths and

limitations, and directions for future research.
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Introduction
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Introduction

Despite the numerous physical, mental and social benefits of participating in sport at all

levels, one of the more negative and arguably inevitable consequences that can have

wide-ranging effects, is injury. Not only are there significant financial (e.g., costs of surgery

and rehabilitation), psychological (e.g., increased negative affect, lower self-esteem, and

higher levels of depression and anxiety) and physiological (e.g., acute pain from an injury

and long term physical damage) consequences for an athlete (Johnston & Carroll, 2000;

Mather et al., 2013; Reiner, Niermann, Jekauc, & Woll, 2013). There are also wider

economic impacts of injury, with costs associated with accident and emergency, after care

and rehabilitation, and days lost in work amounting to tens of millions of pounds each year

(Cumps, Verhagen, Armenians, & Meeusen, 2008; Öztürk & Kiliç, 2013; Ryan, Pracht, &

Orban, 2019). Perhaps not surprisingly, therefore, there is a considerable body of research

that has focused on identifying different factors that are related to injury occurrence and

the injury process, in an effort to mitigate against its prevalence and the adverse effects

associated with it.

Typically, research in the sports sciences has addressed the injury problem from a

somewhat narrow perspective, with the sub-disciplines of psychology, physiology and

biomechanics focusing on factors specific to their respective fields. Often, however, these

disciplines have shown little regard for how different factors across disciplines may interact

to exacerbate the risk of injury. While the mono-disciplinary approach was arguably

necessary in the early stages of sports injury research, to advance our understanding, there

is a need to address the problem from a more holistic perspective in order to identify

potential interactions between factors that permeate across disciplines. One factor with

strong links to injury from several perspectives is stress. Fletcher and Scott (2010)

conceptualised stress as a complex multifaceted phenomenon that incorporates both

stressors (e.g., environmental demands encountered by an individual) and strain (e.g., an

individual’s negative psychological, physical and behavioural responses to stressors).

Indeed, stress plays an integral role in sport, and is necessary to cause the adaptations

athletes need to improve their performance. However, although stress plays an important
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role in the process of adaptation that athletes need to improve performance, excessive

levels of both physiological stress caused by high training volume with inadequate recovery,

and psychological duress caused by major life events, have been found to increase the risk

of injury (Galambos, Terry, Moyle, & Locke, 2005; Post et al., 2017).

In an attempt to explain the role of stress in injury occurrence, and address the growing

injury problem, Andersen and Williams (1988) proposed a model of stress and athletic

injury. Revised by Williams and Andersen (1998), the model remains one of the most

widely cited sport injury models in the sport psychology literature. To elaborate, the model

includes several psychological factors (e.g., personality characteristics, major life events and

coping resources) that are thought to influence an athlete’s response to a stressful

situation, with certain combinations of factors more likely to increase the risk of athletic

injury. However, the model has recently been criticised for focusing only on the cognitive

factors that are related to injury, and not including other non-psychological variables that

research has demonstrated are also important for the stress-injury relationship (Ivarsson et

al., 2017). In addition, Appaneal and Perna (2014) provided an independent extension to

the Williams and Andersen (1998) model, outlining how additional training-related stress

would synergistically interact with psychological stress to increase the risk of injury,

however the proposed mechanisms in Appaneal and Perna (2014) have yet to be examined.

Further, there have also been calls to move away from the mono-disciplinary approach of

identifying isolated risk factors that contribute to injury occurrence that has been typical

within the sub disciplines of sport and exercise sciences (Bittencourt et al., 2016). Indeed,

there is a growing recognition that the body and mind are inextricably linked, and that a

more holistic approach needs to be taken to examining factors associated with injury. As

such, in order to advance our understanding of the complex interactions between different

sources of stress and their effect on injury occurrence, there is a clear need to address the

stress-injury relationship from an interdisciplinary perspective
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Purpose of the thesis

The central purpose of the thesis was to explore the multifaceted nature of different

stress-related risk factors associated with injury occurrence from an interdisciplinary

perspective. Specifically, the thesis aimed to: (a) identify and evaluate the relationship

between psychological and physiological markers of stress in the prediction of injury

occurrence; (b) examine the relationship between the markers of stress and injury in a

prospective, repeated measures study with a large cohort of athletes; and (c) evaluate the

relationship between the markers of stress and injury using an analysis method that

captures the complex nature of injury occurrence.

Structure of the thesis

The thesis comprises six chapters and contains two empirical studies. Following this

introduction, Chapter 2 provides a literature review of the current empirical research. The

thesis comprises six chapters and contains two empirical studies. Following this

introduction, Chapter 2 provides a literature review of the current empirical research.

Specifically, this chapter aimed to describe and critically evaluate Williams and Andersen’s

(1998) model of stress and injury and the associated literature; discuss recent theories and

frameworks that build upon the limitations of Williams and Andersen’s (1998) model to

address the stress-injury relationship from an interdisciplinary perspective; and explain the

rationale that underpins the current programme of research

Chapter 3 provides a rationale for the inclusion of the specific measures and variables that

were used in the present programme of research. The reliability and validity of specific

markers were evaluated using the relevant research literature, and where appropriate, pilot

studies conducted to address specific concerns regarding the choice of a measure. In

particular, the chosen measures had to be both robust and reliable within a field-based

data collection, in addition to being feasible to use within the time-frame that was available

to collect data from a large number of participants across repeated time-points. The reason

for these criteria were twofold: firstly, to safeguard the quality of the data collected during

the study, and secondly, to develop a collection protocol that was feasible for both the
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research and participant. As a result of the pilot studies and literature review, several

modifications were made to the chosen measures to improve their reliability and validity

within the prospective repeated measures design of the current programme of research.

Chapter 4 reports a study (Study 1) designed to capture markers of stress using the

measures outlined in Chapter 3 in a large cohort of athletes in a prospective, repeated

measures study. A total of 351 healthy athletes were recruited and completed a battery of

measures at approximately 4-monthly intervals over a 12-month period. At each data

collection point, athletes completed the set of measures identified in Chapter 3 to assess

major life events, the reinforcement sensitivity theory of personality, muscle stiffness, heart

rate variability and postural stability, in addition to reporting any injuries they had

sustained since the last data collection. Two Bayesian networks were used to examine the

relationships between variables and model the changes between data collection points in

the study. Findings revealed muscle stiffness to have the strongest relationship with injury

occurrence, with high levels of stiffness increasing the probability of sustaining an injury.

In contrast, negative life events (NLE) did not increase the probability of injury

occurrence. In contrast, when examining changes between time points, increases in NLE

between time points was found to increase the probability of injury, and the combination of

increases in NLE and muscle stiffness resulted in the greatest probability of sustaining an

injury. Findings from the study demonstrated the importance of both a repeated measures

design and interdisciplinary perspective in furthering our understanding of the relationship

between stress-related markers and injury occurrence.

The study detailed in Chapter 5 provides a more fine-grained examination of stress related

factors and injury and addresses additional questions that arose from Study 1. Specifically,

(a) whether the stress hormone cortisol was also associated with major life events and

injury; (b) whether an alternative method of scoring the major life events would be related

to injury; and (c) how these measures related to both injury occurrence and severity. A

sub-group of male football and rugby players (n = 51) were chosen due to the nature of the

high intensity training they completed on a regular basis. In addition to the measures

outlined in Study 1, participants also provided a sample of saliva before and after high
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intensity training sessions, which was used to determine the changes in concentration of

cortisol. The NLE scoring was modified from the original procedure of using the sum of the

negative life events by dividing each participant’s score by the number of events they

reported, to reflect an average NLE score. A combination of Bayesian hurdle regression and

Bayesian linear regression models were used to explore the relationship between average

NLE, muscle stiffness, cortisol and both injury occurrence and severity. Findings revealed

high levels of both average NLE and muscle stiffness increased the probability of injury

occurrence and increased injury severity; however the estimates had large credible intervals

implying uncertainty regarding the observed relationships. The relationship between

cortisol and injury was less clear, with each team demonstrating a different response.

The final Chapter (6) draws together the major findings presented in the thesis; discusses

the major conceptual and measurement issues in the thesis; highlights the practical

implications for athletes, coaches, practitioners and researchers; outlines the programme’s

strengths and limitations; and provides directions for future research.
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Chapter 2:

Literature Review
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Literature review

Injury remains an unfortunate bi-product of participation in sport and despite efforts to

reduce injury rates through the identification and modification of risk factors associated

with injury, the incidence of sport related injuries remains high (Aman, Forssblad, &

Henriksson-Larsén, 2016; Bueno et al., 2018). For example, Sheu, Chen, and Hedegaard

(2016) reported an age-adjusted injury rate of 31.1 per 1000 people with individuals

between five and 24 years of age the most likely to sustain an injury. Rosa et al. (2014)

found almost half (49.91%) of university level athletes sustained at least one injury during

their career, and Palmer-Green and Elliott (2014) observed 39% of the British team at the

2014 Sochi winter Olympics sustained at least one injury. The detrimental effects of

sustaining an injury for individual include lowered self-esteem, increased depression and an

increased risk of sustaining subsequent injuries (Brewer, 2012; Leddy, Lambert, & Ogles,

1994).

In an attempt to mitigate against the undesirable consequences of injury, Van Mechelen,

Hlobil, & Kemper (1992) proposed a four-step model for the sequence of injury prevention,

which described the necessary steps to address the growing injury problem. Steps one and

two of the model involve identifying the nature of the problem through incidence rates and

identifying the factors and mechanisms through which injuries may occur. Indeed, a large

body of research has identified several risk factors, both internal (e.g. anatomical,

biomechanical, psychological) and external (e.g., equipment, playing surface, playing

conditions), which are thought to contribute to injury occurrence (Bahr & Krosshaug,

2005; Wiese-Bjornstal, 2009). Based on these factors, several models of injury causation

have been proposed in an attempt to understand the multifaceted nature of injury. For

example, Bahr and Krosshaug (2005) proposed a model of injury causation that identified

how both internal and external factors contributed to an athlete’s susceptibility to

sustaining an injury. The model was criticised however, for being too linear and not

reflecting the true nature of exposure to risk factors and injury occurrence (Meeuwisse,

Tyreman, Hagel, & Emery, 2007). Consequently, Meeuwisse et al. (2007) proposed a

dynamic, recursive model of sport injury that improved Bahr and Krosshaug’s (2005)
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model, by including a cyclical element, whereby an athlete could be exposed to risk factors

and go through a period of adaptation. A recovery phase was also included in the model

that linked back to characteristics of the predisposed athlete; demonstrating how an

athlete’s injury history can contribute to their set of risk factors, and how the injury cycle

can start over again following recovery from injury. While both Bahr and Krosshaug (2005)

and Meeuwisse et al. (2007) provided useful frameworks to inform sport injury research,

their use has been limited within the literature. In contrast, one of the most influential

models in sport injury research over the last three decades has been Williams and

Andersen’s (1998) model of stress and injury (Figure 1).

Figure 1 . Stress and injury model (Williams & Andersen, 1998).

Williams and Andersen’s (1998) model proposed that when faced with a potentially

demanding athletic situation, the athlete’s personality traits (e.g., hardiness, locus of

control, sense of coherence, competitive trait anxiety, achievement motivation and sensation

seeking), history of stressors (e.g., daily hassles, major life events, previous injuries), and

coping resources (e.g., general coping behaviours, social support, psychological skills)

contribute to their stress response, either interactively or in isolation. The stress response is

the central core of the model and reflects a bi-directional relationship between the athlete’s

cognitive appraisal of, and physiological response to, a potentially demanding athletic

situation. The model predicts that an athlete who faces a potentially demanding athletic
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situation may perceive the situation as stressful if they have a history of many stressors,

personality traits that intensify the stress response and few coping resources to deal with

the situation. Consequently, a heightened stress response causing the athlete to exhibit

increased physiological activation (e.g., increased muscle tension) or attentional disruption

(e.g., peripheral narrowing), is thought to be the mechanism through which injuries occur.

Despite the stress response being the central core of the model, personality traits, history

of stressors and coping resources have received the most attention in the research literature

(Johnson, Tranaeus, & Ivarsson, 2014). Further, of the psychosocial variables in the model,

major life events appears to most consistently predict injury occurrence (Gunnoe,

Horodyski, Tennant, & Murphey, 2001; Ivarsson & Johnson, 2010; Ivarsson et al., 2017;

Maddison & Prapavessis, 2005; Passer & Seese, 1983; Williams & Andersen, 2007).

Psychosocial variables

History of stressors. Research into the relationship between the history of stressors

and injury has largely focused on major life events. The early research in life event stress

evolved from the work of Holmes and Rahe (1967) who developed the Social Readjustment

Rating Scale, which was used to identify and rank the magnitude of life events. The first

evidence of a relationship between major life events and sports injury was reported by

Holmes (1970), who found that 50% of the athletes that experienced high life stress

sustained an injury over the preceding 12 months, compared to 9% and 25% of athletes

with low and moderate life stress respectively. This initial evidence of a relationship

between life event stress and injury has been largely supported in subsequent research

across a range of different sports (Gunnoe et al., 2001; Ivarsson & Johnson, 2010;

Maddison & Prapavessis, 2005; Petrie, 1992; Rogers & Landers, 2005). Indeed, in their

review of the sport injury literature, Williams and Andersen (2007) reported that of the 40

studies that had examined the relationship between major life events and injury,

approximately 85 % had found some correlation between life event stress and injury

(Williams & Andersen, 2007).

While the early research in life event stress did not differentiate between the type of stress
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being experienced (i.e., whether the source of the stress was perceived as positive or

negative), Sarason, Johnson, and Siegel (1978) contended that the effects of life events

perceived as negative may differ from those events viewed positively. Consequently,

Sarason et al. (1978) developed the Life Experience Survey (LES) which asked participants

to indicate whether they perceived each life event as negative or positive, and whether the

life event had no effect (score of 0), little effect, (-1 or +1 score depending on whether the

event was negative or positive), moderate effect (-2 or +2) or a great effect (-3 or +3).

Negative, positive and total life events (absolute sum of negative and positive event) could

then be determined. As expected, Sarason et al. (1978) found negative life events to have a

greater effect on health-related dependent variables compared to positive or total life

events. Using a modified version of the LES, Passer and Seese (1983) were subsequently

able to identify that in a sample of university football players, those who reported high

negative life events were at the greatest risk of sustaining an injury. Indeed, in the research

that followed, life events with negative valance were found to most frequently predict injury

occurrence (Andersen & Williams, 1999; Ivarsson & Johnson, 2010; Ivarsson et al., 2017;

Williams & Andersen, 2007). However, both positive and total life event stress have also

been found to be related to injury. For example, Petrie (1993) reported that positive life

events were the only life event stressor to predict injury. To explain this finding, Petrie

(1993) suggested that events such as being promoted to captain of the team or receiving an

athletic scholarship may be initially perceived as positive, however such events may put

more pressure on the individual causing them to perceive athletic situations as more

stressful, and thus be at greater risk of injury. Despite these suggestions, negative life

events have received the most attention in the literature and remain one of the factors

most strongly related to sport injury.

In addition to major life events, previous injury was also identified as a contributing factor

to the history of stressors in Williams and Andersen’s (1998) model. Like major life events,

research has consistently found previous injury to increase the risk of future injuries

(Hägglund, Waldén, & Ekstrand, 2006; Kucera, Marshall, Kirkendall, Marchak, & Garrett,

2005; Williams & Andersen, 2007). These findings can be partly explained by the physical

effects of sustaining an injury; with athletes not completing the full rehabilitation
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programme before returning to sport, or the rehabilitation programme not preparing them

fully for return to sport (Clement, Granquist, & Arvinen-Barrow, 2013; Kraemer, Denegar,

& Flanagan, 2009). Without a comprehensive rehabilitation programme that fully prepares

an athlete for their return to sport, significant deficits in strength, muscular activation,

power, postural stability, lower extremity mechanics, and psychological preparedness may

exist, and the risk of re-injury is greatly increased (Bien & Dubuque, 2015). However,

sustaining an injury is also likely to be a major life event in itself, and the psychological

issues an athlete may face when returning from a serious injury are well documented

(Brewer, 2012). For example, fear of re-injury may result in the athlete not performing the

movement or skill at the required level and/or in the required way (Hsu, Meierbachtol,

George, & Chmielewski, 2017). An athlete who is fearful of re-injury may also try to

“protect” the injured limb by favouring the uninjured limb. The result is that the

previously healthy limb is now at greater risk of injury due to increased load (Fulton et al.,

2014). Taken together, it is clear to see how the physical and psychological effects of an

injury may increase the risk of subsequent injuries, particularly if a full recovery is not

made before returning to sport.

Personality characteristics. In addition to history of stressors, personality traits have

been identified as factors that moderate the stress-injury relationship. For example, both

high trait anxiety and high competitive trait anxiety have been reported to increase the

risk of injury (Lavallée & Flint, 1996; Petrie, 1993). Ivarsson and Johnson (2010) reported

that somatic trait anxiety (p = 0.025), psychic trait anxiety (p = 0.044), stress

susceptibility (p = 0.016), and trait irritability (p = 0.023) were significant predictors of

injury within a group of male soccer players (n = 48). A particular strength of this study

was the prospective design; however, the use of a single sport and small sample size limit

the generalizability of the findings. Other personality characteristics identified in Williams

and Andersen’s (1998) model have received less attention in the literature, and findings are

inconclusive with regard to predicting injury occurrence (Junge, 2000). For example,

Pargman and Lunt (1989) reported that external locus of control was associated with

increased injury rate in American football players. In contrast, Kolt and Kirkby (1996)

found that internal locus of control predicted injury in elite, but not non-elite, gymnasts.
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In their recent meta review, Ivarsson et al. (2017) found that personality characteristics

generally have a limited direct relationship with injury prediction; however, research

indicates that the presence of personality characteristics in combination with other factors

such as a major life event is likely to increase the risk of injury in athletes (Petrie, 1993).

Coping resources. The final psychosocial variable proposed in Williams and Andersen’s

(1998) model is coping resources. The model predicts that athletes with well-developed

psychological coping skills and a strong social support network will appraise situations as

less stressful, reducing their likelihood of injury. As a result, coping resources are proposed

to moderate the effect of major life events on sports injury, with high levels of coping

resources potentially buffering the effect of negative life events. Several studies have

supported the proposed relationship between life event stress, coping and injury. Several

studies have found support for the proposed relationship between life event stress, coping

and injury. For example, both Hardy (1992) and Petrie (1993) found social support to have

a buffering effect on the relationship between negative life events and injury. In contrast,

Rider and Hicks (1995) found no significant relationship between coping skills and sports

injury (r = -0.11).

While several of the psychosocial characteristics proposed in Williams and Andersen’s

(1998) model have received significant attention in the literature, there remains a number

of unanswered questions surrounding the contribution of characteristics that have received

less consideration (e.g., hardiness, sense of coherence and achievement motivation). To

elaborate, inconclusive findings for certain personality characteristics suggests these

characteristics interact with injury occurrence is likely to be complex, and dependent on a

number of other factors associated with the individual athlete (Junge, 2000). For example,

a number of physical and/or environmental factors are also likely to influence injury

occurrence and may moderate the effects of various psychosocial factors. Examining how

psychosocial characteristics contribute to injury when considered in a wider context that

includes training-related factors and physiological characteristics may therefore help to

address some of the inconsistencies within the literature.
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The stress response

Central to Williams and Andersen’s (1998) model is the “stress response”, which reflects a

bi-directional relationship between an athlete’s cognitive appraisal of, and physiological

response to, a potentially demanding athletic situation. For example, an athlete will make

an appraisal of the demands of a particular training session or competition, evaluate their

ability to meet those demands, and the potential consequences of success or failure. The

model predicts that athlete’s with a history of many stressors, personality traits that

intensify the stress response and few coping resources to deal with the situation are at risk

of sustaining an injury due to the “increased physiological arousal and/or attentional

deficits” caused by the stress response (Williams and Andersen, 1998, p. 7). Specifically,

Williams and Andersen (1998) suggested several mechanisms through which an elevated

stress response might exert its effect, for example, increased muscle tension, attentional

narrowing and increased distractibility. Compared to the psychological factors outlined in

the previous section, few researchers have investigated these proposed mechanisms and the

research that has been conducted has mainly focused on the attentional stress response

mechanisms proposed by Williams and Andersen. For example, Andersen and Williams

(1999) measured injury occurrence, negative life event stress and performance on a

perception task under both normal and stressful conditions and found that individuals with

high negative life events and who experienced greater peripheral narrowing under stress

sustained more injuries than individuals with the opposite profile The findings were later

supported by Rogers and Landers (2005) who reported that peripheral narrowing during

stress mediated 8.1% of the relationship between major life events and injury. The

remaining studies examined attentional deficits using the ImPACT (ImPACT Applications,

Inc., Pittsburgh, PA) test battery to examine the relationship between verbal memory,

visual memory, processing speed, reaction time and injury. Wilkerson (2012) reported that

increased reaction time at the start of the season predicted injury in a sample of 76 football

players, whereas Swanik, Covassin, Stearne, and Schatz (2007) employing a retrospective

design found individuals who had reported a previous anterior cruciate ligament injury

demonstrated increased reaction time compared to healthy matched controls.
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Although these studies provide support for a relationship between attentional deficits and

injury as proposed by Williams and Andersen (1998), the ecological validity of the studies

can be questioned. All of the studies identified by Ivarsson et al. (2017) used a

laboratory-based design that is unlikely to be reflective of the environment that an athlete

will be training and competing in. Furthermore, Swanik et al. (2007) used a retrospective

design that has limited value for assessing the predictive power of attentional deficits.

Wider criticisms can also be made about the particular mechanism of peripheral narrowing

that is proposed to increase the risk of injury. Indeed, the peripheral narrowing mechanism

fails to account for overuse injuries, which represent approximately 30% of the total number

of injuries that are sustained annually (Yang et al., 2012). To elaborate the mechanisms for

overuse injuries are typically caused by maladaptation to, or inadequate recovery from,

high intensity training, and are more likely to be explained by the physiological changes

proposed in the model such as increased muscle stiffness (Bahr & Krosshaug, 2005).

However, these mechanisms have received little attention in the literature to date.

Furthermore, other research has found some degree of peripheral narrowing to be beneficial

to performance (Eysenck, Derakshan, Santos, & Calvo, 2007; Hanoch & Vitouch, 2004;

Hertwig & Todd, 2005). For example, under stressful conditions, peripheral narrowing may

limit the amount of information perceived, which may facilitate improved decision making

and physiological mobilisation of the body to react to task relevant cues. Consequently, an

athlete may be able to avoid potentially harmful situations under stress by using peripheral

narrowing to focus on only the most relevant information and respond quickly to

information they perceive (Hanoch & Vitouch, 2004; Öhman, Flykt, & Esteves, 2001). As

a result, mechanisms, particularly those that are related to the physiological changes

proposed in Williams and Andersen’s (1998) model merit further attention.

Model critique

While Williams and Andersen’s (1998) model has been the most widely cited model of

injury in the literature, it has a number of limitations. A major criticism of the model is

the narrow focus on cognitive aspects of stress and the stress response (Ivarsson et al.,

2017). The model does not include any physiological or environmental factors that are also
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likely to contribute to injury occurrence that are central to other models of injury such as

those proposed by Bahr and Krosshaug (2005) and Meeuwisse et al. (2007). A more

complete model of injury occurrence needs to acknowledge the contribution of both

psychosocial variables and other physiological or environmental factors known to relate to

injury. An example of such a model, which included a combination of biomechanical factors

such as; mechanical load, on field behaviour and skill, load tolerance, and various

psychological factors including competitive motivation, cognition, risk assessment and

perception of load, was proposed by McIntosh (2005). Unfortunately, the model has not

been adopted as a framework for research, possibly due to the emphasis on biomechanics,

which makes it less accessible for researchers from other sports science disciplines.

In addition to the limitations of Williams and Andersen’s (1998) model itself, there has

been some wider criticism of the literature that has investigated the different parts of the

model; specifically, with regard to the populations studied and methodologies employed.

Much of the research that has supported Williams and Andersen’s (1998) model has used

athletes from team sports, such as American football (Cryan & Alles, 1983; Gunnoe et al.,

2001), soccer (Ivarsson & Johnson, 2010; Steffen, Pensgaard, & Bahr, 2009) and rugby

(Maddison & Prapavessis, 2005). Furthermore, many of these studies have only included

male athletes, with relatively few studies including female athletes (Ivarsson et al., 2017).

Support for the model would undoubtedly be strengthened if samples were more

representative of the sporting population at large. A further criticism that relates to

methodology is the use of one time point for data collection purposes (Johnson et al.,

2014). An athlete’s injury risk is likely to be dynamic and will vary over the course of a

season depending on a number of different factors, such as the stage of the season (e.g.,

early, middle or late), number of competitions and the amount of recovery between training

sessions/competitions. By only measuring risk factors at one point in time, important

information is missed regarding how changes in those risk factors may relate to injury

occurrence. A further issue with a single measurement is that the time interval between the

measurement and actual injury occurrence is not considered. For example, if risk factors

are measured in pre-season, but an injury does not occur until much later into that season,

the predictive value of the risk factor may be limited, given that the impact of the risk
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factor may have changed significantly over time. To highlight this point, Sibold and Zizzi

(2012) found that a number of psychological variables including negative life events, worry

and concentration disruption were associated with the number of days until injury

occurrence. To clarify, higher negative life event scores resulted in injury sooner than lower

scores. These findings support the need for repeated measures designs that assess risk

factors as close to injury occurrence as possible to increase their predictive validity.

In order to address the limitations highlighted in the original Williams and Andersen

(1998) model, Appaneal and Perna (2014) proposed the Biopsychosocial Model of Stress,

Athletic Injury and Health (BMSAIH) to serve as an independent extension (Figure 2).

Based on the earlier work of Petrie and Perna (2004), the BMSAIH aimed to: (i) clarify

the mediating pathways between the stress response and injury; (ii) consider other health

outcomes and behavioural factors that impact on sports injury and; (iii) integrate the

impact of exercise and training on athletes’ health and injury occurrence (Appaneal &

Perna, 2014). The central tenet of the BMSAIH is that psychosocial distress may act

synergistically with high intensity training to “widen the window of susceptibility” to

injury and other undesirable health outcomes such as illness, physical complaints or

maladaptation to training (Appaneal & Perna, 2014, p. 4). Therefore, the BMSAIH

provides a framework for future research to examine the relationship between psychosocial

factors and injury occurrence proposed in Williams and Andersen’s (1998) model, by

including other physiological stress-related markers, that collectively may provide greater

insight into the injury process.

Although offering several potential avenues for research, support for the BMSAIH remains

sparse, and research has mainly focused on the hormonal response to high intensity

training and injury. For example, Perna and McDowell (1995) provided promising evidence

in a study that examined life event stress and cortisol response in athletes following an

exhaustive graded exercise test. Participants were split into high and low life event stress

(LES) groups, and the high LES group were found to have both higher cortisol in response

to the graded exercise test, and increased symptomatology (e.g., muscle complaints and

viral illness) over the 30 days following the graded exercise test. The study by Perna and
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Figure 2 . Biopsychosocial model of stress athletic injury and health (Appaneal & Perna,
2014, p. 4).

McDowell (1995) did not, however, explicitly examine the relationship between cortisol

response to high intensity training and sports injury, and very few studies have explored

the relationship further.

In addition to hormonal changes, there are several other physiological stress-related

markers that could be included in research using the BMSAIH model. For example,

measures of heart rate variability (Djaoui, Haddad, Chamari, & Dellal, 2017; Williams

2017), postural stability (Coco et al., 2015; Romero-Franco et al., 2014) and skeletal muscle

characteristics such as stiffness (Butler, Crowell, & Davis, 2003; Pickering-Rodriguez,

Watsford, Bower, & Murphy, 2017) have been of found to be related to psychological

distress and are often used as markers of the physiological effects of high intensity training.

Furthermore, these markers have also been linked to injury occurrence in athletes

(Pickering-Rodriguez et al., 2017; Plews, Laursen, Kilding, & Buchheit, 2012; Trojian &

McKeag, 2006; Williams et al., 2017), and including them alongside the psychological

factors from Williams and Andersen’s (1998) model may provide greater insight into the

relationship between stress and injury. However, despite offering a potential framework to

build upon the research stemming from William and Andersen’s (1998) model, there

remains a lack of research exploring the synergistic action of both psychosocial and
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physiological stress-related markers proposed by the BMSAIH.

One possible explanation for why sports injury research has made limited attempts to

examine different sources of stress may be due to the traditional mono-disciplinary

approach researchers often employ. Mono-disciplinary approaches continue to be prevalent

within sports injury research despite repeated calls to move towards an interdisciplinary

approach (Burwitz, Moore, & Wilkinson, 1994; Piggott, Müller, Chivers, Papaluca, &

Hoyne, 2018). To gain a better understanding of the holistic nature of the stress-injury

relationship, an interdisciplinary approach is necessary, and would allow different elements

of both Williams and Andersen’s (1998) model and Appaneal and Perna’s (2014) model to

be examined in more detail. For example, it would be possible to examine how

psychological stress interacts with physiological markers of stress and synergistically

contribute to an increased risk of injury. Additionally, to further highlight the importance

of an interdisciplinary approach, Bittencourt et al. (2016) recently proposed a

contemporary view of the sports injury problem, moving away from a mono-disciplinary

perspective and drawing on elements from complex systems theory (Holland, 1995; Hulme

& Finch, 2015). Such an approach requires an interdisciplinary perspective, combining

elements from different disciplines within the sport injury literature (Buekers et al., 2017).

In particular, Bittencourt et al. (2016) suggested that sports injury is an emergent

phenomenon and is dependent on a multitude of factors at any one time, termed the “web

of determinants” (Philippe & Mansi, 1998, p. 1). Figure 3 shows an example of different

webs that might result in an ACL injury for a basketball player and a ballet dancer

(Bittencourt et al., 2016). Although the injury is the same, different combinations of

factors contributed to the injury, highlighting the emergent properties of sport injury.

While the example mainly focuses on biomechanical properties associated with injury,

additional psychological factors could easily be incorporated. As such, the complex system

approach proposed by Bittencourt et al. (2016) provides a suitable backdrop for the

current programme of research to explore the relationship between psychological distress,

physiological stress-related markers and injury occurrence.
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Figure 3 . Two examples of complex systems approach to injury. Pattern A shows the
factors that may contributed to an ACL injury for a basketball player, and pattern B shows
the same injury but from a ballet dancer’s perspective. Thick lines indicate a stronger
relationship between variables, whereas dashed lines indicate weaker relationships. Adapted
from Bittencourt et al. (2016).

Summary and recommendations for future research

While sport injury rates are continuing to rise, a large body of research has identified a

multitude of factors that are related to injury occurrence. In particular, stress, from both a

psychological and physiological perspective, plays a major role in injury occurrence.

However, stress-related factors have often been studied in isolation, and their contribution

to a more holistic view of injury occurrence has not been as well established. Recently, both

Appaneal and Perna (2014) and Bittencourt et al. (2016) have provided frameworks to

further sport injury research. Appaneal and Perna (2014) offered an extension to the widely

cited Williams and Andersen (1998) model of stress and injury that included additional

physiological stress-related markers that may act synergistically with the psychological

characteristics from Williams and Andersen’s (1988) model. In addition, Bittencourt et al.

(2016) proposed a contemporary view of injury based on complex systems theory and

highlighted the need for appropriate research designs and analysis techniques that can

address the dynamic nature of injury occurrence. Together, these studies have formed the

foundation for the current body of research of which the purpose was to explore the
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relationships between psychological sources of stress, physiological stress-related markers

and injury occurrence. Specifically, the aims of this thesis were threefold: (a) to identify

and evaluate the relationships between psychological and physiological markers of stress in

the prediction of injury occurrence; (b) to examine the relationships between the markers

of stress and injury in a prospective, repeated measures study with a large cohort of

athletes; and (c) to evaluate the relationships between the markers of stress and injury

using an analysis method that captures the complex nature of injury occurrence.
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Chapter 3:

Measures
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Measures

The purpose of this chapter is to provide a rationale for the inclusion of the variables and

the measures employed in the present research programme. This includes discription of the

pilot testing, and the reliability and validity of the selected measures. As highlighted

earlier, one of the major criticisms of Williams and Andersen’s (1998) model is that it only

includes psychological predictors of sports injury, despite evidence that factors associated

with an athlete’s physical status and response to training are also associated with athletic

injury (Appaneal & Perna, 2014; Petrie & Perna, 2004). To address this limitation,

Appaneal and Perna (2014) proposed the Biopsychosocial model of stress, athletic injury

and health (BMSAIH) to serve as an independent extension to Williams and Andersen’s

(1998) model. The BMSAIH illustrates how psychological distress and physiological

stress-related markers may interact and exacerbate the stress response, increasing the risk

of injury. Although research supporting the BMASIH has largely focused on the hormonal

response to high intensity training, there is a growing body of literature that has identified

several physical markers that can indicate an athlete’s physiological status (Djaoui et al.,

2017; Lee et al., 2017). These markers provide a means by which athletes and coaches can

detect when the balance between the training stress required for physiological adaptation,

and recovery, is not appropriate (Borresen & Lambert, 2009). For example, with reduced

capacity to recover, high intensity and high volume training can have negative outcomes

for an athlete’s health, including over-training syndrome, increased susceptibility to illness

and increased risk of athletic injury (Appaneal & Perna, 2014). Indeed, when measured in

conjunction with psychological factors known to predict injury occurrence, these markers of

physiological stress may contribute important insights into athletes’ susceptibility to injury.

However, research examining the relationships between physiological stress-related markers

and sports injury remains sparse.

The purpose of the current research programme was to address the limitations of the

current body of injury prediction research by employing an interdisciplinary approach to

examine the synergistic action of psychological sources of stress and physiological stress

metrics on injury occurrence (cf. Appaneal & Perna, 2014). The current research
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programme planned to use a large sample and a repeated measures design to capture

changes in both psychological predictors of injury and stress-related physiological markers.

In order to collect data on the large sample of participants in a timely manner,

safeguarding both the rigour and viability of the study, participants needed to be able to

complete the series of measures in a realistic and acceptable timeframe, over repeated

administrations. This was essential, not least for participant retention in the study. In the

remainder of the chapter, the specific measures used in the current research are discussed

based on these considerations, and where appropriate, additional pilot studies specific to

the current research are outlined.

Major life events (Appendix A)

Of the main psychological factors proposed in Williams and Andersen’s (1998) model,

major life events, and specifically events with a negative valence, have been found to

consistently predict injury occurrence in athletes (Gunnoe et al., 2001; Ivarsson & Johnson,

2010; Ivarsson et al., 2017; Maddison & Prapavessis, 2005; Passer & Seese, 1983; Williams

& Andersen, 2007). The most widely used measure of life event stress in the sports injury

literature is the Life Event Survey for Collegiate Athletes (LESCA; Petrie, 1992). The

LESCA comprises 69 items reflecting possible life events that participants may have

experienced. Participants are asked to rate the perceived impact of each life event they

have experienced within the last 12 months on an 8-point Likert scale anchored at -4

(extremely negative) and +4 (extremely positive). Negative and positive life event scores

are calculated by summing the negative and positives score respectively. A score for total

life events is calculated by summing the absolute values for both negative and positive life

events. Prior to the development of the LESCA, sports injury research had been limited to

general scales of life event stress such as the Social Readjustment Rating Scale (SRRS;

Holmes & Rahe, 1967) and Life Experience Survey (LES; Sarason et al., 1978). However, a

review by Andersen and Williams (1988) indicated the SRRS and LES scales were

inappropriate for sport specific research and needed to be refined to better establish the

link between major life events and sports injury. Consequently, Petrie (1992) developed the

LESCA to address the need for a measure of life event stress suitable for an athletic
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collegiate population. Indeed, the LESCA has frequently been used in research

investigating psychological characteristics associated with athletic injury (e.g., Maddison &

Prapavessis, 2005; Gunnoe et al., 2001; Ivarsson & Johnson, 2010; Rogers & Landers,

2005), and remains the most comprehensive scale available to assess major life events in a

population of athletes to date (Ivarsson et al., 2017).

Modifications. Although the LESCA was initially developed with collegiate athletes,

several authors have used modified versions of the LESCA for younger participants

(Gunnoe et al., 2001; Steffen et al., 2009) and non-collegiate athletes (Maddison &

Prapavessis, 2005). In the current research, both university aged athletes and adult

members of local sports clubs who were not enrolled at university, were recruited to

participate in the study. Consequently, several modifications were made to the original

LESCA to ensure the suitability of the items for the study population. For university

students, the wording of items was adjusted to reflect cultural norms for British university

students (e.g., Beginning a new school experience [beginning college, transferring college

etc] was changed to Beginning a new university experience [beginning university,

transferring university etc] ). For non-students, items associated with college

activities/behaviours were either modified to include comparable non-student events (e.g.,

Being dismissed from dorm or other residence was changed to Being asked to vacate

house/home) or if no suitable alternative was available, the item was removed. Table 1

provides a summary of the modifications made to items in the original measure. Two

Professors at the university where the research was conducted who were experienced in

sports injury research scrutinized the modifications for face and content validity. In

addition, the repeated measures design of the current research required a modification to

the participant instructions for the LESCA. To elaborate, during the first data collection in

the current research, participants were asked to report life events in the preceding 12

months, as per standard LESCA instructions. For each subsequent data point, the

instructions were modified to ask participants to report all life events that had occurred

since the previous data collection. This modification ensured that only “new” life events

would be recorded at each time point, and that participants would not report the same life

events more than once, unless there was some significant change.
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Table 1
Summary of modifications to LESCA items.

Q Original Students Non-students

19 Beginning a new school
experience (beginning
college, transferring
college etc)

Beginning a new school
experience (beginning
university, transferring
university etc)

Beginning a new work
experience

21 Academic probation /
ineligibility

Removed

22 Being dismissed from
dorm or other residence

Being dismissed from halls
or other residence

Being asked to vacate
house/home

27 Financial problems
concerning school

Financial problems

29 Conflict with room-mate Conflict within household

36 Suspended from team for
non-academic reasons

Removed

49 Being absent from school
(classes) because of
participation in sport

Being absent from
university (classes)
because of participation in
sport

Being absent from work
because of participation in
sport

61 Major change in level of
academic performance
(doing better or worse)

Major change in level of
performance at work
(doing better or worse)

62 Making career decisions
(applying to graduate
school,interviewing for
jobs, etc)

Making career decisions
(applying for Masters
degree, interviewing for
jobs, etc)

Making career decisions
(applying for Masters
degree, interviewing for
jobs, etc)

Scoring. Traditionally, the LESCA has been scored as the sum of negative and positive

life event responses over a 12-month period. However, due to the repeated measures design

used in the current research, several considerations were necessary regarding the most

appropriate way to score participants’ responses. Specifically, deriving LESCA scores at

the first time point that reflect life events over a 12-month period, but for subsequent time
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points, reflect life events over a reduced four-month period was clearly going to be

problematic comparatively; with participants likely to have experienced fewer events during

the reduced time interval. This situation was further exacerbated by the potential for the

effects of the life events experienced during preceding time points to still be present during

subsequent data collections. Therefore, to account for the potential continuing and

confounding effect of life events, a cumulative sum of life events over the study period was

used as the main outcome measure. For example, if a participant reported a score of 10 life

events at the first time point and 4 at the second time point, their score at the second time

point would be 14. Scoring the LESCA in this way meant that the effects of previous

events from preceding time points were still accounted for, while still including the new

events that were reported.

Personality (Appdendix B)

Williams and Anderson (1998) proposed several personality characteristics that may

exacerbate the response to a stressful athletic situation and contributed to the increased

the risk of athletic injury. For example, both high trait and state anxiety have been

reported to increase the risk of injury in athletes (Ivarsson & Johnson, 2010; Lavallée &

Flint, 1996; Petrie, 1993). However, the evidence for a relationship between other

personality traits (e.g., emotional state and locus of control) and injury has been less

conclusive, with some research finding no support or contradictory results (Junge, 2000).

One aspect of personality theory that has not yet been examined in relation to athletic

injury is Reinforcement Sensitivity Theory (RST; Gray & McNaughton, 2000). RST is a

neuropsychological theory of personality conceptualised in terms of motivation, learning

and emotion that posits that all major personality traits are basic systems of approach and

avoidance (Corr, 2013).

First proposed by Gray (1982), RST outlined two systems of behavioural activation and

behavioural inhibition (BAS and BIS, respectively). The BAS and BIS were proposed to

govern approach behaviour towards appetitive stimuli and avoidance from aversive stimuli

(Montag, Smillie, Markett, Reuter, & Cooper, 2016). However, the original RST theory
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was updated by Gray and McNaughton (2000) who made a distinction between BIS and

the Fight Flight Freeze System (FFFS; McNaughton & Corr, 2004). In the revised RST

(rRST), the FFFS is proposed to be responsive to all punishing and threatening stimuli

(e.g., physical pain from training or competition) and the BAS is proposed to be responsive

to all rewarding and appetitive stimuli (e.g., prize money from winning a major

competition). In contrast to the original theory, the BIS is thought to be activated during

instances of goal conflict, for example when a threatening stimulus must be approached

(Corr, 2008). Specifically, BIS is involved in the processes that will generate anxiety, which

will result in more cautious approach behaviour (Corr, 2008). Indeed, rRST holds

particular relevance for sports injury research due to challenges faced by an athlete in a

competitive environment. For example, an athlete may be under physical pain nearing the

end of a race (FFFS activated), but motivated by the thought of winning (BAS activated).

In such a scenario, the BIS would be activated in an attempt to resolve the conflict

between the FFFS and BAS (Hardy, Bell, & Beattie, 2014). The types of behaviour

exhibited by an athlete under these conditions may expose an athlete to increased risk of

injury, however, to date no research has examined the relationship between rRST and

sports injury. The rRST may therefore provide a novel approach to understanding the

personality characteristics associated with sports injury.

Several questionnaires have been developed to reflect the rRST model (Jackson 5, Jackson,

2009; Reinforcement Sensitivity Questionnaire (RSQ) Smederevac, Mitrović, Čolović, &

Nikolašević, 2014; Reuter and Montag’s rRST-Q, Montag et al., 2016); however, when

reviewed by Corr (2016), the revised questionnaires were found to have significant

theoretical and operational limitations. For example, the Jackson 5 scale (Jackson, 2009)

only had one BAS factor, which is inconsistent with theoretical models of the BAS (Corr,

2008). To address the lack of a comprehensive psychometric measures of the rRST, Corr

and Cooper (2016) proposed the Reinforcement Sensitivity Theory of Personality

Questionnaire (RST-PQ). The RST-PQ comprises 65 statements that measure three major

systems: FFFS (e.g., “I am the sort of person who easily freezes-up when scared”), BIS

(e.g., “When trying to make a decision, I find myself constantly chewing it over”) and four

BAS factors; Reward Interest (e.g., “I regularly try new activities just to see if I enjoy
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them”), Goal Drive Persistence (e.g., “I am very persistent in achieving my goals”),

Reward Reactivity (e.g., “I get a special thrill when I am praised for something I’ve done

well”) and Impulsivity (e.g., “I find myself doing things on the spur of the moment”). Corr

and Cooper (2016) used both exploratory factor analysis (EFA) and confirmatory factor

analysis (CFA) to assess the validity of the RST-PQ and reported a robust six factor

structure with a clear a differentiation between FFFS, BIS and separate BAS factors. The

model fit indicies for the single order CFA model were: X2(2,000, N = 831) = 6,563.46, p

< .0001; CFI = 0.87; RMSEA = 0.052, which indicated an acceptable model fit (Corr and

Cooper, 2016).

Validation of RST. The validation of the RST-PQ was examined in a separate

programme of PhD research (Young, 2019). The present author was involved in the

validation process as the participants from this study were used to validate the RST-PQ.

Details of validation process are included here for detail but are not strictly part of this

programme of research.

To establish the factorial validity of the 65-item model of the RST-PQ, Bayesian Structural

Equation Modelling (BSEM; Muthén & Asparouhov, 2012) was used with responses from a

sample of 419 university-level athletes (Young, 2019). BSEM was used for the validation as

it had several advantages over the maximal likelihood procedures used in traditional

confirmatory factor analysis (CFA). In particular, BSEM allows informative variance priors

to be specified on cross-loadings, which in traditional CFA, are held at zero and can lead to

a blocked or miss-specified model (Marsh et al., 2009). By recognising that some small

cross-loadings and correlated residuals could be present within the items, BSEM can

reduce the possibility of model miss-specification (Gucciardi & Zyphur, 2016). To perform

the validation, three models were specified following the recommendations of Muthén and

Asparouhov (2012). Model one specified non-informative priors on the factor loadings and

exact zeros on the cross-loadings and correlated residuals. Model two specified

non-informative priors on the factor loadings, informative approximate zeros on the

cross-loadings and exact zeros on the correlated residuals. Lastly, model three specified

non-informative priors on the factor loadings, and informative approximate zeros on the
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cross-loadings and correlated residuals. The variance of the informative priors was set at ±

0.10, which equates to loadings with a 95% limit of ± .20 and implies weak cross loading

and correlated residuals. Loadings that were outside of the range were identified as being

highly correlated or having a large source of residual variance (Muthén & Asparouhov,

2012). Estimation of the BSEM models was performed in MPLUS where a Markov chain

Monte Carlo (MCMC) algorithm was used with a Gibbs sampler, in which 100,000

iterations were drawn to examine the parameter estimates and model convergence.

Model convergence was assessed using potential scale reduction factor (PSRF), where

values between 1.0 and 1.1 indicated good model convergence (Gelman & Brooks, 1998; A.

Gelman et al., 2013). Model fit was assessed by Posterior Predictive P (PPP) values and

95 % credibility intervals, where PPP values > 0.50 and 95 % confidence interval balanced

around approximately zero indicated good model fit (Muthén & Asparouhov, 2012) To

compare the different BSEM models, the deviance information criterion (DIC) was used,

where lower values indicated a better model-fit.

Results. The analysis revealed the 65-item RST-PQ to have both good model convergence

and model fit. In addition, all the main factor loadings were statistically significant.

However, several problematic items were identified based on weak factor loadings and

substantial cross-loadings and correlated residuals. Consequently, the model was

re-specified following an item deletion process (Young, 2019) and a 51-item RST-PQ

emerged with acceptable model-fit (PPP = 0.739, 95% posterior predictive confidence

intervals = -199.220, 101.356). The findings from the BSEM were replicated with a sample

of 350 participants from the current research programme (PPP = 0.787, 95% posterior

predictive confidence intervals = -208.405, 90.785). Consequently, the 51-item

questionnaire was adopted as the chosen measure of RST in the current research.

Heart rate variability (HRV)

Heart rate variability (HRV) is a popular approach for monitoring training adaptation in

athletes (Bellenger et al., 2016). Traditionally, resting heart rate was used as a marker to

reflect the recovery status of an athlete, however the beat to beat variation within the
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cardiac cycle has provided greater insight (Plews et al., 2012). The variability in the time

period between consecutive heart beats is the result of cardiac modulation through

sympathetic and vagal components of the autonomic nervous system (ANS). The degree of

variability in the cardiac cycle can provide insight into the ANS, which is altered during

training due to homoeostatic perturbation caused by the response to stress (Dong, 2016).

The ANS plays a dynamic role in both the response to, and recovery from, intense exercise,

and is involved in the regulation of pain, inflammation and tissue repair (Ackermann,

2016). Consequently, some authors have suggested that HRV can be used as an indirect

measure of ANS homeostasis to indicate early signs of fatigue and somatic tissue overload

(Bellenger et al., 2016; Gisselman, Baxter, Wright, Hegedus, & Tumilty, 2016; Kim, Cheon,

Bai, Lee, & Koo, 2018). There are, however, several important considerations to be made

when designing a study using HRV as a marker of ANS homeostasis specifically regarding

the measurement, calculation and interpretation of HRV data.

Over 70 variables quantifying HRV have been published in the literature that fall under

three broad categories; time domain, frequency domain and non-linear methods (Quintana,

Alvares, & Heathers, 2016). Time domain methods provide numerical indices summarising

the variability of a heart rate signal and are calculated from the time between successive

RR intervals (Malik et al., 1996). Two of the most commonly used time domain measures

in the sports injury and psycho-physiological literature are the Standard Deviation of the

Normal-to-Normal intervals (SDNN) and the Root Mean Square of Successive Differences

(RMSSD). The SDNN reflects all the cyclic components responsible for the variability in

the recoding period (Malik et al., 1996). The RMSSD reflects vagal tone and is highly

correlated with high frequency HRV. Both SDNN and RMSSD are easily calculated from

inter-beat interval (IBI) data, and provide reliable estimates of HRV (Al Haddad, Laursen,

Chollet, Ahmaidi, & Buchheit, 2011; Laborde, Mosley, & Thayer, 2017). In contrast to

time-based measures, frequency domain indices estimate the distribution of absolute or

relative power across four frequency bands; ultra-low-frequency (ULF, < 0.0033 Hz), very

low-frequency (VLF, 0.0033 – 0.04 Hz), low-frequency (LF, 0.04 – 0.15 Hz) and

high-frequency bands (HF, 0.15 – 0.40 Hz; Shaffer & Ginsberg, 2017). Clinical

interpretation of the ULF and VLF bands remain contested (Heathers, 2014), whereas the
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LF and HF bands are more commonly used to quantify different spectral components of

HRV in the psycho-physiological literature (Laborde et al., 2017). The LF band is thought

to represent a mix of sympathetic, vagal and baroreflex influences and is affected by

breathing rates from 3-9 breaths per minute (BPM). In contrast, The HF band reflects

vagal tone and is influenced by breathing rates from 9-24 BPM. The LF/HF ratio has been

characterised as representing sympatho-vagal balance between the parasympathetic and

sympathetic nervous system (Shaffer & Ginsberg, 2017). However, use of LF/HF ratio has

been heavily criticised in the literature (Heathers, 2014), due to the uncertain relationship

between LF power and sympathetic nerve activation and the non-reciprocal relationship

between sympathetic and parasympathetic activity (Billman, 2013; Laborde et al., 2017).

Consequently, Laborde et al. (2017) recommended that researchers use HRV indices that

are underpinned by clearly defined and theoretically sound physiological systems. In

addition to time and frequency domain analysis, non-linear analysis has been proposed as a

method to capture the complex and erratic fluctuations of the heart rate signal more

adequately than traditional linear approaches (Laborde et al., 2017). However, these

methods are computationally complex, and their utility has yet to be established in the

literature (Sassi et al., 2015).

Both time and frequency domain indices of HRV have been used in the sports injury

literature. In particular, reductions in markers such as RMSSD and HF HRV have

associated with illness, burnout and increased injury incidence. For example, Williams et

al. (2017) measured HRV and acute-to-chronic workload ratio (ACWR) over a 16-week

period in competitive cross-fit athletes. For the analysis, the rolling 7-day average of the

natural logarithm of the square root of the mean sum of the squared differences between

R–R intervals (Ln RMSSD) and ACWR measures were parsed into tertiles (“low”,

“moderate/normal”, and “high”) based on within-individual z-scores. When athletes

demonstrated a “low” HRV and “high” ACRW, the risk of overuse injuries substantially

increased compared to when “moderate” and “high” HRV was observed. Plews et al.

(2012) used a case study approach to assess HRV in two elite triathletes. HRV data were

collected over a 77-day period where each athlete was training approximately 24 hours per

week. During the observation period, one of the athletes performed poorly in a key
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triathlon event and was diagnosed as non-functionally over-reached and subsequently

reactivated the dormant virus herpes zoster (shingles). The athlete’s data revealed large

linear reductions in the 7-day rolling average Ln RMSSD leading up to the period when the

athlete was diagnosed as non-functionally over-reached. In contrast, the control athlete’s

data remained stable throughout the observation period, showing the potential value for

repeatedly monitoring HRV through periods of high intensity training. Lima-Borges,

Martinez, Vanderlei, Barbosa, and Oliveira-Junior (2018) assessed stress, recovery and

several indices of HRV including LF, HF and RMSSD in sprint and endurance-based

competitive swimmers during general training, specific training, and competitive stages of

a 20-week season. Reductions in both HF HRV and RMSSD were associated with increased

injury incidence in the sprint group, which Lima-Borges et al. (2018) attributed to the

progressive activation of the sympathetic nervous system as a result of the higher intensity

training in the sprint group compared to the endurance group. These studies highlight the

potential predictive value of using HRV as a marker of training-related stress.

In addition to training related stress, reduced HRV indices have also been found to be

associated with increased life event stress. For example, Pieper, Brosschot, Van Der

Leeden, and Thayer (2007) found that both worry episodes and stressful events were

independently associated with elevated heart rate and decreased levels of RMSSD. Dishman

et al. (2000) assessed perceived stress, and LF and HF power in 92 healthy participants

with above average cardiovascular fitness and found a negative relationship between stress

and normalized HF HRV (p = 0.038). Dishman et al.’s (2000) findings were supported by

Sin, Sloan, McKinley, and Almeida (2016) who observed that greater perceived stressor

reactivity was associated with reduced HRV indices including RMSSD, SDNN and HF in a

large sample of 909 participants. The combined evidence that reduced HRV is a marker of

training and life event stress make HRV a suitable measure to investigate the synergistic

action of both psychological and physiological sources of stress that can contribute to

injury occurrence. Specifically, RMSSD has commonly been used as an index of HRV and

has consistently shown a negative relationship with fatigue, overtraining, worry and

stressful events (Pieper et al., 2007; Plews et al., 2012). Reductions in RMSSD are thought

to represent reduced parasympathetic activation, implying impared recovery of the ANS
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resulting in a greater risk of negative health consequences including illness and injury (Kim

et al., 2018). However, few studies have assessed psychological predictors of injury in

conjunction with a marker such as HRV and examining the link between these variables

will provide greater insight into the injury process. There are, however, several

methodological factors that need to be considered when designing a study measuring HRV.

Measurement issues. As outlined above, a range of different techniques have been

developed for both the recording and analysis of HRV data (Quintana et al., 2016). In an

attempt to standardise measurement techniques across different studies, Malik et al. (1996)

published a set of recommendations to guide HRV research however inconsistencies in the

standards of HRV measurements and reporting remain (Kim et al., 2018). One criticism of

Malik et al.’s (1996) guidelines is that they are now over two decades old, and do not reflect

the advances in technology that make the measurement of HRV available to a wide variety

of researchers with different backgrounds (Quintana et al., 2016). Consequently, authors

from psychiatry (Quintana et al., 2016) and psychophysiology (Laborde et al., 2017) have

recently provided guidelines for their specific fields of research to advance both the

interpretation and reproducibility of HRV research. The recommendations from Quintana

et al. (2016) and Laborde et al. (2017) were relevant to the current study given the

measurement of psychological characteristics in combination with markers of training

related stress. Therefore, the recommendations from Malik et al. (1996), Quintana et al.

(2016) and Laborde et al. (2017) were used to guide the collection and analysis of HRV in

the current study.

HRV indices. Although the HF band has been established as a suitable marker of vagal

tone, recording and calculating HF power presents several additional problems compared to

using time-domain methods (Esco, Williford, Flatt, Freeborn, & Nakamura, 2018). For

example, respiration rate has been shown to greatly influence the HF component of the

inter-beat interval signal, and the HF band only reflects vagal tone when respiration rate is

above nine and below 24 cycles per minute (Berntson et al., 1997). Athletes who have

respiration rates near 9 BPM are at the lower end of the HF spectrum (0.15Hz) and

inconsistencies in HF results have been reported in athletes with breathing rates near 9
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BPM (Saboul, Pialoux, & Hautier, 2014). Furthermore, in a repeated measures study

design, breathing rate would need to be similar across all measurement occasions to allow

comparison across multiple time points. In the current study, assessment of breathing rate

would have added additional time to the data collection process potentially reducing

participant retention. Additionally, the calculation of HF requires complex algorithms that

can be greatly influenced both by the number of artefacts in, and the cleaning process used

for, the IBI data (Quintana et al., 2016).

In contrast to HF, time domain measures such as RMSSD are less affected by breathing

rate and provide a more stable measure of HRV under spontaneous breathing conditions

across repeated measurements (Hill, Siebenbrock, Sollers III, & Thayer, 2009).

Furthermore, time domain methods require less sophisticated calculations, and artefacts in

the IBI recording can be removed proportionally (Quintana et al., 2016). Given that

time-domain measures such as RMSSD are highly correlated with HF measurements

(Laborde et al., 2017), and that calculation of time-domain indices minimise the potential

issues with frequency-domain calculations (Quintana et al., 2016), the current research

used RMSSD to quantify HRV (Munoz et al., 2015).

Equipment. Electrocardiogram (ECG) traces are the recommended gold standard for

recording the IBI needed to calculate HRV (Malik et al., 1996). However, access to ECG

recording equipment may be limited due to the high cost and high level of expertise needed

to operate the equipment. Consequently, several alternative methods for recording IBI data

have been developed. The recent popularity of HRV in sports science has been largely

driven by advances in technology that have provided athletes, coaches and researchers with

affordable, robust and reliable means of recording inter-beat interval data in the form of

heart rate monitors (HRMs) with wireless chest strap electrodes (Giles, Draper, & Neil,

2016). HRMs have an advantage over traditional methods of assessing HRV due to the

portability and relatively lower cost in comparison with ECG equipment meaning HRV can

be collected in a variety of different settings. One such device that has been validated in

the literature is the PolarV800 (Polar OY, Finland). IBI data collected using PolarV800

has been found to be highly comparable to data obtained from ECG recordings (Giles et
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al., 2016). In addition, HRV parameters calculated from inter-beat interval and ECG data

have shown a strong correlation (r = 0.99) under spontaneous breathing conditions (Plews

et al., 2017). Based on this information, a PolarV800 was used in the current study to

collect IBI data.

Recording duration. The length of recording necessary to establish reliable indices of

HRV has been widely addressed in the literature (Berntson et al., 1997; Malik et al., 1996).

A minimum of 5 min is recommended for short-term recordings to ensure comparability of

results across studies (Malik et al., 1996). However, research has shown durations as short

as 60 s have good reliability compared to 5 min recordings (Esco & Flatt, 2014). Munoz et

al. (2015) found it was unnecessary to use recordings longer than 120 s to obtain accurate

time-domain measurements of both SDNN and RMSSD. Short duration recordings are

particularly desirable in an applied sport setting as they place minimal burden on the

participant and can be collected under standardised conditions (Munoz et al., 2015).

Despite the evidence of reliable short term HRV recordings, Laborde et al. (2017)

recommended that researchers use the standard 5 min recording period where possible to

allow comparison with clinical studies. Therefore, in-line with the recommendations of

both Malik et al. (1996) and Laborde et al. (2017), 5 min recordings were used in the

current study.

Confounding variables. Several factors have been reported to influence the results of

IBI recordings including; age, gender, habitual levels of alcohol consumption and

cardioactive medication (Laborde et al., 2017). In addition, transient variables prior to the

data collection need to be considered (Laborde et al., 2017; Quintana et al., 2016). For

example, the amount of intense physical training 24-hours before the recording, caffeine

and food consumption in the 2-hours prior to the collection and alcohol consumption

24-hours prior to collection can all influence HRV recordings. To control for potential

confounding variables in the current study, the lead researcher communicated with

participants to establish the most suitable time to collect data. For example, data

collections were scheduled on days following a day of rest and before any physical activity

on the day of testing. The day of the week and time of day were recorded for each
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participant and subsequent data collections were scheduled at similar times to maintain

consistency across time points.

Methods to calculate HRV indices. There are a several software packages available

that can be used to calculate HRV indices. For example, Kubios HRV (Tarvainen,

Niskanen, Lipponen, Ranta-aho, & Karjalainen, 2014) is a widely used software package

capable of calculating commonly cited HRV indices in both the time and frequency

domain, such as RMSSD and HF band. Kubios HRV software is not open source, meaning

it is impossible to ascertain exactly how each parameter is calculated. Replication of

results in HRV studies by other researchers can therefore be difficult when the Kubios HRV

software is used to calculate HRV indices.

In contrast to Kubios HRV, R (R Core Team, 2019a) is a freely available, open source

programming language where users can create packages that can be used for a wide range

of data analysis tasks. The RHRV package (García Martínez et al., 2017) provides a

comprehensive set of functions to calculate many of the widely used HRV indices in both

the time and frequency domain. In addition, the R language allows the user to define

functions that can loop over many data files with ease. Given the flexibility provided by

the R language and RHRV package, a custom script (Appendix C) was written by the

author to enable fast computation of IBI files, minimising the potential for user error.

Muscle stiffness

Musculoskeletal characteristics such as tone, and mechanical properties including stiffness

and elasticity have been identified as important factors for sports performance (Lee et al.,

2017). Objective measurement of these characteristics can greatly enhance the ability to

detect abnormal changes in the muscle that commonly precede muscular injury (Mullix,

Warner, & Stokes, 2012). Indeed, the link between muscle stiffness and injury was

proposed as a possible mechanism for injury in Williams and Andersen’s (1998) model,

with a heightened stress response predicted to result in increased physiological activation

causing increased muscle stiffness. The increased stiffness was proposed to cause decreased

flexibility and reduced motor coordination, potentially increasing the risk of athletic injury
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(Williams & Andersen, 1998). However, few studies have provided evidence for the

relationship between acute changes in muscle stiffness as a result of the stress response in

relation to athletic injury.

In their extension to Williams and Andersen’s (1998) model, Appaneal and Perna (2014)

suggested that athletic injury was the result of the synergistic action between psychological

stressors and training related stress from high intensity exercise. Muscle stiffness is often

increased in response to high intensity exercise as a result of eccentric muscle contractions

that occur in a variety of movements (Hedayatpour & Falla, 2015). When an athlete is

exposed to prolonged periods of high intensity training cellular changes within the muscle

structure can cause increased muscle stiffness in the resting muscle (Hedayatpour & Falla,

2015). Therefore, measurement of muscle stiffness provides a marker of training related

stress that may precede injury occurrence.

Traditionally, clinical assessment of muscle stiffness has been quantified with subjective

measurement scales. For example, the Modified Ashworth Scale (MAS) is a six-category

ordinal scale used to assess the resistance encountered during passive muscle stretching

performed by a trained physical therapist; however, the reliability of the MAS has been

found to be poor, and more objective methods of quantifying muscle tension are preferred

(Craven & Morris, 2010). In contrast to the MAS, shear wave elastography (SWE) is an

objective technique to measure muscle properties such as stiffness and is considered the

current gold standard in objective assessment of skeletal muscle (Kelly et al., 2018). SWE

uses focused ultrasound radiation forces to generate a wave that travels horizontally though

the tissue to the point of application to estimate properties of the tissue (Gennisson et al.,

2010), and has been found to be highly reliable across several muscle groups (Lacourpaille,

Hug, Bouillard, Hogrel, & Nordez, 2012). However, researchers have limited access to SWE

due to the high cost per unit and specialist expertise needed to use the equipment.

Recently Kelly et al. (2018) reported a significant correlation between SWE measures of

stiffness and a novel handheld device (MyotonPRO, Myoton AS, Tallinn, Estonia) capable

of measuring skeletal muscle properties. The relative cost of the MyotonPRO is

significantly lower than SWE and may offer a suitable alternative for assessing skeletal
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muscle characteristics. Unlike SWE, which uses ultrasound to estimate properties in the

muscle tissue, the MyotonPRO generates an oscillation in soft tissues by exerting a brief

mechanical tap on the surface of the skin. The oscillation is recorded by a three-axis digital

accelerometer in the device, and several skeletal muscle characteristics are calculated

simultaneously by the device using the oscillation signal including; natural oscillation

frequency (Hz) characterising muscle tone, logarithmic decrement of natural oscillation

frequency (D) characterising muscle elasticity, dynamic stiffness (N/m) creep and

mechanical stress relaxation time (ms). The reliability of the MyotonPRO has been well

established within the literature, with studies reporting good to excellent inter-rater

(Agyapong-Badu et al., 2013), intra-rater (Aird, Samuel, & Stokes, 2012) and between day

reliability (Agyapong-Badu, Warner, Samuel, & Stokes, 2016). Consequently, the

MyotonPRO has been used as a tool to examine skeletal muscle properties in both clinical

and applied settings.

In a clinical setting, the MyotonPRO has been used to distinguish between participants

with symptomatic and asymptomatic Achilles tendons (Morgan, Martin, Williams, Pearce,

& Morris, 2018), to identify changes in stiffness and elasticity levels in shoulder muscles

following treatment for chronic shoulder pain (Gordon, Andrasik, Schleip, Birbaumer, &

Rea, 2016) and quantify musculoskeletal characteristics in stroke patients (Chuang et al.,

2013; Chuang, Wu, & Lin, 2012). In the sports science literature, the MyotonPRO has

often been used alongside markers of dynamic stiffness (e.g., vertical hopping, Pruyn,

Watsford, & Murphy, 2014) to investigate the relationship between stiffness and athletic

performance (Kalkhoven & Watsford, 2017; Pruyn, Watsford, & Murphy, 2015).

Considerably fewer studies have used the MyotonPRO to examine the relationship between

muscle properties and athletic injury. One study that did examine this relationship was

conducted by Pickering-Rodriguez et al. (2017), who measured stiffness at four sites on the

lower body (lateral gastrocnemius [LG], medial gastrocnemius [MG], soleus [SOL] and

Achilles aponeurosis [ACH]) in a group of 29 netballers. Injury occurrence was monitored

prospectively over one season, and a total of 12 injuries sustained by 10 players were

recorded. Pickering-Rodriguez et al. (2017) reported that injured players had increased

SOL (p = 0.037) and ACH (p = 0.004) stiffness compared to healthy players, thus
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providing evidence of a relationship between increased muscle stiffness as measured by the

MyotonPRO and athletic injury. However, the study was limited by a small sample size

and is not generalisable to a wider sporting populating given that all the participants were

female netball players. The present research aimed to address this limitation and examine

the relationship between muscle characteristics such as stiffness in a large group of

participants from a variety of different sports and ability levels. Given the findings from

Pickering-Rodriguez et al. (2017) and the established reliability and validity of the device,

the MyotonPRO was used in the current research to quantify musculoskeletal properties as

markers of stress including tone, stiffness and elasticity.

Pilot study. Due to the repeated measures design of the current research, a reliable

method of determining the testing sites was necessary to allow for measurements to be

compared across different time points in the study. One commonly used method for

identifying testing sites involves finding the midpoint of the muscle by measuring the

distance between two anatomical landmarks (Bailey, Dinesh, Warner, Stokes, & Samuel,

2013). For example, to identify the belly of the biceps brachii Bailey et al. (2013)

measured the halfway point between the anterior aspect of the lateral tip of the acromion

and the medial border of the cubital fossa. However, a limitation of this technique is that

anatomical landmark locations can vary in different people depending on body type and

size. The resulting measurement may be invalid due to incorrect identification of the

muscle belly. In comparison, Chuang et al. (2013) used a visual-placatory technique, which

included visually identifying and palpating the target muscle belly. The visual-palpatory

technique allows for a degree of clinical interpretation of the testing location and can be

used for a range of different body types. Therefore, the visual-palpatory technique was

chosen to accommodate a range of body types in participants from different sports and

genders in the current research, however, the consistency of the technique on repeated

trials needed to be established.

A pilot study was conducted to determine the consistency with which the visual-palpatory

technique could be applied to identify different testing sites over repeated trials. The trial

had the following aims: (a) quantify the difference between testing locations identified
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using repeated application of the visual-palpatory technique; and (b) test for statistical

differences in the measures obtained using the MyotonPRO at the sites identified using the

repeated application of the visual-palpatory technique.

Participants. Five sports students (male, n = 3 female, n = 2, age = 25.6 ± 1.8, mass

= 74.4 ± 11.1, height = 177.8 ± 12.7) from a British University were recruited to take part

in the study. All participants were members of the university athletics team and were

injury free at the time of data collection.

Site identification. Four testing sites including the muscle belly of the rectus femoris

(RF), bicep femoris (BF), medial gastrocnemius (MG) lateral gastrocnemius (LG) on both

the left and right legs were chosen as testing locations. These sites had been used in

previous literature and represent the major muscle groups in the lower extremities (Pruyn

et al., 2015). A visual-palpatory technique similar to that described by Chuang et al.

(2013) and based on the SENIAM guidelines (Hermens, Freriks, Disselhorst-Klug, & Rau,

2000) was used to identify the testing locations. The technique involved a combination of

the participant performing a contraction of the target muscle, visual inspection of the

target muscle and palpation of the muscle belly. The contraction helped to visually identify

the muscle, and palpation helped identify the bulk of the muscle.

The testing sites were identified in the following order; left and right RF, left and right BF,

left MG and LG, right MG and LG. All sites were initially marked with an ultraviolet pen

(UVP; Invisible ink pen, MainStreet Unlimited, Michigan), that was invisible to the tester

until a UV light was used to illuminate the area. After a period of 10 min, the process of

identifying the sites was repeated with a surgical marker pen (SMP). Once all sites had

been marked twice, once with the UVP and once with the SMP, images were taken of each

site. A tape measure was included in each image to provide a reference point for the

measurement between each point (Figure 4).
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Figure 4 . Testing sites identified with repeated application of the visual-palpatory technique.
SMP = black mark, UVP = pink mark. Left to Right; RF, BF, MG, LG.

Images were uploaded to a computer and the distance between the UVP and SMP

locations was measured digitally using a Java based image processing app (ImageJ,

Laboratory for Optical and Computational Instrumentation, University of Wisconsin).

First, the scale was set by drawing a line that was equivalent to 10mm against the

measuring tape in each image. A line was then drawn linearly between the centre of the

two marked sites. The software calculated the length of the calibrated line between the two

marks and was saved for further analysis (Figure 5).

Figure 5 . Screenshot of the measurement process using the ImageJ software.
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Myoton measurement. Two sets of measurements were recorded using the

MyotonPRO. The first set included all the sites marked with the UVP, and the second set

included all sites marked with the SMP. At each site, the MyotonPRO delivered a

mechanical impulse of 0.4N for a period of 15 ms under a constant pre-load (0.18N) of the

subcutaneous tissue layer above the muscle that was being measured. The device end (d =

3mm) was positioned on the marked location and held perpendicular to the surface of the

skin. After each mechanical impulse, the oscillations of the tissue deformation were

recorded by the accelerometer in the device. The device was set to multi-scan mode and

five consecutive measurements separated by a one second interval were taken at each site

with the median of the five measurements saved for further analysis (Morgan et al., 2018).

The device automatically calculated the coefficient of variation (CV) for each set of five

measurements, and a measurement set was repeated if the CV was greater 3% as

recommended by the MyotonPRO user guidelines (myoton.com).
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Figure 6 . Left: MyotonPRO being applied to soft tissue. Right: Waveforms recorded by the
device following mechanical impulse illustrating the relative displacement (S; mm), velocity
(V; m/s) and acceleration (a; mG) of the soft tissue oscillation. a0 : Maximum acceleration;
tmi: End of mechanical impulse; a1: Maximum acceleration representing the maximum
displacement of the tissue i.e. maximum tissue resistance (mG); a2: Maximum acceleration
at the point of opposite displacement due to residual inertia of the tissue oscillation; a3:
Maximum acceleration of the second period of oscillation–occurs due to recuperation of
stored residual mechanical energy in the tissue. Adapted from Bailey et al. (2013)

The following musculoskeletal characteristics were calculated from the acceleration signal.

F: Oscillation frequency [Hz]

Oscillation frequency indicates the tone of a muscle and is defined as the maximum

frequency (F = fmax) computed from the signal spectrum by Fast Fourier Transform

(FFT).

S: Dynamic stiffness (N ·m−1)

Dynamic stiffness (N ·m−1) is defined as the ability of the tissue to resist a force that

modifies its shape.

S = mprobe

(
αmax

∆l

)
(1)
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Where mprobe is the mass of the testing end of the MyotonPRO (kg), αmax is the maximum

acceleration of the oscillation (m · s−2), and ∆l is deformation depth of the muscle tissue.

D: Logarithmic decrement

The logarithmic decrement of the oscillation indicates the elasticity of the muscle.

Elasticity is defined as the tissues ability to restore its shape after being deformed.

Elasticity (logarithmic decrement) is expressed in arbitrary units as:

D = ln
{
a1

a3

}
(2)

Where ln is the natural logarithm, amax is the maximal amplitude of oscillation and a1 is

the oscillation amplitude. Differences between the identified sites were examined with

descriptive statistics (range, mean and standard deviation). The BEST package (Kruschke,

2013) in R (R Core Team, 2019a) was used to perform Bayesian paired-sample t-tests to

compare the difference in means between set one and set two for each characteristic and

location.

Results. Differences between the measurement locations identified using the

visual-palpatory technique are presented in Table 2. The BF site had the largest measured

differences at 17 mm and 19 mm for the left and right legs respectively. The right MG had

the smallest error of 5.8 mm. Figure 7 provides a visual representation of the results from

the Bayesian paired sample test. The difference between the SMP and UVP measurements

for all parameters and locations were close to 0 (0.05 ± 0.58), and the probability that

differences where less than or greater than zero were 0.40 ± 0.22 and 0.60 ± 0.22

respectively.
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Table 2
Difference (mm) between identified measurement locations using
the visual-palpatory technique.

Left side Right side

Location Min Mix M SD Min Max M SD

RF 6.0 11.0 9.20 1.90 1.0 13.0 6.20 4.60
BF 5.0 17.0 8.80 4.46 3.0 19.0 11.20 5.80
MG 6.0 9.0 7.40 1.40 2.0 9.0 5.80 2.40
LG 5.0 12.0 8.20 2.65 2.0 16.0 8.40 5.14

Note. RF = rectus femoris, BF = biceps femoris, MG = medial
gastrocnemius, LG = lateral gastrocnemius

[−0.02, 0.13]

[−0.03, 0.05]

[−0.03, 0.04]

[−0.04, 0.06]

[−0.31, 0.16]

[−0.35, 0.22]

[−0.22, 0.29]

[0.01, 0.28]

[−7.19, 9.20]

[−12.24, 9.44]

[−4.12, 5.40]

[−6.40, 7.69]

Decrement Frequency Stiffness

−0.1 0.0 0.1 0.2 −0.25 0.00 0.25 0.50 −10 −5 0 5 10 15

LG

MG

BF

RF

Difference between means

Figure 7 . Mean difference (95% CI) between measurements taken at sites identified with
the UV and Surgical marker pen. Vertical dashed line indicates no difference between the
means.
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Summary. The pilot study confirmed the use of the visual-palpatory technique as a

reliable method to identify testing locations. The results showed the error between testing

sites identified using the visual-palpatory technique did not result in differences between

the measurement sets (probability of the difference between means 6= 0 < 1). Therefore,

the visual-palpatory technique was used to identify testing locations across all time points

in the current study.

Balance

The ability to maintain an upright posture depends on the complex interaction between

vestibular, somatosensory and visual systems in the body (Paillard & Noé, 2015).

Maintaining postural stability is necessary to accomplish movement and motor tasks that

require the displacement of body segments or the entire body (Brachman et al., 2017) and

is therefore an important factor for all sports, which often require rapid body displacement

to achieve sport specific tasks (Hahn, Foldspang, Vestergaard, & Ingemann-Hansen, 1999).

Given the importance of postural stability for movement, improved postural stability is

often the goal of athletic training programmes (Hrysomallis, 2011). Elite athletes often

exhibit superior postural stability compared to their less proficient counterparts (Paillard

et al., 2006; Sell, Tsai, Smoliga, Myers, & Lephart, 2007), and balance training has been

found to improve vertical jump, agility and shuttle run performance in athletes (Kean,

Behm, & Young, 2006; Yaggie & Campbell, 2006). In contrast, impaired postural stability

has been identified as a predictor of lower extremity injury (McGuine, Greene, Best, &

Leverson, 2000; Romero-Franco et al., 2014; Trojian & McKeag, 2006; Tropp, Ekstrand, &

Gillquist, 1984; Wang, Chen, Shiang, Jan, & Lin, 2006). In addition, both fatigue

(Salavati, Moghadam, Ebrahimi, & Arab, 2007), and perceived psychological stress (Coco

et al., 2015; Doumas, Morsanyi, & Young, 2018), have been found to have a negative

impact upon postural stability, potentially exacerbating the risk of injury. Assessment of

postural stability may therefore provide an important marker of the synergistic action of

both training related, and psychological sources of stress experienced by athletes that

contributed to increased risk of injury (Appaneal & Perna, 2014).



48

Several methods have been described in the literature for assessing postural stability. In a

clinical setting, the use of force platforms to measure changes in centre of pressure (COP)

displacement is considered the gold standard for postural stability assessment (Paillard &

Noé, 2015). In the sports injury literature, Dingenen et al. (2016) reported increased COP

displacement during a double to single leg transition task predicted subsequent non-contact

lower extremity injury in a group of 50 female athletes. For the transition task (TT),

participants transitioned from a double leg stance to a single leg stance, with each stance

being held for 13 seconds and eyes closed throughout. Increased COP displacement in the

first three seconds following the transition from double to single leg stance was found to

predict non-contact lower extremity injury (Dingenen et al., 2016). The TT outlined by

Dingenen et al. (2016) therefore provides a suitable measure of postural stability for the

proposed study; however, the protocol may be too time consuming to complete with a large

sample of participants.

In contrast to quantitative force plate measures, several qualitative techniques have been

developed to provide a simple means of assessing postural stability. The Balance Error

Scoring System (BESS) is one such measure that has been widely used in the sports injury

literature (Bell, Guskiewicz, Clark, & Padua, 2011). The BESS protocol contains three

stance positions; double-leg stance (hands on the hips and feet together), single-leg stance

(standing on the non-dominant leg with hands on hips), and a tandem stance

(non-dominant foot behind the dominant foot) in a heel-to-toe fashion completed on both

a firm and foam surface. Each stance is held for 30s with no visual input (eyes closed) and

errors observed in maintaining the stance position are recorded by the tester. Errors are

defined as: (a) lifting hands off iliac crests; (b) opening eyes; (c) stepping, stumbling, or

falling; (d) moving the thigh into more than 30 degrees of flexion or abduction; (e) lifting

the forefoot or heel; and (f) remaining out of the testing position for more than five seconds

(Riemann, Guskiewicz, & Shields, 1999). At the end of the test, the errors are summed

together to give a total score. The BESS has demonstrated the ability to distinguish

between injured and non-injured athletes (Riemann et al., 1999), and participants with and

without functional ankle instability (Ross, Linens, Wright, & Arnold, 2011). Therefore, the

BESS provides an alternative to the single leg transition task outlined by Dingenen et al.
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(2016) for assessing postural stability in a large sample of participants.

Pilot study. To determine which method was most appropriate for the proposed study,

both the single leg TT and BESS were trialed. A group of 10 sports students (males = 8,

females = 2, age = 22.9 ± 4.2, height = 172.9 ± 6.0, mass = 71.3 ± 9.5) who were injury

free at the time of the test were recruited to take part in the trial. All participants first

completed the single leg transition task outlined by Dingenen et al. (2016), followed by the

BESS protocol (Riemann et al., 1999). The time taken to complete each trial for both

methods, and the total time to complete each method with all 10 participants was recorded.

Table 3 shows the mean (±SD) and total time (minutes) taken to complete each test.

Table 3
Mean, SD and total time taken for
the BESS and TT.

Method M SD Time (Min)

BESS 3.85 0.49 38
TT 8.45 1.04 85

Note. BESS = Balance error scoring
system; TT = Transition task.

The trial revealed several difficulties with using the TT compared to the BESS. Several

participants found the TT protocol challenging, and trials had to be repeated when

participants failed to complete the transition task successfully. The repetition of failed

trials added a considerable amount of time to the protocol. Approximately 90 min were

needed to record data for all 10 participants, which was longer than the desired data

collection protocol of 60 min for all measures in the current study. In contrast, participants

found the BESS protocol simple and the testing was completed within the target 60 min.

However, participants found the double leg stance on both firm and foam surfaces simple,

ultimately contributing no errors to the total error score. In a previous study, Hunt,

Ferrara, Bornstein, and Baumgartner (2009) examined the contribution of each of the

stances used in the BESS and found the double leg stance contributed only 0.17% of the

variance within the test. Furthermore, the test-retest reliability of the BESS increased from
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0.67 to 0.71 when the double leg stance was removed (Hunt et al., 2009). Based on the

findings from the pilot study and those of Hunt et al., (2009) the double leg stance was

removed for the proposed research. In addition, a limitation of the original protocol was

that only one single leg stance on the non-dominant leg was examined. Injuries may occur

unilaterally on either limb, and athletes may have impaired postural stability on either the

dominant or non-dominant side. Indeed, postural stability assessment of both limbs would

enable a comparison between dominant and non-dominant legs and asymmetries between

the limbs. Particularly pertinent to the current research, asymmetry between limbs has

previously been found to predict non-contact injury in athletes (Smith, Chimera, &

Warren, 2015). Therefore, an additional single leg stance on the dominant leg was included

in the BESS protocol for the current research.

In summary, the BESS protocol used in the current research modified the original protocol

in two ways. 1) The double leg stance was removed based on the findings from the pilot

study and the recommendations from Hunt et al. (2009). 2) A second single leg stance on

the dominant leg was included to enable comparison between limbs as asymmetry in

balance performance has previously been associated with lower leg injuries (Smith et al.,

2015). All scoring of the modified BESS protocol (mBESS) used in the current research

was in accordance with the original protocol.

Hormonal response to training

The measurement of salivary free cortisol has been widely used as a biomarker of the stress

response in a variety of psychological investigations (e.g., Anderson & Wideman, 2017;

Pulopulos, Vanderhasselt, & De Raedt, 2018), and is commonly used to monitor athletes’

response to training due to its non-invasive nature. Cortisol is released from the adrenal

gland when the hypothalamic-pituitary adrenal-axis (HPA) is activated in response to an

environmental or psycho-social challenge (Tsigos & Chrousos, 2002). The main role of

cortisol in response to exercise is to increase the availability of substrates for metabolism,

both during exercise and into recovery (Anderson & Wideman, 2017). However, in addition

to high intensity exercise, cortisol is also released in response to psychological stress such as
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to major life events and the attendant emotional distress that follows (Pulopulos et al.,

2018; Roos, Levens, & Bennett, 2018). In both high intensity training and exposure to

psychological stress, the degree to which the cortisol response is activated is dependent on

an individual’s appraisal of the severity, and their perceived capacity to cope with the

situation (McEwen, 2007). Therefore, the combined reaction of exposure to psychological

stress and high intensity training, as proposed by the BMSAIH model, may lead to

increased levels of cortisol. Specifically, the BMSAIH predicts that an athlete who performs

high intensity training and perceives high intensity training and life events as severe

stressors, will have prolonged emotional reactivity and a concomitant exacerbated cortisol

response (Appaneal & Perna, 2014). A heightened cortisol response has been proposed to

have several negative effects, for example, elevated evening cortisol has been associated

with a suppressed immune system, poor sleep and reduced growth hormone release, all of

which can inhibit recovery following intense exercise and increase the risk of athletic injury

(Brownlee, Moore, & Hackney, 2005; McEwen, 2008; O’Donnell, Bird, Jacobson, & Driller,

2018).

Despite the promising theoretical foundations for a relationship between cortisol and sports

injury, literature supporting the relationship remains inconclusive. Perna and McDowell

(1995) provided promising evidence in a study that examined life event stress and cortisol

response in athletes following an exhaustive graded exercise test. Participants were split

into high and low life event stress (LES) groups, and the high LES group were found to

have both higher cortisol in response to the graded exercise test, and increased

symptomatology (e.g., muscle complaints and viral illness) over the subsequent 30 days

following the graded exercise test. The study by Perna and McDowell (1995) did not,

however, explicitly examine the relationship between cortisol response to high intensity

training and sports injury. Other literature that has examined the role of cortisol in high

intensity training has focused on the relationship between cortisol and sports performance

(Anderson, Lane, & Hackney, 2016; Cormack, Newton, McGuigan, & Cormie, 2008; Rowell

et al., 2018; Siart, Nimmerichter, Vidotto, & Wallner, 2017; Strahorn, Serpell, McKune, &

Pumpa, 2017). For example, Rowell et al. (2018) used testosterone and cortisol

concentrations as markers of training load and match performance in a group of 23 football
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players. High intensity training was found to increase the concentration of both

testosterone and cortisol, however no relationship between testosterone and cortisol

concentration and match performance was found. Furthermore, the degree of increase in

cortisol was dependent on the playing position, indicating an individualised cortisol

response to training. In a similar study, Siart et al. (2017) examined concentrations of

cortisol and testosterone in relation to performance in 19 track and field athletes competing

at the 2016 European Games. Performance was negatively correlated with testosterone and

cortisol (p = 0.08, r = -0.49), however the relationship between cortisol and performance

was only evident after the three least competitive athletes were removed from the analysis

(Siart et al., 2017). While these studies have highlighted the link between training and

cortisol, there is a need to establish whether there is also an relationship between cortisol

and athletic injury. Such an relationship will provide support for the BMSAIH model and

strengthen the argument for cortisol acting as a potential mediating pathway in the

relationship between stress and injury.

Collection of saliva. Several approaches to assessing the concentration of cortisol exist

within the literature. Salivary cortisol is often preferred over other forms such as serum

cortisol obtained from blood samples and urinary cortisol due to the relative ease with

which it can be collected. Furthermore, Gozansky, Lynn, Laudenslager, and Kohrt (2005)

reported that more physiologically relevant data were obtained from salivary cortisol

compared to total serum cortisol when measuring dynamic hypothalamic-pituitary-adrenal

activity. Salivary cortisol is also preferred over hair cortisol which is more suited to

measuring chronic levels of cortisol, as opposed to an acute cortisol response following

intense exercise (Gerber et al., 2012). Two commonly used salivary techniques are passive

drool and oral swab (Gröschl, Read, Hughes, & Riad-Fahmy, 2008). The passive drool

technique requires participants to provide approximately 2 ml of saliva through a straw

into a collection tube. In comparison, the oral swab technique requires participants to

place a small piece of absorbent material (e.g., polyethylene or cotton) under their tongue

for a standardised time (typically 1-2 min). Both techniques provide a reliable means of

collection and each have their merits (Gröschl et al., 2008). For example, the oral swab

technique requires only minimal instruction and can increase participant compliance.
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However, swabs can interact with other analytes in the same sample and/or negatively

influence assay performance. In comparison, the passive drool technique requires greater

participant compliance and relies upon the participant to provide a sample of the necessary

quality and volume. However, samples obtained by passive drool are often of better quality

to those obtained from swab methods (Hashiguchi, Kaji, Kozaki, Tochihara, & Yasukouchi,

2009).

Pilot study. To determine the best approach for the current research, both the passive

drool and oral swab methods were trialed with a group of five participants. Saliva

collection aids and 4 ml cryovials (Salimetrics, USA) were used to obtain the passive drool

samples and SalivaBio oral swab (Salimetrics, USA) were used to collect oral swab samples

(Figure 8). Participants provided the passive drool sample followed by the oral swab

sample. Participants were read instructions provided by Salimetrics for each technique

prior to providing the sample. After both techniques had been completed, participants

were asked which technique they preferred. All participants reported that the passive drool

technique was easier and more comfortable compared to the oral swab technique. Given

the advantages the passive drool technique has been proposed to have over oral swab

collection, and based on the feedback from trial participants, passive drool was chosen as

the preferred technique to collect samples of saliva in the current study.

Figure 8 . Left: Oral swab being place in the mouth. Right: passive drool tube with collection
aid.
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Summary

The purpose of this chapter was to provide a rationale for the inclusion of the specific

variables and the measures employed in the present research programme. Several suitable

measures were identified, and where appropriate, based on findings from the pilot studies,

minor modifications were made to make the measures appropriate for the intended sample

of study, and also allow for data to be collected in a reasonable amount of time. Where

possible, the reliability of the modified measures and techniques used was established. The

main modifications were; 1) Minor changes to the wording of items on the LESCA

questionnaire were made to improve the suitability for the intended sample (Table 1). 2) A

custom R script was developed to enable HRV parameters to be calculated in a

reproducible and time efficient way (Appendix C). 3) A visual-palpatory technique was

developed to enable testing locations to be identified reliably over repeated measurement

occasions. 4) An additional single leg stance on both firm and foam surfaces was included

in the BESS test to enable balance asymmetry to be calculated.
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Chapter 4:

Study 1
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Study 1: An interdisciplinary examination of stress-related markers and injury

occurrence in athletes.

Over the last four decades sport related injuries have received increased research attention

(Ivarsson et al., 2017). This attention is unsurprising given the high incidence (Rosa et al.,

2014; Sheu et al., 2016), and numerous undesirable physical and psychological effects of

sports injuries (Brewer, 2012; Leddy et al., 1994). In an attempt to address this and

mitigate against both the increasing incidence and undesirable consequences of injury,

research that has focused on identifying factors related to injury occurrence has identified

several psychological (Slimani et al., 2018), anatomical (Murphy, Connolly, & Beynnon,

2003), biomechanical (Hughes, 2014; Neely, 1998) and environmental (Meeuwisse et al.,

2007) factors associated with sports injury. Indeed, several models of injury causation have

been proposed that highlight the multifactorial nature of injury occurrence (Kumar, 2001;

Meeuwisse et al., 2007; Wiese-Bjornstal, 2009), of which one of the most widely cited and

influential models was developed by Williams and Anderson (Andersen & Williams, 1988;

Williams & Andersen, 1998).

Williams and Andersen’s (1998) model proposed that when faced with a potentially

stressful athletic situation, an athlete’s personality traits (e.g., hardiness, locus of control,

sense of coherence, competitive trait anxiety, achievement motivation and sensation

seeking), history of stressors (e.g., daily hassles, major life events, previous injuries) and

coping resources (e.g., general coping behaviours, social support, psychological skills) will

contribute to their response, either interactively or in isolation. Central to the model is the

stress response, which reflects the bi-directional relationship between athletes’ appraisal of,

and response to, a stressful athletic situation. The model predicts that athletes who have a

history of many stressors, personality traits that intensify the stress response and few

coping resources to deal with the situation, will exhibit greater attentional (e.g., peripheral

narrowing) and/or physiological (e.g., increased muscle tension) responses that put these

individuals at greater risk of injury.

Within Williams and Andersen’s (1998) model, although the stress response is the

mechanism through which injuries are thought to occur, personality traits, history of
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stressors and coping resources have received the most research attention (Johnson et al.,

2014). Of these variables the major life events component of an athlete’s history of

stressors appears to most consistently predict injury occurrence (Williams & Andersen,

2007). Specifically, major life events with a negative, as opposed to positive, valence have

been found to be most related to injury occurrence (Maddison & Prapavessis, 2005; Passer

& Seese, 1983). However, personality traits and coping resources have also been found to

predict injury, with athletes more likely to sustain an injury if they have low social

support, low psychological coping skills, high trait anxiety and elevated competitive state

anxiety; compared to athletes with the opposite profile (Ivarsson & Johnson, 2010; Lavallée

& Flint, 1996; Smith, Smoll, & Ptacek, 1990). The evidence for a relationship between

other personality traits and injury has been less conclusive, with some research finding no

support or even contradictory results (Junge, 2000). Furthermore, the amount of variance

explained by the psychosocial factors proposed by the model has been modest, typically

between 5 - 30% (Galambos et al., 2005; Ivarsson & Johnson, 2010); suggesting other

factors are also likely to contribute to injury occurrence.

Although the majority of injury prediction research has examined the effect of the

psychosocial factors in Williams and Andersen’s (1998) model, other research has

attempted to examine the mechanisms through which these factors are proposed to exert

their effect. To elaborate, the model suggests that injuries are likely to occur through

either increased physiological arousal resulting in increased muscle tension and reduced

flexibility or attentional deficits caused by increased distractibility and peripheral

narrowing. However, to date, the research exploring the mechanisms has largely focused on

attentional deficits (Andersen & Williams, 1999; Rogers & Landers, 2005; Swanik et al.,

2007; Wilkerson, 2012). For example, Andersen and Williams (1999) measured peripheral

and central vision during high and low stress conditions and found athletes with high life

event stress coupled with low social support had greater peripheral narrowing under

stressful conditions compared to athletes with the opposite profile; these athletes went on

to sustain an increased number of injuries during the following season. Rogers and Landers

(2005) supported Andersen and Williams’s (1999) earlier findings reporting that peripheral

narrowing under stress mediated 8.1% of the relationship between negative life events and



58

injury. However, few attempts have been made to explain the remaining variance between

negative life events and athletic injury through the other proposed mechanisms in Williams

and Andersen’s (1998) model, such as increased muscle tension and reduced motor control.

One possible reason for this is the multifactorial nature of injury and the possible

contribution of other non-psychological factors to the stress response (Meeuwisse et al.,

2007; Wiese-Bjornstal, 2009). For example, a large body of research indicates that

training-related stress is also likely to be related to the stress response and injury

occurrence (Djaoui et al., 2017; Lee et al., 2017), and may account for the unexplained

variance from the psychological predictors of injury. Considering these limitations,

Appaneal and Perna (2014) proposed the bio-psychosocial model of stress athletic injury

and health (BMSAIH) to serve as an extension to Williams and Andersen’s (1998) model.

To elaborate, the BMSAIH aimed to clarify the mediating pathways between the stress

response and injury, consider other health outcomes and behavioural factors that impact

sports participation, and integrate the impact of exercise training on athletes’ health

(Appaneal & Perna, 2014). The central tenet of the BMSAIH is that psychosocial distress

(e.g., negative life events) may act synergistically with training-related stress as a result of

high-intensity and high-volume sports training, and “widen the window of susceptibility”

(Appaneal & Perna, 2014, p. 74) to a range of undesirable health outcomes including

illness and injury. Consequently, the BMSAIH provides a framework for future research to

build upon research that supports the relationship between psychosocial factors and injury

occurrence proposed in Williams and Andersen’s (1998) model, by including other

physiological markers of training-related stress, which together may provide greater insight

into the injury process.

Although research supporting the BMSAIH has mainly focused on the relationship between

hormonal responses to training and injury occurrence (Perna, Antoni, Baum, Gordon, &

Schneiderman, 2003; Perna & McDowell, 1995; Perna, Schneiderman, & LaPerriere, 1997),

other research has identified other markers of training-related stress that are associated

with an increased risk of injury; for example, heart rate variability (Bellenger et al., 2016;

Williams et al., 2017), postural stability (Romero-Franco et al., 2014) and muscle stiffness
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(Pruyn et al., 2015). Unfortunately, these markers are often studied in isolation and

without an assessment of the psychosocial factors that are known to contribute to injury,

limiting our understanding of how psychosocially and physiologically derived stress may

contribute synergistically to injury occurrence. Recently, Bittencourt et al. (2016)

proposed that to better understand the multifactorial nature of sports injuries, research

needs to move away from studying risk factors in isolation and instead adopt a complex

systems approach to injury. Such an approach posits that injury may arise from a complex

“web of determinants” (Bittencourt et al., 2016, p. 3), where different factors interact in

unpredictable and unplanned ways, but result in a global outcome pattern of either

adaptation or injury. Complex systems approaches have been used in health care to model

the large number of risk factors associated with different types of diseases (Plsek &

Greenhalgh, 2001); however, very few studies have attempted to address sport injury

occurrence using such an approach (Hulme, Thompson, Nielsen, Read, & Salmon, 2018).

Despite offering a possible framework to build on the research stemming from Williams and

Andersen’s (1998) model, researchers have largely overlooked the potential to explore other

physiological stress-related markers proposed by the BMSAIH, in addition to the already

well-established psychological characteristics known to be related to injury (Appaneal &

Perna, 2014). Furthermore, research has typically only recorded one wave of measurements,

assuming that the time interval between measurement and actual injury occurrence does

not influence subsequent injuries (Johnson et al., 2014). Such an approach fails to capture

changes in both psychosocial factors and stress-related physiological markers that may

occur preceding an injury. Assessing how these variables change with respect to time is

essential if we are to understand what effect repeated exposure to major life events and

other stress-related factors, such as high intensity training, has on injury occurrence.

Viewed through the lens of a complex systems approach the interaction between

psychosocial sources of stress, stress-related physiological markers and injury occurrence

may provide new insight into the injury process. Therefore, the purpose of the current

study was to examine the relationship between psychosocial factors, physiological

stress-related markers and occurrence of injury in athletes. Furthermore, as these variables

are likely to change over time a repeated measures design was employed.
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Method

Participants. The participants were 351 athletes (male: n = 231, female: n = 120),

with an average age of (21.6 ± 6.3) years who represented a range of team (football, rugby,

netball, cricket, lacrosse, basketball and field hockey) and individual sports (athletics,

tennis, weightlifting, gymnastics, judo, swimming and golf) from a British university and

local sports clubs (see table 4 for full participant information). Participants self-rated

competitive level ranged from recreational to international standard. A total of 162

(46.15%) participants had sustained an injury in the 12 months prior to the start of the

study (male: n = 114 [49%], female; n = 48 [40%]). At the start of the study, all

participants were injury free (no modifications to their usual training routine due to a

sport related medical problem for a minimum of four weeks). Participants were engaged in

training for their respective sports for at least five hours per week. Ethical approval was

obtained from Cardiff Metropolitan University ethics committee prior to the start of the

study and all participants provided informed consent.

Table 4
Participant demographics.

Male (n = 231) Female (n = 120)

Demographics M (SD)
Age (yrs) 24.3 (10.0) 20.2 (1.7)
Height (cm) 167.0 (7.9) 177.9 (8.7)
Body mass (kg) 66.9 (10.5) 81.7 (14.8)
Hours per week training 7.7 (4.1) 10.6 (8.4)

Current competitive level n (%)
Recreational 6 (5) 10 (4)
University 78 (65) 188 (81)
National/International 36 (30) 33 (14)
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Measures.

Major life events (Appendix A). A modified version of the Life Events Survey for

Collegiate Athletes (LESCA) was used to measure participants history of life event stress

(Petrie, 1992). The LESCA comprises 69 items that reflect possible life events that

participants may have experienced. Example items include, “Major change in the

frequency (increased or decreased) of social activities due to participation in sport”, “Major

change in the amount (more or less) of academic activity (homework, class time, etc)” and

“Major change in level of athletic performance in actual competition (better or worse)”.

Participants were asked to rate the perceived impact of each life event they had

experienced within the last 12 months on an 8-point Likert scale anchored at -4

(extremely negative) and +4 (extremely positive). Negative and positive life event scores

were calculated by summing the negative and positive scores respectively. A score for total

life events was calculated by summing the absolute values for both negative and positive

events. Petrie (1992) reported test-retest reliabilities at 1-week and 8-weeks with values

ranging from 0.76 to 0.84 (p < .001) and 0.48 to 0.72 (p < .001) respectively. Petrie (1992)

also provided evidence of discriminant, convergent and predictive validity. The LESCA is

the most widely used measure of major life events for athletes in the sports injury

literature. For this study, reliability was assessed using composite reliability (Fornell &

Larcker, 1981), rather than the more widely used Cronbach’s alpha. Composite reliability

is preferred because it does not assume parallelity (i.e., all factor loadings are constrained

to be equal, and all error variances are constrained to be equal) and instead takes into

consideration the varying factor loadings of the items in the questionnaire. Composite

reliability for the LESCA was 0.84.

The Reinforcement Sensitivity Theory Personality Questionnaire (RST-PQ;

Appendix B). The RST-PQ was used to measure motivation, emotion, personality and

their relevance to psychopathology (Corr & Cooper, 2016). The revised version of the

RST-PQ presented in Chapter 2 comprises 51 statements that measure three major

systems: 1) Fight-Flight-Freeze System (FFFS; e.g., “I am the sort of person who easily

freezes-up when scared”), 2) Behavioural Inhibition System (BIS; e.g., “When trying to
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make a decision, I find myself constantly chewing it over”), and, 3) Behavioural Approach

System (BAS) factors; 1) Reward Interest (RI; e.g., “I regularly try new activities just to

see if I enjoy them”), 2) Goal Drive Persistence (GDP; e.g., “I am very persistent in

achieving my goals”), 3) Reward Reactivity (RR; e.g., “I get a special thrill when I am

praised for something I’ve done well”) and 4) Impulsivity (I; e.g., “I find myself doing

things on the spur of the moment”). Participants rated each item on a scale from 1

(not at all) to 4 (highly) to reflect how well each statement described their personality in

general. The responses to items associated with each subscale (FFFS, BIS, RI, GDP, RR

and I) were summed to give a total score that was subsequently used for further analysis.

The composite reliabilities for each subscale were; BIS = 0.92, FFFS = 0.77, GDP = 0.87,

I = 0.71, RI = 0.77, RR = 0.81.

Heart rate variability (HRV). A Polar V800 heart rate monitor (HRM) and Polar

H7 Bluetooth chest strap (Polar OY, Finland) was used to collect inter-beat interval (IBI)

data. IBI recordings using the Polar V800 are highly comparable (ICC = >0.99) with ECG

recordings (Giles et al., 2016), which are considered the gold standard for assessing HRV.

In addition, HRV indices calculated from IBI and ECG data have shown a strong

correlation (r = 0.99) in athletes (Caminal et al., 2018) and under spontaneous breathing

conditions (Plews et al., 2017).

Musculoskeletal properties. A handheld myometer (MyotonPRO, Myoton AS,

Tallinn, Estonia) was used to measure muscle stiffness. The MyotonPRO is a non-invasive,

handheld device that applies a mechanical impulse of 0.40N for 0.15ms perpendicular to

the surface of the skin. The impulse causes natural damped oscillations in the tissue, which

are recorded by a three-axis digital accelerometer sensor in the device. The raw oscillation

signal is then processed, and the stiffness parameter is calculated (Agyapong-Badu et al.,

2016). The MyotonPRO has previously been reported to be a reliable and valid tool for the

measurement of in-vivo tissue stiffness properties (Chuang et al., 2013; Nair, Dougherty,

Schaefer, Kelly, & Masi, 2014; Pruyn, Watsford, & Murphy, 2016), and has demonstrated

good internal consistency (coefficient of variation < 1.4%) over sets of 10 repetitions (Aird

et al., 2012).
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Postural stability. Postural stability was assessed with a modified version of the

balance error scoring system (mBESS) based on the protocol recommended by Hunt et al.

(2009). In total, each trial of the mBESS was performed without shoes (McCrory et al.,

2013) and included six stances in the following order; dominant leg (DL; standing on the

dominant foot with the non-dominant foot at approximately 30-degrees of hip flexion and

45-degrees of knee flexion), non-dominant leg (NDL; standing on the non-dominant foot

with the dominant foot at approximately 30-degrees of hip flexion and 45-degrees of knee

flexion) and tandem leg stance (TS; standing heel-to-toe with the non-dominant foot

behind the dominant) on firm and foam (Alcan airex AG, Sins, Switzerland) surfaces

respectively (Figure 9). To determine leg dominance, participants were asked their

preferred leg to kick a ball to a target, and the chosen limb was labelled as dominant

(cf. Cingel, Hoogeboom, Melick, Meddeler, & Nijhuis-van der Sanden, 2017). Participants

were asked to maintain each stance for a total of 20 seconds. Participants hands were

placed on hips at the level of the iliac crests. A Sony DSC-RX10 video camera (Sony

Europe Limited, Surrey, United Kingdom) was used to record each participants

performance during the mBESS.

The error identification criteria from the original BESS protocol was used by the lead

researcher who scored all the BESS trials. One error was recorded if any of the following

movements were observed during each trial: a) lifting hands off iliac crests; b) opening

eyes; c) stepping, stumbling, or falling; d) moving the thigh into more than 30 degrees of

flexion or abduction; e) lifting the forefoot or heel; and f) remaining out of the testing

position for more than five seconds (Riemann et al., 1999). A maximum score of 10 errors

was possible for each stance. Multiple errors occurring simultaneously were recorded as one

error. A participant was given the maximum score of 10 if they remained out of the stance

position for more than five seconds. To calculate limb asymmetry, the DL and NDL leg

score was calculated by summing the DL and NDL errors respectively. A total score was

calculated by summing the total number of errors recorded on all stances (DL, NLD and

TS, on foam and firm surfaces). To assess the intra-rater reliability, a single measurement,

absolute agreement, two-way mixed effects model for the intraclass correlation (ICC; Koo

& Li, 2016) was used on a sample of 40 participants from the first time point. The
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Figure 9 . mBESS positions (A-F). Top row, firm surface. Bottom row, foam surface. Left
column, dominant leg stance. Middle column, non-dominant leg stance. Right column,
Tandem leg stance.

test-retest scoring of BESS resulted in a “good” to “excellent” ICC score (ICC = 0.93, 95%

confidence interval = 0.88 - 0.96), indicating the scoring was reliable (Koo & Li, 2016).

Injury. Participants self-reported any injuries they sustained at each data collection

during the study period. An injury was defined as any sports related medical problem

causing the athlete to miss or modify their usual training routine. Minor scrapes and

bruises that may require certain modifications (e.g., strapping or taping) but did not limit
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continued participation were not considered injuries (cf. Appaneal, Levine, Perna, & Roh,

2009). Injury status (did / did not sustain an injury) served as the main outcome measure.

Procedure. At the start of the academic year (September 2016 and 2017), coaches of

sports teams at a British university and local sports clubs were contacted and informed

about the study. With the coaches’ permission, the lead researcher attended training

sessions to inform the athletes about the overall aim of the study and the requirements of

participation. To be eligible for the study athletes had to be injury free (no modifications

to their usual training routine due to a sport related medical problem for a minimum of

four weeks) and training a minimum of five hours per week. Athletes who met the criteria

and volunteered to take part in the study were invited to attend scheduled testing sessions.

A repeated measures prospective cohort design was used to assess athletes’ major life

events, stress-related physiological markers and injury status over a twelve-month period

between September 2016 and September 2018. Each participant was asked to attend a

total of four data collections during the twelve-month period, with each data collection

separated by a four-month interval (figure 10). Participants provided informed consent

before data collection commenced. A maximum of 12 participants were scheduled to attend

each data collection session, which lasted approximately one hour. Participants were asked

to avoid wearing any tight-fitting shorts or leggings to the data collection session.

Figure 10 . Study design. For each time point (T), each box contains the number of
participants who completed the data collection (n), the measures used for data collection
and the approximate date of the data collection.

All data were collected in a dedicated laboratory space at the university. For the first three

data collections (T1, T2 and T3), participants followed the same protocol in a specific

order (Figure 11). To ensure all measures could be collected within an hour, participants
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were separated into two groups. The first group completed all computer-based measures

followed by all physical measurements, whereas the second group completed all physical

measurements followed by computer-based measures. Participants were randomly assigned

to one of the two groups and remained in those groups across all time points.

Figure 11 . Outline of the protocol for each data collection.

Questionnaires. The questionnaires, which included demographic information, the

LESCA, RST-PQ (T1, T2, T3) and injury status (T2, T3, T4) were completed via an

on-line survey (SurveyMonkey Inc., USA, www.surveymonkey.com). The instructions for

the LESCA were modified at T2 and T3 and asked participants to report major life events

that had occurred since the previous testing session. For injury reporting, participants were

asked to record any injuries they had sustained since the last data collection. The data
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were downloaded from surverymonkey.com and imported into R (R Core Team, 2019a) for

analysis purposes.

HRV. To minimise potential distractions, participants were directed to a designated

quiet area in the laboratory where IBI data were recorded. A total of seven heart rate

monitors were used which allowed IBI recordings for up to seven participants

simultaneously. Participants were instructed to turn off their mobile devices to avoid any

interference with the Bluetooth sensor. Each chest strap was dampened with water and

adjusted so it fitted tightly but comfortably, as outlined by Polar’s guidelines. Participants

were seated and asked to remain as still as possible for the duration of the recording. No

attempt was made to control participants respiratory frequency or tidal volume (Denver,

Reed, & Porges, 2007). Inter-beat interval (IBI) data was collected for 10 min at a

sampling frequency of 1000 Hz.

Raw, unfiltered IBI recordings were exported from the Polar Flow web service as a space

delimited .txt file and imported into R (R Core Team, 2019a) where a custom script using

the RHRV package (Rodriguez-Linares et al., 2019) was used to calculate HRV indices.

Raw IBI data was filtered using an adaptive threshold filter, and the first 3 min and last 2

min of each recording were discarded, leaving a 5 min window that was used to calculate

the root mean square of successive differences (RMSSD) in RR intervals following the

recommendations for short term IBI recordings (Laborde et al., 2017; Malik et al., 1996).

RMSSD was calculated as:

RR = 1
N

n∑
i=1

RRi (3)

Where N is the length of the time series, and RRi the RR interval between beats i and

i− 1, where each beat position corresponds to the beat detection instant. The R script

used in the current study for the HRV analysis is available in Appendix C.

Muscle stiffness. To assess muscle stiffness, participants lay horizontally on a massage

plinth and four testing sites were identified on each lower limb. The muscle belly of the

rectus femoris (RF), biceps femoris (BF), medial gastrocnemius (MG) and lateral



68

gastrocnemius (LG) sites were identified using a visual-palpatory technique to determine

the exact location of each site (Chuang et al., 2012). The visual-palpatory technique

required the participant to contract the target muscle to aid the lead researcher to visually

identify the muscle. The participant was then asked to relax the muscle and the muscle

was palpated to locate the muscle belly. A skin safe pen (Viscot all skin marker pen, Viscot

Medical LLC, NJ) was then used to mark the testing site in the centre of the muscle belly.

After the eight testing sites had been identified, the testing end of the MyotonPRO

(diameter = 3 mm) was positioned perpendicular to the skin on the testing site. A

constant pre-load of 0.18 N was applied for initial compression of subcutaneous tissues.

The device was programmed to deliver five consecutive impulses, separated by a one second

interval (Morgan et al., 2018). For each impulse, the device computed stiffness values, with

the median of the five values being saved by the device for further analysis. In accordance

with the recommendation of Myoton.com, a set of five measurements with a coefficient of

variation (CV) of less than 3% was accepted. Sets of measurements above 3% were

measured again to ensure the reliability of the data. The CV was calculated in real time by

the device after each set of measurements. Measurements saved on the device were

uploaded to a computer using MyotonPRO software and imported in R for further

analysis. For each participant, the sum of all eight testing sites was calculated to provide a

total lower extremity stiffness score and was used for further analysis.

Postural stability. Participants entered a private office located in the dedicated

laboratory where a research assistant who had received training in delivering the mBESS

protocol conducted the postural stability assessment. Instructions for the mBESS were

read to each participant and a demonstration of the positions was provided by the research

assistant. For each position, participants were instructed to close their eyes, rest their

hands on their iliac crests and remain as still as possible for 20 s. Participants were

instructed to get back into the testing position as quickly as possible if they lost their

balance. The research assistant started the video recording prior to the first stance position

and stopped the recording after all stances had been completed. Each completed mBESS

protocol took approximately 4 min. Only one trial was performed to avoid familiarisation



69

effects across the repeated measurement occasions (cf. Valovich, Perrin, & Gansneder,

2003). The video recordings for each participant were imported from the recording

equipment (Sony DSC-RX10) and the lead researcher scored each trial using the error

identification criteria.

Data analysis. A Bayesian Network (BN) was used to explore the relationships between

the psychological measures, physical markers of stress and sports injury. A BN is a

graphical representation of a joint probability distribution among a set of random

variables, and provides a statistical model describing the dependencies and conditional

independences from empirical data in a visually appealing way (Scutari & Denis, 2014). A

BN consists of arcs and nodes that together are formally known as a directed acyclic graph

(DAG), where a node is termed a parent of a child if there is an arc directed from the

former to the latter (Figure 12; Pearl, 1988). However, the direction of the arc does not

necessarily imply causation, and the relationship between variables are often described as

probabilistic instead of casual (Scutari & Denis, 2014). The information within a node can

be either continuous or discrete, and a complete network can contain both continuous and

discrete nodes; however, discrete networks are the most commonly used form of BN (Chen

& Pollino, 2012). In discrete networks, conditional probabilities for each child node are

allocated for each combination of the possible states in their parent nodes and can be used

to assess the strength of a dependency in the network.

Learning the structure of the network is an important step in BN modelling. The structure

of a network can be constructed using expert knowledge and/or data-driven algorithm

techniques (e.g., search and score, such as hill climbing and gradient descent algorithms;

Scutari & Denis, 2014). The learned structure can then be used for inference by querying

the network1 and obtaining the posterior probabilities of a particular node for a given

query. The posterior distribution can be obtained by Pr(X|E,B) = Pr(X|E,G,Θ), where

the learned network B with structure G and parameters Θ, are investigated with new

1 The term “query” in relation to Bayesian Networks stems from Pearl’s (1988) expert systems theory. A
query can be submitted to an expert (in this case, the network is the expert) to get an opinion, the expert
then updates the querier’s beliefs accordingly. Widely used texts on Bayesian Network analysis (Koller &
Friedman, 2009) have adopted the terminology in favour of that used in traditional statistics.
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evidence E using the information in B (Scutari & Denis, 2014). In the example network

presented in Figure 12, new values assigned to each of the parent nodes (e.g., both set to

“Low”) could be used to investigate what effect the new information has on the state of the

child node (conditional probability of a particular state of the child node). In a more

complex network containing many nodes, the outcome of a particular node can be assessed

conditional on the states of any subset of nodes in the network. BNs therefore provide a

unique and versatile approach to modelling a set of variables to uncover dependency

structures within the data.

Figure 12 . A simple discrete Bayesian network contain nodes, possible states of the nodes
and the arcs connecting nodes.

BNs have recently been used in the sport psychology literature (Fuster-Parra, Vidal-Conti,

Borràs, & Palou, 2017; Olmedilla, Rubio, Fuster-Parra, Pujals, & García-Mas, 2018) and

offer several benefits over traditional statistical analysis. For example, predictions can be

made about any variable in the network, rather than there being a distinction between

dependent and independent variables in the data, such as in linear regression models that

are often used within the sport psychology literature (Bittencourt et al., 2016; Olmedilla et

al., 2018). Furthermore, the structure of a network can be obtained from both empirical

data and prior knowledge about the area of study; the latter being particularly useful when

there are a large number of variables in the network, or only a small number of

observations are available in the data (Xiao-xuan, Hui, & Shuo, 2008). In such instances, a

purely data driven approach to learning the network would be time-consuming due to the

large parameter space, and inefficient at identifying an approximation of the true network

structure. Prior knowledge about dependencies between variables can therefore be included



71

in the network structure, while still allowing a data driven approach for unknown

dependencies, to improve the overall computation of the network structure (Heckerman,

Geiger, & Chickering, 1995; Xu, Zhao, Chen, & Han, 2015). The following sections detail

the steps taken in the current study to firstly prepare the data for the network, and then

obtain the structure of the network that was used for inference.

Data preparation. To prepare the data for the BN, missing values in the dataset were

imputed. Out of the 668 total measurements across all time points in the current study,

there were 31 (4.64%) missing Myoton files and 70 (10.48%) missing heart rate recordings.

The missing data were due to technical faults in the data collection equipment and were

considered to be missing completely at random. A missing rate of 15-20% has been

reported to be common in psychological studies, and several techniques are available to

handle missing values (Enders, 2003; Lang, Jorgensen, Moore, & Little, 2013). In the

current study, the caret package (Kuhn, 2008) was used to impute the missing values. A

bagged tree model using all of the non-missing data was first generated and then was used

to predict each missing value in the dataset. The bagged tree method is a reliable and

accurate method for imputing missing values in data and is superior to other commonly

used methods such a median imputation (Kuhn, 2008).

Preliminary correlation analysis of the data revealed no strong linear dependencies in the

data, and therefore the data were binarised to create “Low” and “High” levels within each

variable. Binarising variables is a common procedure for BN modelling and can help

improve the fit of the model by reducing the number of possible states for each node

(Beuzen, Marshall, & Splinter, 2018). All variables were approximately normally

distributed; therefore, the median of each variable was used as the cut-off point to create

the “Low” and “High” levels.

For the LESCA, a cumulative total of the current, and previous time points was calculated

at each time point to account for the potential continuing effect of the life events

experienced by athletes over time. Given the weak support for a relationship between

positive life events and injury, only negative and total life events were included in the

network (Williams & Andersen, 2007). Cumulative negative and cumulative total life event
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scores were first log scaled and then binarised based on the median at each time point

(nlelg and tlelg respectively). In addition to the log scaled cumulative values, an

untransformed NLE score from the first time point was included as an additional variable

based on previous literature that indicates this variable should have a strong relationship

with injury outcome (Ivarsson et al., 2017). The complete table of variables that were

included in the initial network structure is provided in Appendix D, table D1.

Network structure. To obtain the network structure, several steps were taken to ensure

that both a theoretically realistic network, and a network that was an appropriate fit to the

collected data, was used for inference. Prior knowledge about the network structure was

included by providing a list of arcs that are always restricted from being in the network

(blacklist), and a list of arcs that are always included in the network (whitelist).

Additionally, there are several scoring functions such as Bayesian Information Criteria

(BIC) and Bayesian Dirichlet equivalent uniform (BDeu) that can be used to compare

network structures with certain nodes and arcs included or excluded (Scutari & Denis,

2014).

In order to account for the repeated measures design in the current study, and to maximise

the use of the data, pairs of complete cases (e.g., participants who completed T1 + T2, and

T2 + T3) were used in a two-time Bayesian network (2TBN) structure (Murphy, 2002). In

the 2TBN, variables measured T2 could depend on variables measured at T1 (e.g., T1 →

T2) and variables measured at T3 could depend on variables measured at T2 (e.g., T2 →

T3). However, arcs were blacklisted between T2 → T1 and T3 → T2 to preserve the order

in which data was collected. Variables were separated into two groups; “explanatory”, for

variables that did not change during the study (e.g., gender), or “independent”, for

variables that were measured at each time point and could vary during the study.

Independent variable names were suffixed with _1 for time point T, and _2 for time point

T+1 (e.g., T1_1 → T2_2 and T2_1 → T3_2). Formatting the data in this way meant

participants who completed T1 and T2, but did not complete T3, could still be included in

the analysis. Table 5 provides an example of the formatted data frame. Participants 1 and

3 have complete data, and therefore have two rows of data each representing variables from
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Table 5
Example of the data
arrangement used for the
network.

Participant X_1 X_2

1 T1 -> T2
1 T2 -> T3
2 T1 -> T2
3 T1 -> T2
3 T2 -> T3

T1 → T2 and T2 → T3, respectively. Participant 2 did not complete the final data

collection at T3 and therefore only has one row of data representing the variables collected

at T1 and T2. In addition to the blacklisted arcs between T2 → T1 and T3 → T2, the

direction of arcs was restricted between independent variables and explanatory variables

(e.g., independent → explanatory), however arcs were not restricted between explanatory

→ independent variables. Finally, arc direction was restricted between specific nodes

within the explanatory variables. Arcs from clevel → gender, nlebase → gender and

nlebase → ind_team were included in the blacklist, as arcs in these directions did not

make logical sense. All subsequent models used the same blacklist.

Preliminary network structures. Prior to the final network structure presented in

the results section, several structures were investigated. Networks were learned using a

Tabu search algorithm (Russell & Norvig, 2009) and BIC was used to score and compare

different models. A higher BIC value indicates the structure of a network is a better fit to

the observed data. BIC values for each combination of variables of interest are reported as

the combination of variables with the highest BIC value, followed by the relative scores of

the other variables in the model.

Initially, both negative life events and total life events were included in the network

structure, however the network score was improved when only nlelg or tlelg was included

(highest BIC value = nleleg, BIC values relative to nlelg; tlelg only = -79.64, tlelg and
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nlelg = -217.54). Additionally, despite strong evidence in the literature that both negative

and total life event stress are related to injury occurrence (Williams & Andersen, 2007),

network structures learned using the Tabu search algorithm failed to identify a relationship

between NLE and injury or TLE and injury in the data. Given that nlelg provided the

highest network score, and there is a stronger relationship between negative life events and

injury in the literature, an arc was whitelisted between nlelg_1 and injured_1 and nlelg_2

and injured_2 in the final network structure. Total life event score was not included in the

final structure.

The subscales representing the BAS system (RR, RI, GDP and I) showed limited

connection to other variables in the network. Therefore, several models were run with each

scale individually to find the scale that resulted in the highest BIC value (values are shown

relative to the highest value). RI provided the highest BIC value, compared to RR

(-13.36), GDP (-21.10) and I (-28.44). Including all the variables (RR, RI, GDP and I)

resulted in a significantly lower score -907.97) indicating that including all the variables

was not beneficial to the model structure and did not offset the cost of the additional

parameters. Therefore, only RI was included in the final structure.

Finally, both total score and asymmetry were included in the initial network. However,

visual inspection of the network revealed no arcs between bal_asym_1 or bal_asym_2 and

any other node in the network. Therefore, balance asymmetry was dropped from the final

network structure. To summarise, Table 6 includes the variables that were included in the

final network structure.
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Table 6
Variables included in the final Bayesian network structure.

Variable Definition State 1 State 2

clevel Current competitive level Club_university_county National_international
gender Gender of the participant Female Male
hours Number of hours spent

training per week
0-9 (Low) >9-35 (High)

ind_team Participate in an individual
or team based sport

Individual Team

pi Previous injury - Whether
an injury had been
sustained in the previous 12
months prior to the study

No Injury Injury

nlebase Untransformed NLE at TP 1 0-13 (Low) >13-93 (High)
FFFS Fight-Flight-Freeze System 8-16 (Low) >16-30 (High)
BIS Behavioural Inhibition

System
17-38 (Low) >38-68 (High)

RI Reward Interest 4-10 (Low) >10-16 (High)
stiffness Sum of all stiffness locations 1543-2330 (Low) >2330-4518 (High)

rmssd Root mean squared
difference of successive RR
intervals

2.03-4.02 (Low) >4.02-5.94 (High)

balance Total balance score 5-15 (Low) >15-46 (High)
nlelg_1 Log NLE at TP 1 0-2.64 (Low) >2.64-4.54 (High)
nlelg_2 Log NLE at TP 2 0-3.04 (Low) >3.04-5.19 (High)
nlelg_3 Log NLE at TP 3 0-3.18 (Low) >3.18-4.79 (High)

Preliminary network structures also revealed strong dependencies between the same

variables at subsequent time points. For example, the probability that stiffness_1 and

stiffness_2 were both “High”, or both “Low” was approximately 80%. Including the arcs

between the same variables from X_1 → X_2 did not provide any theoretically meaningful

information to the network structure as the majority of participants would either be in a

“Low” or “High” state for each pair of variables in the network. To more appropriately
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assess changes within variables over time, a second BN was investigated by modelling the

differences between variables at different time points. The use of differential equations to

model changes in variables over time is a common procedure in Bayesian network analysis

when there are repeated measurements in the data (Scutari et al., 2017). To obtain the

structure, variables suffixed with _1 were subtracted from variables suffixed with _2 to

calculate the difference between variables measured at time points T1 → T2 and T2 → T3.

Independent variables were then standardized to allow relative changes between variables

to be compared. The “injured” variable was also modified to represent whether a

participant had sustained an injury at any point over the duration of the study or were

healthy for the duration of the study. The result was a network that explicitly modelled

the amount of change within variables between time points, as opposed to the first network

that would only have captured changes when the median threshold was crossed from “Low”

to “High”. Identical blacklists to the first network were used for arcs between independent

and explanatory variables. The nlebase variable was also dropped from the list of

explanatory variables to allow the changes in negative life events to be the only life event

variable in the network. Table 7 shows the pre-standardised variables that were included in

the network, all explanatory variables were identical to Table 6.

Table 7
Mean and SD of the
change between time points
for independent variables.

Variable M SD

balance 0.02 4.45
BIS 0.00 6.20
FFFS 0.07 3.26
nlec 6.55 8.30
RI 0.08 1.91
rmssd 0.09 0.74
stiffness 26.20 230.89

To obtain the final networks, the appropriate blacklist and whitelists were provided and a
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Tabu search algorithm identified the remaining structure of the network. The final network

structured was obtained by averaging 1000 bootstrapped models (Efron & Tibshirani,

1994) to reduce the impact of locally optimal, but globally suboptimal network learning,

and to obtain a more robust model (Olmedilla et al., 2018). Arcs that were present in at

least 30% of the models were included in the averaged model. The strength of each arc was

determined by the percentage of models that the arc was included in, independent of the

arc’s direction. An arc strength of 1 indicates that the arc is always present in the network,

with the value decreasing as arcs are found in fewer networks. In the current study arcs

above 0.5 were considered “significant” with arcs below 0.5 and above 0.3 “non-significant”

(Scutari & Nagarajan, 2013). Arcs below 0.3 were not included in the model. Appendix D

(Table D2) provides a table of arc strengths for each network.

Network inference. Conditional probability queries (CPQ) were used to perform

inference on both network structures. To conduct a CPQ, the joint probability distribution

of the nodes was modified to include a new piece of evidence. The query allows the odds of

a particular node state (e.g., injured_1 = “injured”) to be calculated based on the new

evidence. CPQs were performed using a likelihood weighting approach; a form of

importance sampling where random observations are generated from the probability

distribution in such a way that all observations match the evidence given in the query. The

algorithm then re-weights each observation based on the evidence when computing the

conditional probability for the query (Scutari & Denis, 2014). Inference was first performed

on arcs that had a strength greater than 0.50 between the explanatory variables and

independent variables and between different independent variables in the network. Of

particular interest in the current study were the variables that were connected to “injured”

nodes. To examine the variables that were associated with injured nodes in the network,

the Markov blanket of “injured_1” and “injured_2” were examined. A Markov blanket

contains all the nodes that make the node of interest conditionally independent from the

rest of the network (Fuster-Parra et al., 2017). CPQs were used to determine what effect

the variables in the Markov blanket of injured nodes had on the probability of the injured

node being in the “injured” state.
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The second network contained both continuous and discrete data. To examine

dependencies between continuous variables with arc strengths above 0.5 in the second

network random samples were generated based on the conditional distribution of the nodes

included as evidence in the query. The samples were then extracted and examined with

Bayesian linear regression models using the brms package (Bürkner, 2017) to determine the

relationship between nodes in the network. Similar to the first network, the Markov

blanket of the “injured” node was also investigated by determining the highest probability

of injury with combinations of variables in the Markov blanket below the mean change, at

the mean change and above the mean change.
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Results

During the study, 26% of participants reported at least one injury with an average severity

of 10.6 ± 31.0, days (range = 2 - 365). Both male and female participants reported a

greater number of acute compared to chronic injuries (male, acute = 85 [69%], chronic =

39 [31%]; female, acute = 38 [72%] chronic = 15 [28%]), and non-contact injuries were

more common than contact injuries (male, non-contact = 83 [67%], contact = 39 [31%];

female, non-contact = 35 [66%] contact = 18 [34%]). Table 8 shows the number and

percentage of injury types sustained by both male and female participants.

Table 8
The number and percentage (%) of types of injuries sustained by male and
female participants.

Female Male

Lower body Upper body Lower body Upper body

Joint / ligament 14 (36) 5 (36) 37 (43) 14 (38)
Muscle / tendon 17 (44) 6 (43) 45 (52) 12 (32)
Other 8 (21) 3 (21) 5 (6) 11 (30)

Note. Other included bone, skin and brain injuries.

First network structure. The final network structure obtained from the data is shown

in Figure 13. Several of the explanatory variables showed strong connections with

independent variables in the network. The arc from nlebase → RI_1 had a strength of

0.84, and the probability of RI_1 being in the “High” state increased from 0.22 to 0.46

when nlebase increased from “Low” to “High”. The ind_team node had strong arcs to

hours (0.90) and nlebase (0.84). Individual athletes were more likely to have “High” hours

per week (0.84) compared to team-based athletes (0.61). Individual athletes were also more

likely to have “High” negative life events in the 12 months preceding the start of the study

compared to team based athletes (individual athletes = 0.65, team-based athletes = 0.41).

The arcs from gender → stiffness_1 and gender → stiffness_2 were 0.76, and 0.65

respectively, with males more likely to have “High” stiffness compared to females (males =
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0.63, females = 0.40). The arc from pi → stiffness_1 was 0.55 with athletes who reported

an injury in the preceding 12 months more likely to have “High” (0.65) compared to “Low”

(0.34) stiffness. The arc from clevel → balance_1 had a strength of 0.51, with lower level

performers more likely to have decreased balance ability (0.48), compared to national level

athletes (0.29).

Arcs were also present between independent variables in the network. Strong arcs were

present between BIS_1 → FFFS_1 (0.98) and BIS_2 → FFFS_2 (0.68). In both

instances, “High” FFFS was more likely when BIS was “High” (0.65 for _1, 0.61 for _2)

compared to “Low” (0.32 for _1, 0.37 for _2). The arc between nlelg → BIS had a

strength of 0.62 for nlelg_1 → BIS_1, however no arc was present between nlelg_2 and

BIS_2. For nlelg_1 → BIS_1, “Low” negative life events increased the probability of BIS

being in the “High” state from 0.33 to 0.55.
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pinlebase

gender ind_team clevel

hours

injured_1

nlelg_1stiffness_1 RI_1

BIS_1

rmssd_1

balance_1FFFS_1

injured_2

nlelg_2

stiffness_2

RI_2BIS_2

rmssd_2 balance_2

FFFS_2

Figure 13 . The full Bayesian network structure was plotted using the strength.plot function in bnlearn. The strength of each
arc is shown graphically by the style of the arc. Thin, dashed arcs indicate the weakest arcs (arc strength below 0.50), whereas
thick solid arcs indicate the strongest arcs (arc strength of 1). White nodes in the network indicate the explanatory variables,
blue nodes indicate T1_1 and T2_1 variables, and red nodes indicated T2_2 and T3_2 variables. The injured_X nodes have
been coloured gold as they are the main nodes of interest within the network.
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Markov blanket for injured_1. The Markov blanket for injured_1, which contained

hours spent training per week (hours), negative life events (nlelg_1), muscle stiffness

(stiffness_1), current competitive level (clevel) and balance (balance_1), is shown in

Figure 14. The arc between nlelg_1 and injured_1 was fixed in the network, so has the

maximum strength of 1.

balance_1

clevel

hours

injured_1

nlelg_1 stiffness_1

0.52

0.42

0.36

1.00 0.55

Figure 14 . Markov blanket of injured_1. Arc strengths are included as arc labels.

The CPQ for injured_1 in the “injured” state for all variables that were directly linked to

injured_1 (parents and children) is shown in Table 9. The probability of injured_1 =

“injured” rose from 0.16 to 0.31 when stiffness was “High” compared to “Low”. Negative

life events had a negligible effect on the probability of injury when moving from the “Low”

(Pr = 0.24) to “High” (Pr = 0.26) state.
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Table 9
Probability of injured_1
being in the “injured”
state, conditional on each
variable.

Variable Low High

balance_1 0.21 0.30
hours 0.18 0.29
nlelg_1 0.24 0.26
stiffness_1 0.16 0.31

The second CPQ investigated the outcome of injured_1 being “injured” conditional on all

variables in the Markov blanket. The Markov blanket contained five nodes, each with two

possible states resulting in 25 combinations of variables, therefore only the three lowest and

highest probabilities are shown in Table 10 (full Table in Appendix D, table D3). The

combination of lower competitive level, “High” hours per week, “Low” negative life events,

“High” balance and “High” stiffness resulted in a probability of 0.53 for injured_1 being in

the “injured” state. When all variables were in the “Low” state the probability of “injured”

was approximately 0.04. Negative life events only had a substantial effect on injured_1

when all other variable were fixed to “Low”. In this instance the probability of injured_1

being “injured” rose from 0.04 to 0.19, when negative life events was in the “Low” and

“High” states respectively.
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Table 10
Highest and lowest probability of injured_1 being in the “injured” state, conditional
on all variables in the Markov blanket for injured_1.

Probability clevel hours nlelg_1 stiffness_1 balance_1

Highest
0.53 club_university_county High Low High High
0.46 national_international High Low High Low
0.44 national_international High Low High High

Lowest
0.06 national_international Low Low Low Low
0.05 national_international Low Low Low High
0.04 club_university_county Low Low Low Low

Table 11 shows the states of all explanatory and independent variables suffixed with _1

that resulted in the highest and lowest probability of injured_1 being in the “injured” state.

The probability of injured_1 being “injured” rose from 0.03 to 0.56 with the combination

of variable states in Table 11. Notably, hours per week, stiffness_1 and balance_1 had the

greatest effect on raising the probability of injured_1 being in the “injured” state.
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Table 11
Probability of injured_1 being in the “injured” state conditional on
explanatory variables and independent variables suffixed with _1.

High risk Low risk

Probability 0.56 0.03
Variable
pi no injury no injury
clevel club_university_county club_university_county
gender female male
hours High Low
ind_team individual individual
nlebase Low High
stiffness_1 High Low
balance_1 High Low
RI_1 High High
BIS_1 Low Low
FFFS_1 Low Low
nlelg_1 Low Low
rmssd_1 High Low

Markov blanket of injured_2. The Markov blanket for injured_2 is shown in Figure

15 and contained gender, previous injury, FFFS_1, stiffness_2, balance_2 and rmssd_2.

The arc between stiffness_2 and injured_2 was comparable to the arc between stiffness_1

→ injured_2. Very weak arcs (0.30) between injured_2 → balance_2 and injured_2 →

rmssd_2 were also present in the Markov blanket for injured_2. Results of the first query

for injured_2 in the “injured” state are presented in Table 12. Similar to injured_1,

stiffness_2 doubled the probability of injured_2 being “injured” from 0.13 in the “Low”

state to 0.27 in the “High” state. FFFS_1 in the “Low” state increased probability of

injured_2 being “injured” by 0.19 compared to the “High” state. “High” negative life

events decreased the probability of injury from 0.24 to 0.19.
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balance_2

FFFS_1

gender injured_2

nlelg_2

pi

rmssd_2stiffness_2

0.40

0.64 0.50 0.30 0.30

1.00

0.32

Figure 15 . Markov blanket for injured_2.

Table 12
Probability of injured_2
being in the “injured’
state, conditional on each
variable in the Markov
blanket for injured_2.

Variable Low High

balance_2 0.17 0.27
FFFS_1 0.30 0.11
nlelg_2 0.24 0.19
rmssd_2 0.25 0.18
stiffness_2 0.13 0.27

The conditional probabilities based on all the variables in injured_2 Markov blanket are
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presented in Table 13. Again, only the three lowest and highest probabilities are shown.

The combination “Low” FFFS_1, “High” stiffness_2, “High” balance resulted in the

greatest probability of injured_2 being “injured”, with the highest probability of injury

being 0.53. With all other variables held in the “High” state, the probability of injured_2

being “injured” rose from 0.14 to 0.34 when FFFS_1 was in the “Low” compared to

“High” state. The combination of “Low” stiffness, “Low” balance and “High” FFFS

resulted in the lowest probability of injured_2 being “injured”.

Table 13
Highest and lowest probability of injured_2 being in the ’injured’ state,
conditional on all variables in the Markov blanket for injured_2.

Probability FFFS_1 nlelg_2 stiffness_2 rmssd_2 balance_2

Highest
0.53 Low Low High Low High
0.45 Low High High Low High
0.41 Low Low High High High

Lowest
0.07 High High Low Low Low
0.05 High Low Low High Low
0.04 High High Low High Low

Second network structure - changes within variables. The network for changes

within variables is presented in Figure 16. An arc between BIS → FFFS with strength 1

was present in the network. Arcs between clevel → BIS and gender → stiffness had a

strength of 0.60. The arc between RMSSD → FFFS was 0.56. The arcs between BIS →

FFFS and RMSSD → FFFS were examined further by drawing random observations from

the conditional probability distribution and examining the relationship in a Bayesian linear

regression model. The use of a separate Bayesian linear regression enabled the both the

main effects and interaction between FFFS, BIS and RMSSD to be examined.

Results from the Bayesian linear regression model are presented in table 14 and include

95% credible intervals (CrI). Increases in BIS were associated with increases in FFFS (b =
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0.38, 95% CrI = [0.33, 0.44]), whereas positive changes in RMSSD where associated with

decreased changes in FFFS (b = -0.18, 95% CrI = [-0.24, -0.13]). There was no clear

interaction between RMSSD and BIS (b = -0.01, 95% CrI = [-0.07, 0.04]).

pi

genderclevel hours

stiffnessnlec

RI

BISrmssd

balance

FFFS

injured

Figure 16 . Network structure of the changes within variables between time points.

Table 14
Estimate, error and 95% credible intervals for
the fixed effects in the linear model containing
FFFS, BIS and RMSSD.

Term Estimate Error 95% CrI

Intercept 0.03 0.03 [-0.03, 0.08]
RMSSD -0.18 0.03 [-0.24, -0.13]
BIS 0.38 0.03 [0.33, 0.44]
RMSSD:BIS -0.01 0.03 [-0.07, 0.04]
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The Markov blanket for the “injured” node contained previous injury, gender, hours,

stiffness and nlec (Figure 17). For stiffness and nlec the values in the nodes represent the

standardised change between time point. Combinations of nlec and stiffness at one SD

below the mean change, at the mean change, and 1SD above the mean change are

presented in Table 15. Changes in both nlec and stiffness 1SD above the mean change

resulted in a probability of being injured of 0.7 over the duration of the study. With

stiffness held at the mean change, the probability of “injured” rose from 0.35 to 0.64 with

nlec at 1SD below an 1SD above respectively.

gender

hours

injured

nlec

pi

stiffness

0.60

0.74

0.67 0.50

0.40

Figure 17 . Markov blanket for the injured node in the network reflecting changes within
variables between time points.
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Table 15
The probability of injury with values of
stiffness and nlec held at 1SD below the
mean change, at the mean change and
1SD above the mean change.

Probability of injury nlec Stiffness

0.70 +1SD +1SD
0.64 +1SD mean
0.63 +1SD -1SD
0.53 mean +1SD
0.45 mean mean
0.43 mean -1SD
0.43 -1SD +1SD
0.35 -1SD mean
0.34 -1SD -1SD

Table 16 shows the three highest and lowest probabilities for injury for all variables in the

Markov blanket. The combination of 1SD above the mean change for nlec and stiffness and

“High” hours per week and previous injury resulted in the highest probability that an

injury would be sustained during the study (0.77). In contrast, below average changes in

nlec and stiffness combined with “Low” hours per week and no previous injury resulted in

the lowest probability of an injury (0.12).
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Table 16
Highest and lowest probability of injury, conditional
on all variables in the Markov blanket for ”injured”.

Probability hours pi nle stiffness

Highest
0.77 High injury +1SD +1SD
0.75 High no injury +1SD +1SD
0.72 Low injury +1SD +1SD

Lowest
0.16 Low no injury -1SD +1SD
0.12 Low no injury -1SD mean
0.11 Low no injury -1SD -1SD

Discussion

This study investigated the relationships between psychosocial factors, stress-related

physiological markers and injury occurrence. The relationships were investigated using two

BN structures; the first was a two-time Bayesian Network that investigated the

relationships between variables across time points in the study (Figure 13), and the second

network used differential equations to model the changes in variables between time points

(Figure 16). Informed by Appaneal and Perna’s (2014) extension to the widely cited

Williams and Anderson’s (1998) stress-injury model, the study aimed to address several of

the criticisms in the sport injury literature (Johnson et al., 2014), and apply the concepts

from Appaneal and Perna’s (2014) extension to Williams and Anderson’s (1998) model.

Specifically, it examined how measures of psychological stress and physiological

stress-related markers may interact and act synergistically to increase the risk of injury.

The first network revealed several links between the injured nodes and other variables in

the network. For example, Figure 14 and Figure 15 show the Markov blankets for the

injured_1 and injured_2 nodes in the first network and include all the variables that had a

direct effect on the probability of injury. The combination of high stiffness and poor

balance resulted in the highest probability of injury in the Markov blankets for injured_1
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and injured_2. The presence of these variables at both injured nodes indicates that the

combined action of these variables is important for determining an athlete’s risk of injury.

In the second network, the highest probability of injury was observed when changes in

stiffness and negative life events were both greater than average (table 15), indicating that

the combination of changes in psychological and physiological measures of stress may

combine additively to increase the risk of injury (Appaneal & Perna, 2014). Table 13 shows

the combinations of variables that resulted in the highest and lowest probabilities of injury

conditional on all explanatory variables and variables suffixed with _1. Although only the

highest and lowest values are shown, there were over 16000 possible combinations of

variable states that could influence the probability of injury. The adopted approach

attempts to take the complex systems view of injury recommended by Bittencourt et al.

(2016), where injury is an emergent property from a web of determinants that interact in

different ways.

Of all the variables measured in the study, muscle stiffness appeared to be most strongly

related to injury. Both “High” levels of stiffness in the first network, and greater than

average increases in stiffness in the second network were found to increase the risk of

injury. In the current research, a novel hand-held device (MyotonPRO) was used to

measure muscle stiffness. To date, one of only a small number of studies that have used the

MyotonPRO to explore the relationship between muscle stiffness and sports injury, has

found that increased muscle stiffness in the soleus and Achilles tendon was related to

increased injury incidence in elite level netball players (Pickering-Rodriguez et al., 2017).

The findings from the current study build upon these findings, with a larger sample of

athletes from a range of different sports, strengthening the evidence for a relationship

between higher levels of muscle stiffness and injury. However, high levels of muscle

stiffness, as measured by the MyotonPRO, have also been found to be related to improved

performance, with elite level athletes having increased lower extremity stiffness (Kalkhoven

& Watsford, 2017; Pruyn et al., 2015). Collectively, these findings suggest that while

muscle stiffness plays a vital role in performance, increased levels of stiffness also increase

the probability of injury, and each athlete is likely to have an optimum level of stiffness

that maximises performance while minimising the risk of injury (Butler et al., 2003).
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Additionally, high levels of stiffness may only increase the risk of injury if other factors are

also present. To elaborate, the combination of high stiffness and poor balance was found to

result in the greatest probability of injury. In contrast, athletes with high stiffness and

good balance were less likely to be injured, suggesting that improved postural stability may

counteract the potential harmful effects of high levels of muscle stiffness. Several studies

have identified how balance (Romero-Franco et al., 2014; Trojian & McKeag, 2006) and

muscle stiffness (Butler et al., 2003; Pickering-Rodriguez et al., 2017) are related to injury

individually, however the current study has demonstrated how these two factors may

interact in relation to injury occurrence.

In addition to stiffness, balance is also linked to injury at both injured nodes in the first

network, however the strength of the arc was only 0.35 and 0.30 from balance → injured_1

and balance → injured_2 respectively. Despite the weak arc strength, a “High” balance

score, indicating impaired postural stability, was found to increase the probability of injury.

This finding is consistent with previous research that has reported a relationship between

decrements in postural stability and increased injury risk (Riemann et al., 1999;

Romero-Franco et al., 2014; Trojian & McKeag, 2006). Postural stability is often used as

an indicator of athlete performance level, with higher level athletes demonstrating better

postural stability over their lower level counterparts (Paillard et al., 2006). In the current

study, athletes who competed at a higher level were also more likely to have good balance

(“Low” balance), compared to their lower level counterparts. These findings suggest that

better postural stability is associated with both a higher level of performance and a lower

probability of sustaining an injury, reinforcing the importance of postural stability as a

feature of athletic training programmes designed to prepare athletes for the demands of

high intensity training and competition (Hrysomallis, 2011).

Of the psychological variables in the study, negative life events have previously been

reported to be most strongly associated with injury (Ivarsson et al., 2017; Williams &

Andersen, 2007). In the current study, the second network revealed that greater than

average increases in negative life event stress increased the probability of being injured

during the study period. However, negative life event stress had almost no effect on the
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probability of injury in the first network. This finding suggests that the relative change in

life events may be more important than the absolute score for life events, despite the latter

being commonly used in sports injury research to date. For example, an athlete who

reports a negative life event score of one during the first time point, but then a score of five

at the second time point will have a 400% increase in their life event score. Although the

absolute score would be “Low”, the relative increase could have been caused by a significant

event in the athlete’s life, that could have considerable psychological and physiological

effect (Appaneal & Perna, 2014). Future research should therefore consider study designs

and appropriate analysis methods that enable relative changes in an individual athlete’s

life events to be assessed (cf. Ivarsson, Johnson, Lindwall, Gustafsson, & Altemyr, 2014).

The finding that negative life events had almost no impact on the probability of injury in

the first network was surprising given that the majority of research has consistently

identified major life events, particularly those events with a negative valence, as the

strongest predictor of injury in Williams and Andersen’s (1998) model (Ivarsson et al.,

2017). During the initial network structure development, no arcs between the negative life

event nodes and injured nodes were found by the Tabu search algorithm. However, given

the strength of the literature indicating that negative life events are related to injury, an

arc was fixed between nlelg_1 → injured_1 and nlelg_2 → injured_2 to allow this

relationship to be examined more closely. When negative life events were “High” the

probability of injury showed a negligible change at the injured_1 node and decreased by

-0.05 at the injured_2 node. One possible explanation for these findings may be due to the

use of the LESCA questionnaire in a repeated measures design. In the original LESCA

instructions, participants are asked to report major life events that have occurred over the

previous 12 months (Petrie, 1992). However, in the current study, participants completed

the LESCA at approximately 4-month intervals after baseline and were therefore asked to

report any events which had occurred since the previous data collection session, to avoid

inflated scores caused by reporting the same event on multiple occasions. The reduced

four-month time interval between data collections may have reduced the likelihood for life

events listed in the LESCA to have taken place. For example, at the second and third time

points, 26% of participants reported zero negative life events for the preceding four-month
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period. Simply, it may be that the items on the LESCA are less suitable for repeated

measurements with durations shorter than the original 12 months than a measure that

captures minor life events (cf. Fawkner, McMurrary, & Summers, 1999).

Another possible explanation for the findings for major/negative life events is that

participants in the study may have had access to the necessary coping resources to mitigate

against the effects of any negative life event stress they experienced. Williams and

Andersen’s (1998) model proposed a number of coping resources that were either directly

related to injury or moderated the relationship between life stress and injury occurrence;

for example, general coping strategies (e.g., good sleeping habits and self-care), social

support systems and stress management skills. Although coping was not measured in the

current study, several studies have found high levels of social support can reduce the risk of

injury (Johnson et al., 2014; Petrie, 1993; Petrie, Deiters, & Harmison, 2014). Therefore,

future research should consider including a measure of coping alongside that of life event

stress to help explain the possible moderating effect.

Of the remaining variables, both FFFS and RMSSD were also linked to injury. A weak arc

was observed between RMSSD_2 → injured_2 (arc strength = 0.30), however no arc was

present between RMSSD_1 and injured_1, suggesting the link between RMSSD and injury

was weaker than muscle stiffness and balance, where stronger arcs were observed at both of

the injured nodes. Despite the uncertainty regarding the relationship between injury and

RMSSD in the first network, “Low” RMSSD increased the probability of injury from 0.17

(RMSSD = “High”) to 0.27 (RMSSD =”Low”). This finding is consistent with previous

research that has found reduced RMSSD to be indicative of illness or maladaptation to

training due to decreased parasymapthic activity, which often precedes injury (Bellenger et

al., 2016; Gisselman et al., 2016; Williams et al., 2017). An arc between FFFS_1 and

injured_2 (arc strength = 0.40) was also observed in the first network, where the

probability of injury was increased from 0.13 to 0.29 with FFFS in the “High” and “Low”

states respectively. Interestingly, the “Low” FFFS score was also related to injuries at

subsequent time points; for example, the “Low” FFFS recorded at the first time point was

related to injuries recorded at the second time point in the study. One possible explanation
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for this finding could be that those athletes who reported “Low” FFFS scores were less

fearful, and may therefore engage in more risk taking behaviours, increasing the probability

of injury. The RST theory proposes that higher levels of FFFS increase avoidance

motivation (Corr et al., 2016), and therefore “High” FFFS may have acted as a deterrent

from taking risks while training and competing, reducing exposure to situations that could

have resulted in injury.

Although not directly related to injury, the first network revealed an interesting

relationship between BIS and FFFS, and the second network revealed arcs between BIS,

FFFS and RMSSD. In the first network, “High” BIS was associated with “High” FFFS,

while in the second network, increases in BIS were associated with increases in FFFS. RST

proposes that the combination of high BIS and high FFFS is likely to result in a more

anxious disposition due to high levels of avoidance and high goal conflict characterised by

high levels of FFFS and BIS (Corr, 2013). High levels of anxiety and anticipation of

stressful situations have been associated with reductions in HRV indices including RMSSD

(Chalmers, Quintana, Abbott, & Kemp, 2014; Pulopulos et al., 2018), which is supported

by the negative relationship between FFFS and RMSSD in the second network (Table 14).

These findings agree with the proposed actions of the RST theory (Corr et al., 2016). For

example, high levels of BIS are proposed to be the result of goal conflict between the FFFS

(avoidance) and BAS (approach) systems. The goal conflict is likely to elicit a physiological

response (e.g., decreased HRV) in preparation to engage in the required behaviour to

resolve the goal conflict (Corr et al., 2016). To extend these findings, the BAS should also

be considered. Specifically, to establish how the BAS and FFFS interact, and how these

two systems affect the BIS. However, in the current study, initial network structures

revealed the BAS sub-scales to have limited connectivity with other measures in the

network, therefore only one of the BAS sub-scales (RI) was included in the final network

structure. In the first network, RI_1 was connected to both BIS_1 and BIS_2, and in

both instances, the probability of “High” BIS was increased when RI was also “High”.

However, the arcs between RI_1 and BIS were weak (< 0.50), and RI represents only one

component of the BAS system. Other BAS factors such as impulsivity may be more closely

related to risk-taking behaviours and may reveal additional links to sports injury.
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Therefore, a more detailed examination of the different elements of RST, and specifically

the BAS in relation to injury occurrence is warranted.

The current research had several strengths, including the repeated measures design and

modelling approach. A major critique of the sport injury literature has been the use of

only one wave of measurement that may not be reflective of and capture the dynamic

nature of the variables that are associated with injury (Johnson et al., 2014). The repeated

measures design of the current study allowed changes between time points to be explored.

Another significant strength of the current research was the interdisciplinary approach that

enabled an examination of the complex interplay between psychological and physiological

markers of stress. Although there are unique and significant challenges with research

employing a repeated measures design, the level of detail obtained is needed to further

understand the dynamic relationships between stress-related factors and injury occurrence

in athletes. Sport injury research has been criticised for adopting analytic approaches that

are reductionist in nature (Bittencourt et al., 2016) and fail to account for the complex,

emergent behaviour that is characteristic of injury occurrence. To address this issue,

Bayesian networks (BN) were used in the current study to utilise an analytical approach

more closely aligned with the complex, multifactorial nature of injury. The networks

allowed several markers of stress that were free to interact with each other, as well as

injury, to be explored. Consequently, BNs provided a contemporary approach that

improved upon traditional methods such as logistic regression (Olmedilla et al., 2018).

As with all research, there were limitations with the present study. Firstly, the choice was

made to binarise variables in the first network so only “Low” and “High” states were

observed. Although binarising variables is a common procedure in Bayesian network

analysis and has several advantages, Qian and Miltner (2015) highlighted that both a loss

of statistical accuracy and potential difficulty in subsequent interpretation of the model

may arise when following a binarising procedure. For example, the meaning of a “Low” and

“High” value in the current study is only meaningful for the population that was studied,

and there could be additional levels within each category that were not investigated. A

second limitation was the nature of the physiological measures used in the current study.
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In order to collect data on a large sample of participants, relatively simple measures were

required to ensure the viability of the data collection; however, some of these measures may

not have been sensitive enough to detect more subtle variation in athletes. For example,

postural stability could have been assessed with the use of a force plate, which is

considered the gold standard, to provide detailed data and enable a more fine-grained

analysis (Ross et al., 2011).

In addition to the future directions already outlined, the findings from the current study

offer several avenues for future research. Although the current study used a range of

measures to capture “stress” from both a psychological and physiological perspective, there

may be additional measures available that could provide further insight into the

relationship between stress-related factors and sports injury. For example, stress hormones

such as cortisol have been found to be a marker of both psychological and training-related

stress (Appaneal & Perna, 2014; Perna & McDowell, 1995), and could help elucidate the

relationship between stress and injury. Additionally, although the LESCA is the most

widely used measures of major life events in sports injury research, the current study found

several limitations with using the LESCA in a repeated measures design, including how the

items were scored. For example, there is no way to differentiate between an athlete who

has answered four items as moderately negative, and one item as extremely negative. Both

responses would be scored a “-4”; however, there could be vastly different psychological and

physiological effects between moderately negative and extremely negative events.

Therefore, future research could develop a modified version of the LESCA that could

distinguish between these types of responses and their effects.
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Chapter 5:

Study 2
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Study 2: The relationship between negative life events, muscle stiffness,

cortisol and injury occurrence in team sport athletes.

The findings from the first study raised some important questions about the role of

different physiological and psychological markers of stress in the prediction of injury.

Firstly, given the widespread support in the research literature for negative life events

being a predictor of athletic injury, the at best weak relationship between negative and

major life events and injury was very surprising (cf. Passer and Seese (1983); Maddison and

Prapavessis (2005); Gunnoe et al. (2001); Ivarsson and Johnson (2010); Ivarsson et al.

(2017); Williams and Andersen (2007)). Although the Life Event Survey for Collegiate

Athletes (LESCA) is a widely used measure of life event stress in the sports injury

literature, the way the questionnaire is scored may disguise some important information

about the nature of the life events experienced. Specifically, the number of events that

make up the score are not considered. To elaborate, an athlete who answers four events

with a -1 (moderately negative) would get the same score as someone who answers one

event as a -4 (extremely negative). The psychological and physiological responses to four

moderately negative events compared to one extremely negative event are unlikely to be

equivalent (Ganzel, Morris, & Wethington, 2010), so a distinction between the nature of

the life events that athletes’ report may provide a more nuanced understanding of the role

of life events and the predictive ability of the LESCA.

Secondly, in addition to the markers of “stress” used in the first study, there is evidence to

suggest that stress hormones including testosterone, cortisol, adrenaline and

norepinephrine may also be linked to athletic injury (Appaneal & Perna, 2014; Cormack et

al., 2008; Mangine et al., 2018; Perna & McDowell, 1995). Of these hormones, cortisol has

been mostly widely studied as a marker of stress and athletic activity (Paridon, Timmis,

Nevison, & Bristow, 2017). Cortisol is released in response to both psychological stress,

such as to major life events and the attendant emotional distress that follows (Roos et al.,

2018), and high intensity and high volume training, in which athletes regularly engage

(Brownlee et al., 2005). Although cortisol plays a vital role in response to stress by

increasing substrate mobilisation (Anderson et al., 2016), prolonged exposure to increased
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levels of cortisol can have several negative effects. For example, elevated evening cortisol

has been associated with a suppressed immune system, poor sleep and lessened growth

hormone release, all of which can inhibit recovery following intense exercise, and increase

the risk of athletic injury (Brownlee et al., 2005; McEwen, 2008; O’Donnell et al., 2018).

However, the link between cortisol and injury has not been well established within the

literature. Perna and McDowell (1995) provided promising evidence in a study that

examined life event stress and cortisol response in athletes following an exhaustive graded

exercise test. Participants were split into high and low life event stress (LES) groups, and

the high LES group were found to have both higher cortisol in response to the graded

exercise test, and increased symptomatology (e.g., muscle complaints and viral illness) over

the subsequent 30 days following the graded exercise test. Perna and McDowell (1995) did

not, however, explicitly examine the relationship between cortisol response to high

intensity training and sports injury.

Finally, in terms of how stress-related factors relate to injury severity, in the first study,

injury was treated as a binary variable, as is often common in sports injury research

(Bittencourt et al., 2016). However, treating injury as a binary variable may result in

important information being lost regarding the stress-related markers of an athlete who

sustains more severe injuries. For example, there may be differences in the psychological

and physiological profile of an athlete who sustains a minor hamstring strain that results in

a week of missed training, compared to an athlete that suffers a full ACL tear needing

surgery and six months rehabilitation. Examining not only the difference between healthy

and injured athletes, but also the severity of the subsequent injury, may therefore provide

greater insight into the stress-injury relationship.

The purpose of this study was twofold; first, to establish whether an alternative approach

to scoring the LESCA questionnaire might elucidate additional insight into the

relationships between life event stress and injury, and secondly, to examine the possible

relationships between life event stress, the cortisol response to high intensity training and

injury severity. In addition, given the strength of the relationship between muscle stiffness

and injury in the first study, muscle stiffness was included as an additional factor that may
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also be related to injury severity. In line with the relevant literature and findings from the

first study, the following hypotheses were established with regard to injury occurrence and

severity: a) higher average negative life event scores would have a positive relationship with

both injury occurrence and severity; b) greater increases in cortisol following high intensity

exercise would be associated with injury occurrence; and c) high levels of muscle stiffness

would increase the risk of injury occurrence and result in greater days lost to injury. With

regard to how the predictor variables may interact, the following hypotheses were

established: a) higher average negative life event score would be associated with greater

cortisol response following high intensity exercise; b) there would be a positive relationship

between average negative life event score and muscle stiffness; and c) muscle stiffness would

have a positive relationship with cortisol response following high intensity exercise.

Method

Participants. Participants, who were a sub-sample from Study 1 (chapter 4), comprised

51 male members of the football and rugby teams based at a British University (Table 17).

Both teams played in a national level league and regularly performed high intensity

training throughout the season. All participants were injury free at the start of the study.

Table 17
Participant demographics.

Football (n = 22) Rugby (n = 29)

M SD M SD

Age (yrs) 22.0 2.2 19.4 1.3
Height (cm) 180.6 6.5 181.0 9.1
Body mass (kg) 80.0 5.5 99.7 15.5
Hours per week spent training 8.5 2.4 26.8 8.2

Measures.

Cortisol. In addition to the LESCA and the muscle stiffness measure outlined in Study

1, salivary cortisol concentrations pre-and post-high intensity training sessions were
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collected. Salivary cortisol is reported to be a better measure of dynamic

hypothalamic–pituitary–adrenal (HPA) activity than serum cortisol and provides a

non-invasive method that can be conducted in a field-based setting (Gozansky et al., 2005).

Saliva collection aids and polypropylene cryovials (Salimetrics LLC, California, USA) were

used to collect samples of whole saliva via the passive drool method (Figure 18).

Figure 18 . Example of the passive drool method using saliva collection aid and polypropylene
cryovial.

Injury. The number of days lost due to injury was the main outcome measure. Injury

was defined as any sports related medical problem causing the athlete to miss or modify

their usual training routine. Participants were asked estimate how long they missed or

modified their usual training routine when they reported injuries.

Procedure. The study followed the same design as Study 1 with the addition of a saliva

sample pre-and post-a high intensity training session (Figure 19). In the month preceding

each data collection the lead researcher communicated with the head coach for each team

to establish when high intensity training sessions were planned. Data collection was then
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scheduled to coincide with each team’s identified sessions. The content of each training

session was decided by each team’s head coach and no attempt was made by the researcher

to influence the content of the session. Each session lasted approximately 120 min and

included a warm-up, technical drills (e.g., passing, shooting and tackling), high intensity

interval training (e.g., shuttle runs and circuit training) and match specific practice (e.g.,

small sided games lasting between 20 - 30 min of high intensity). Table 18 shows the mean

for each team for both the maximum and average heart rates achieved, in addition to the

percentage of time spent above 85 % of each players maximum heart rate, during the first

high intensity training session. Work above 85% of maximum heart rate is often used as a

marker of high intensity in athletes (Birkett et al., 2019). Training sessions at time points

two and three were similar to the first session and the details of each training session are

provided in Appendix E.

Table 18
Maximum and average heart rate, and
percentage of time spent above 85 % of
maximum heart rate during the first high
intensity session for each team.

Football Rugby

Variable M SD M SD

max hr (bpm) 199 3 201 1
avg hr (bpm) 140 14 159 8
% above 85 22.98 14.25 29.48 22.24

Figure 19 . For each time point (T), the number of participants who took part in the data
collection (n) and the measures recorded. HITS = High intensity training session.
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On the day identified by the coach, participants first completed the standard data

collection procedure outlined in the main study. Participants then provided 2 ml of saliva

via the unstimulated passive drool technique pre-and post-training. Pre-training samples

were collected between 1650 - 1700 hours prior to the warm-up beginning. Post-training

samples were collected between 1900 - 1910 hours after the session had finished (Figure 20).

Figure 20 . Order and timing of the data collection protocol.

Prior to the data collection, participants were asked to avoid eating a large meal (60 mins

prior) and drinking alcohol (12 hours prior) to reduce contamination of the samples.

Additionally, following the recommendations provided by Salimetrics for salivary cortisol

collection, participants were instructed to rinse their mouths with water for 10 minutes

prior to providing each sample. Once both pre-and post-training samples had been
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obtained, the samples were immediately frozen at -80°C. After the completion of all data

collection, cortisol concentrations (µg/dL) were determined in duplicate by enzyme-linked

immunoassay (Appendx G; Salimetrics, USA) using a micro plate reader (SpectraMax 190,

Molecular Devices, CA, USA). The micro plate reader was calibrating by a laboratory

technition using an absorbance test plate prior to the analysis. In addition, a new standard

curve was calculated from the control samples provided in the Salimetrics assay kits for

each of the seven plates used in the analysis, as recommended in the Salimetrics instruction

manual (Salimetrics, 2018). The inter-assay coefficient of variation (n = 7) was 13.31%

(±2.85). The intra-assay coefficient of variation (n = 248) was 5.17%. Salimetrics

recommend that inter-assay values below 15% and intra-assay values below 10% are

acceptable.

Data analysis. Several steps were taken to prepare the independent variables prior to

the analysis. The LESCA scoring was modified to represent the average response for

negative life events at each time point. The modified score was calculated by dividing the

negative life event score (calculated with the standard LESCA scoring instruction) by the

number of negative life events reported. The average score ranged from 0 (no life events) to

4 (all events answered as extremely negative). This approach was employed to ensure that

the LESCA scores captured and more accurately reflected the perceived severity of life

events and differentiated between athletes who may have high scores based on several

minor events compared to a smaller number of major events.

Equation (4) was used to calculate the change in cortisol (C) concentration following

high-intensity training.

∆C = Post

Post+ Pre
(4)

Equation (4). Delta values for cortisol. ∆C = Change in cortisol; Pre = Pre-trainng

values; Post = Post-training values.

∆C is a dimensionless ratio between 0 and 1. Values above 0.5 represent an increase in

cortisol levels and numbers below 0.5 a decrease in cortisol levels between pre-and
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post-training (Siart et al., 2017). Finally, muscle stiffness was calculated as the sum of all

eight testing locations as outlined in the first study. Summary statistics of the predictor

variables, and days lost to injury are in presented in Table 19. All independent variables

were mean centred and standardised to one standard deviation prior to the analysis.

Table 19
Summary statistics (mean and SD) of the
variables included in the analysis.

Football Rugby

Variable M SD M SD

Average NLE score 1.68 0.86 1.67 1.17
Days missed 15 35 10 23
∆C 0.49 0.18 0.54 0.18
Stiffness (N ·m−1) 2586 319 2541 191

A Bayesian hurdle regression model was used to explore the relationships between the

negative life events, muscle stiffness, change in cortisol and number of days lost due to

injury. A hurdle model contains two parts. The first part is a logistic regression that

provides an estimate for whether days missed was 0 (healthy) or greater than 0 (sustained

an injury). The second part is a zero-truncated negative binomial regression that predicts

the number of days lost due to injury. A score of zero is ignored in this instance as the

model assumes the counting process (e.g., sustaining an injury) has not taken place (Hu,

Pavlicova, & Nunes, 2011). Each part of the model can have different independent

variables; however, in the current study all predictors were present in all parts of the

model. To account for the potentially different hormonal responses in the two teams due to

different high intensity training sessions, an interaction between ∆C and sport was

included in the model. In addition, a varying intercept was included to account for the

repeated measurements on the same individuals (Goldstein, Bryk, & Raudenbush, 2006).

Two further Bayesian linear regression models were used to investigate the relationship

between the average NLE score, (∆C) and muscle stiffness. In the first model, (∆C) was

the dependent variable and both muscle stiffness and average NLE score were the
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independent variables. In the second model, muscle stiffness was the dependent variable

and average NLE score was the independent variable. Figure 21 shows a path diagram that

outlines the relationships investigated.

Figure 21 . Path diagram of the structural relationships modelled. Solid lines represent
relationships modelled within the hurdle model, and dashed lines represent relationships
modelled in the multiple regression models.

All Bayesian models were created using Stan computational framework (Carpenter et al.,

2017), accessed via the brms package (Bürkner, 2017) in R (R Core Team, 2019a). The full

R code for all models is available in Appendix F, and in the thesis repository on Github

(https://github.com/HarryFisher1/phd-thesis). In order to ensure the analysis was

performed with rigour, the WAMBS checklist (Depaoli & van der Schoot, 2017) was used

as guidance for each stage of the analysis. The checklist outlines three main areas to

consider when conducting Bayesian analysis; the choice of priors and their influence on the

model, model convergence, and the estimates generated by the model. Each of these points

were considered with regards to the current analysis, and the steps taken are outlined in

the following sections.

https://github.com/HarryFisher1/phd-thesis
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Priors. To improve convergence and guard against over-fitting, weakly informative

priors were specified for the model parameters. All predictor variables were standardised so

a one-unit change represented a change in one standard deviation. Therefore, priors with a

normal distribution, centred at 0, with a standard deviation of 2.5 were used for each

predictor. For the intercepts in each model, non-informative priors were used with a

normal distribution centred at 0 with a standard deviation of 10. A half-Cauchy prior with

mode of 0 and scale of 1 was used as a prior distribution for the variance parameter of the

varying intercepts as recommended by Gelman (2006). As the priors used were only weakly

regularizing, no sensitivity analysis was conducted (Depaoli & van der Schoot, 2017).

Convergence. For each model, a total of four chains containing 2000 samples were

initially used to generate posterior estimates. Convergence was checked via Rhat values

and visual inspection of the trace plots of the MCMC chains (Andrew Gelman & Shalizi,

2013). The number of iterations were then doubled to 4000, and convergence was checked

again (Depaoli & van der Schoot, 2017). In both instances, the models showed convergence

(Rhat values < 1.01; similar trace plots for each chain for all parameters). The ShinyStan

interface (Gabry, 2018) was used to visualise the trace plots, and can be accessed by

running the “launch_shinystan” function with each model object (Appendix F).

Output. To ensure the estimates were reasonable, and were a close fit to the observed

data, posterior predictive checks were carried out to assess the model predicted values

(Heino, Vuorre, & Hankonen, 2018). Several functions are available in the brms package to

perform posterior predictive checks (Bürkner, 2017). For example, Figure 22 shows the

observed (dark blue) and predicted estimates for muscle stiffness. Major discrepancies

between the observed and predictor values can indicate that the model has not converged

well, however in this instance, the estimates are reasonably relative to the observed data.

Credible intervals. Throughout the results section, 95% credible intervals (CrI) are

obtained for the posterior distributions of coefficiants generated by the model. Credible

intervals differ from frequentist confidence intervals in that they can be interpreted as

having 95% probability (although not limited to 95%, any justifiable interval can be used)

of containing the true population value (Morey, Hoekstra, Rouder, Lee, & Wagenmakers,
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Figure 22 . Observed (y) and predicted values (yrep) of muscle stiffness in the second model.

2016). In contrast, a 95% confidence interval implies that over long run frequencies, 95% of

the intervals obtained in the same manner (e.g., with the same sample size) would contain

the true population value (Depaoli & Schoot, 2017). Morey et al. (2016) provide a detailed

review of the implications of using confidence intervals, and why credible intervals should

be preferred when conducting Bayesian inference.

Results

A total of 42 injuries were sustained by 28 participants (football = 12 [0.55%], rugby = 16

[0.55%]). Ten participants sustained two injuries and one participant sustained four

injuries in the study period. On average, each injury resulted in 13 ± 30 days lost (range =

1 - 180) training and participation. The ∆C values for each team at each time point are

presented in Table 20. There was large variation in athletes’ cortisol response between the

different teams and each time point in the study.
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Table 20
Pre-, post- and change in cortisol (∆C) following high intensity
training (M ±SD).

Time Pre-training (µg/dL) Post-training (µg/dL) ∆C

Football
1 0.17 ± 0.12 0.20 ± 0.13 0.52 ± 0.23
2 0.20 ± 0.12 0.20 ± 0.15 0.48 ± 0.15
3 0.22 ± 0.08 0.42 ± 0.24 0.62 ± 0.13

Rugby
1 0.25 ± 0.12 0.30 ± 0.21 0.53 ± 0.14
2 0.21 ± 0.12 0.14 ± 0.10 0.40 ± 0.22
3 0.17 ± 0.07 0.24 ± 0.18 0.53 ± 0.16

Estimates for the hurdle model are presented in Table 21. For the logistic regression part of

the model, higher values of both average NLE score and stiffness decreased the probability

of days missed being 0, indicating a greater probability of being injured. However, the 95%

credible interval for both predictors is large and crosses 0 (average NLE score = [-1.06,

0.57], muscle stiffness = [-1.46, 0.55]) indicating a high level of variability in the data.

Conversely, greater ∆C concentrations were found to increase the probability of days

missed being equal to 0 for both teams. However, again the 95% credible intervals were

large, and the estimates should be interpreted with caution. The negative binomial part of

the model revealed a similar trend, with higher values of both average NLE score and

stiffness associated with a greater number of days lost due to injury (average NLE score =

0.13, 95% CrI = [-0.30, 0.55], muscle stiffness = 0.10, 95% CrI = [-0.19, 0.40]). However,

similar to the logistic regression part of the model, the estimates are small and should be

interpreted with caution. The relationship between ∆C concentration for the rugby team

indicated a positive relationship with increases in cortisol associated with increased number

of days lost, however the relationship was not clear for the football team. Additionally, the

95% CrI for estimates for both teams were large indicating uncertainty around the estimate

(Table 21). Figure 23 shows the conditional effects for each predictor, with other predictors

held at their mean value for both the logistic regression and negative binomial parts of the
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hurdle model.

Table 21
Parameter estimates for the hurdle model.

Term Estimate Error 95% CrI

Logistic parameters
Intercept 0.90 0.53 [-0.07, 2.03]
Average NLE score -0.24 0.40 [-1.06, 0.57]
Stiffness -0.47 0.49 [-1.46, 0.55]
∆C - Football 1.10 0.71 [-0.06, 2.69]
∆C - Rugby 0.38 0.48 [-0.53, 1.35]

Negative binomial parameters
Intercept 3.53 0.22 [ 3.18, 3.88]
Average NLE score 0.13 0.26 [-0.30, 0.55]
Stiffness 0.10 0.18 [-0.19, 0.40]
∆C - Football 0.10 0.32 [-0.43, 0.62]
∆C - Rugby 0.54 0.30 [ 0.05, 1.05]
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Figure 23 . Conditional effects for each predictor with other predictors held at their mean
value (0). Top row is the logistic regression estimates, bottom row is the negative binomial
estimates.

The estimates from the multiple regression between ∆C, muscle stiffness and average NLE

score are presented in Table 22. No relationship was found between average NLE score and

change in cortisol (β = 0.01, 95% CrI = [-0.19, 0.20]). Weak positive relationships were

found between increases in cortisol and muscle stiffness(β = 0.07, 95% CrI = [-0.32, 0.48],

and between stiffness and average NLE score was unclear (β = 0.05, 95% CrI = [-0.06,

0.16]). However, these estimates were again small with credible intervals that crossed zero

meaning there is uncertainity around the true estimate.
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Table 22
Parameter estimates for the relationships between delta,
average NLE score and muscle stiffness.

Term Estimate Error 95% CrI

∆C
Intercept 0.00 0.11 [-0.22, 0.21]
Average NLE score 0.01 0.10 [-0.19, 0.20]
Stiffness 0.07 0.20 [-0.32, 0.48]

Stiffness
Intercept -0.07 0.14 [-0.29, 0.16]
Average NLE score 0.05 0.06 [-0.06, 0.16]

Discussion

This study investigated the relationships between psychological and physiological markers

of stress, and injury severity in a sample of national level athletes. In this regard, the

purpose of the study was twofold. First, to determine whether a modified method of

scoring the LESCA that accounted for perceived severity of the life event experienced was

related to injury. Secondly, to investigate the relationships between negative life event

stress, muscle stiffness and changes in cortisol (∆C) following high intensity training in

relation to injury occurence.

Individuals who perceived life events as more severe (had a higher average NLE score) were

both more likely to sustain an injury, and also have more severe injuries (Figure 23).

However, estimates had wide credible intervals that crossed zero highlighing the

uncertainty within the estimate (Table 21). This finding suggests there may be a need to

distinguish between those athletes that experience multiple low severity events from those

that have fewer events which are perceived as more stressful. To elaborate, more major

events that hold greater significance are likely to contribute more towards increased stress

levels than multiple minor life events that the individual may be able to adequately deal

with. The relationship between more major events and injury may be explained by the

concurrent heightened physiological response that is likely to accompany the perceived
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major event stress. Several studies have shown how the perception of stressful events plays

an important role in the physiological stress response (Dishman et al., 2000; Edwards,

Walsh, Diment, & Roberts, 2018; McEwen, 2005; Otter, Brink, Diercks, & Lemmink, 2015).

Indeed, when coupled with the physiological distress experienced during high intensity

training, the heightened responsivity to major life events may act synergistically with other

sources of physiological stress to increase the risk of injury (cf. Appaneal & Perna, 2014).

To add further support to the relationship between perceived psychological stress and

physiological activation, the current study also found a weak positive relationship between

muscle stiffness and average NLE score (Table 22). Williams and Andersen’s (1998) model

proposed increased muscle stiffness, as a result of the stress response, as one of the

potential mechanisms through which injury may occur. While the cause of the increased

muscle stiffness cannot be ascertained in the current study, the existence of both major life

events and high muscle stiffness is likely to increase the risk of injury. Although the weak

relationship between muscle stiffness and average NLE score was not conclusive (reflected

by large 95% credible intervals), the current findings offer initial support for both Williams

and Andersen’s (1998) stress-injury model and Appaneal and Perna’s (2014) BMSAIH.

With regard to the findings for cortisol, no conclusive evidence for a relationship between

∆C and injury occurrence or severity was found. This finding was in contrast to the

predicted role of cortisol in the injury process outlined in Appaneal and Perna’s (2014)

BMSAIH model. There are several possible explanations for this finding, including the

large variation in pre, post and delta values for cortisol for each team at different time

points in the study (Table 20). Although each session was denoted as “high intensity” by

the respective team coach, the content of each session varied between time points and the

two sports. In addition, there was no measure of “intensity” for individual players for all

sessions, and some players may have potentially performed at a lower intensity than others.

Indeed, Hill et al. (2008) found that lower exercise intensities may actually reduce the

concentration of cortisol post exercise. Given the varied content of each session, and

potential individual differences in effort in each session, the uncertainty (wide credible

intervals in Table 21) in the estimates for ∆C is to be expected. Although the field-based
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nature of the current study provides for high ecological validity, greater control for

potential confounding variables is needed to establish the relationship between ∆C and

injury. The results for the relationship between average NLE score and ∆C were unclear,

with wide credible intervals (β = 0.01, 95% CrI = [-0.19, 0.20]), implying the effect was not

well supported by the data. Of note was a weak positive relationship between muscle

stiffness and ∆C, with higher levels of muscle stiffness associated with greater ∆C

concentrations (β = 0.07, 95% CrI = [-0.32, 0.48]). One possible explanation could be that

the higher-level performers within each team may have been training at a higher intensity

compared to their lower level counterparts, resulting in a greater change in cortisol post

training. This suggestion would be consistent with the notion that higher levels of stiffness

are associated with a higher level of performance (cf. Kalkhoven & Watsford, 2017; Pruyn,

Watsford, & Murphy, 2015).

Consistent with the findings from the first study, muscle stiffness was again found to be

related to injury, and there was also a positive relationship between muscle stiffness and

injury severity. The relationship between muscle stiffness and injury is complex, as high

levels of muscle stiffness are associated with both a greater risk of injury

(Pickering-Rodriguez et al., 2017), but also high levels of performance (Kalkhoven &

Watsford, 2017; Pruyn et al., 2015). This complexity may have been reflected in the wide

credible intervals associated with the esimate for muscle stiffness in the hurdle model

(Table 21), implying variability with the data regarding the relationship between stiffness

and injury. The higher levels of muscle stiffness observed in the current study could be

attributable to a higher number of exposure hours likely experienced by certain players.

One of the effects of high expsoure is likely to be in an increase muscle stiffness due to the

repeated contraction of skeletal muscle, potentially increasing the risk of injury

(Hedayatpour & Falla, 2015). Addintionally, high levels of exposure are also known to

increase the risk of injury (S. Williams, Trewartha, et al., 2017), and therefore these factors

together may amplify the risk of injury further. As such, increased muscle stiffness may

provide an early indication of physiological maladaptation caused by high level of exposure

to training. There is however, a contrasting viewpoint regarding the effect of increased

exposure to training. Increased exposure to high intensity training has been found to
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reduce the risk of injury in certain instances (Gabbett, 2016). For example, low training

volume and intensity may not provide the necessary physiological adaptations needed to

tolerate the higher loads that are likely to occur over the course of a season (Gabbett,

2016). Evidently, training loads that are excessive will still likely result in injury, however

there is likely to be an optimum level of load needed to elicit the required adaptations to

perform optimally, while still remaining healthy (Gabbett, 2016). Taken together, both

exposure levels and muscle stiffness highlight the need for methodologies that account for

individual differences, and an interdisciplinary approach to understand the complex

relationships between different sources of stress and injury.

The present study had a number of strengths and limitations. One strength was the use of

a hurdle regression model that can account for both injury occurrence and injury severity.

Traditionally, logistic regression models have been used within sport injury research

(Bittencourt et al., 2016); however, hurdle regression extends the logistic model by also

including a negative binomial model to predict the number of days lost due to injury. As

such, greater detail can be obtained from the predictors in the model by examining both

their influence on injury occurrence and severity. The study also used a hurdle model

within a Bayesian framework, which has several advantages over a frequentist method,

most notably the ability to account for small samples sizes such as the one used within the

current study. Of the study limitations, the sample was restricted to only two male team

sports, and therefore findings may not be generalisable across other individual based sports

or for female athletes. The study also suffered from a high dropout rate, with only 19 out

of 51 participants completing all three time points in the study. Given the high drop out

rate, the sample size was relatively small compared to the first study. A large sample

would help to combat the large credible intervals present in the model estimates that made

drawing conclusive conclusions regarding the different releationships difficult. Additionally,

the field-based nature of the data collection meant there was an absence of control over

training intensity.

Future research should aim to clarify the relationship between negative life event stress,

cortisol and injury as proposed by Appaneal and Perna (2014). While the current study
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was unable to find a clear relationship, there were several confounding variables that may

have impacted upon the results. In addition, a stronger positive relationship was observed

between cortisol and muscle stiffness, which could provide an interesting avenue for

research to explore further. Future research could also further investigate the novel scoring

approach outlined in the current research. The scoring is easily implemented and can be

included as an additional variable in research that uses the LESCA to assess life event

stress in athletes. Establishing whether events that are perceived as more severe have a

stronger relationship with injury may lead to a more fine-grained understanding of the

relationship between life event stress and injury.
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Chapter 6:

General Discussion and Conclusions
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General discussion and conclusions

The purpose of the final chapter is to draw together the findings and highlight the

implications of this programme of research. The chapter is organised into six sections that

provide: (a) a summary of the two studies, including key aims and findings; (b) a

discussion of the conceptual and measurement issues that have emerged from this thesis;

(c) the practical implications of the results of the research; (d) directions for future

research; e) the strengths and limitations of the current research; and (f) conclusions that

synthesizes the central aspects of the thesis.

Summary of studies

Despite acknowledging that sport injury is a complex, multifaceted process, research that

has examined factors associated with the prediction of sports injury has generally been

mono-disciplinary in nature, and has not addressed the potential interaction between the

sports science disciplines. Therefore, the central purpose of this thesis was to adopt a novel

approach to explore the multifaceted nature of the relationships between stress and athletic

injury. Specifically, how psychological and physiological markers of stress may act

synergistically to increase the risk of sustaining an injury. As such, the current programme

of research adopted an interdisciplinary approach using a range of markers from across the

sports science disciplines to examine their combined and interactive influence on sports

injury occurrence. The thesis comprised two empirical studies:

Study 1: Interdisciplinary examination of stress-related markers of sports injury.

The purpose of the first study was to explore the relationships between psychological

sources of stress, stress-related physiological markers and injury occurrence in athletes.

Specifically, the study aimed to address several limitations outlined in previous research,

including the need for; (a) an interdisciplinary approach using both psychological and

physiological stress-related markers; (b) the use of a repeated measures design; (c) the

inclusion of both male and female participants from a range of different individual and

team-based sports; and (d) the use of an appropriate analysis method that addresses the
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complex nature of the interactions between different markers of stress and injury

occurrence. To address these limitations, 351 non-injured athletes were recruited from the

university where the study was conducted, and from sports clubs in the local area. In a

repeated measures design, data collection occurred at four time points over a 12-month

period, and comprised measures of; major life event stress, personality, muscle stiffness,

heart rate variability and postural stability. In addition, injury status was assessed at each

time point. Bayesian networks were used to examine the relationships between variables,

and to model the changes between time points across the 12-month period. Two Bayesian

networks were used for the analysis; the first network examined the relationships between

variables, and the second network modelled the changes between time points in the study.

Findings from the first network revealed muscle stiffness to have the strongest relationship

with injury occurrence, with “High” levels of stiffness increasing the probability of

sustaining an injury compared to “Low” stiffness (“Low” = 0.16, “High” = Pr = 0.31). In

addition, poor balance, low heart rate variability and low scores on the fight-flight-freeze

subcomponent of the Reinforcement Sensitivity Theory Personality Questionnaire

(RST-PQ) were all found to increase the probability of injury (Table 9). Surprisingly,

negative life events (NLE) was not found to only marginally increase the probability of

injury (“Low” Pr = 0.24, “High” Pr = 0.26) despite strong evidence from previous research

to the contrary (Ivarsson et al., 2017; Williams & Andersen, 2007). In the second network

that modelled changes between time points, muscle stiffness was again found to be related

to injury, with increases resulting in a higher probability of injury. In contrast to the first

network, increases in NLE were found to increase the probability of injury. To clarify,

those athletes who had the greatest increases in NLE between time points in the study

were more likely to sustain an injury than those who had minor increases or no changes to

their NLE scores. This finding reflected the dynamic nature of life event stress and further

emphasised the need for repeated measurements. The second network also revealed that

the combination of increases in muscle stiffness and NLE resulted in the greatest

probability of injury, supporting the need for an interdisciplinary approach.

Study 2: The relationship between major life events, muscle stiffness, cortisol and injury

occurrence and severity in team sport athletes.
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The purpose of the second study was to build on the findings of the first study and explore

the role of additional markers of stress in the stress-injury relationship. Specifically, Study

2 examined: (a) whether the stress hormone cortisol was also associated with negative

major life events and injury; (b) whether an alternative approach to evaluating negative

major life events would be related to injury; and (c) how these measures related to both

injury occurrence and severity. Participants, who were a sub-sample (n = 51) from the first

study, were members of the university men’s football and men’s rugby teams where the

research took place. In addition to the measures outlined in Study 1, participants also

provided saliva samples pre-and post-high intensity training sessions at the first three time

points in the study. The change in concentration of cortisol in the samples pre-and

post-training session was used as a marker of the stress response to the training session

(cf. Perna & McDowell, 1995). In contrast to the first study where the original method of

scoring NLE was used (cf. Petrie, 1992), a modified method was used in Study 2 where

each participant’s total NLE score was divided by the number of events they had

experienced, resulting in an average NLE response. This method enabled the distinction

between athletes who experienced several minor events, from those that experienced fewer,

but more major events. Under the original scoring method these athletes would receive the

same life event score despite the potential for very different stress responses. For the

analysis, a Bayesian hurdle regression model was used to explore the relationships between

the predictors and injury, and Bayesian linear regression models were used to explore the

relationships between the predictors. Results revealed that higher levels of both average

NLE score and muscle stiffness increased the probability of injury occurrence and increased

the number of days lost due to injury; however, the estimates had large credible intervals

implying uncertainty regarding the observed relationships (Table 21). With regards to

changes in cortisol, a positive relationship between increases in cortisol and number of days

lost due to injury was found for the rugby team; however, the relationship was not clear for

the football team (football, estimate = 0.10, 95% CrI = [-0.43, 0.62]; rugby, estimate =

0.54, 95% CrI = [0.05, 1.05]). The results from the study complement the findings from the

first study, and offer several avenues for further research to explore, including the

application of the modified scoring of major life events to other cohorts, and further
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clarification regarding the relationship between cortisol and injury.

Conceptual and measurement issues

This section highlights the key conceptual and measurement issues related to the current

programme of research. Conceptual issues are discussed in relation to interdisciplinary

research in sport injury research, and how the current research programme fits within the

theoretical frameworks that underpin the thesis. Measurement issues and challenges faced

by the researcher are discussed in relation to the implications of the choice of measures

when using an interdisciplinary approach, and the additional complexities that arose with

the repeated measures design.

Conceptual issues.

Interdisciplinary approach to sports injury. Interdisciplinary research can be

defined as an integrative approach that involves the interaction of specialists across

sub-disciplines working together to combine methods and ideas to generate new knowledge

(Freedson, 2009). It differs from mono- and multi-disciplinary approaches due to the

holistic nature of the approach to research. Since being advocated in the early 1990’s by

Burwitz et al. (1994), interdisciplinary research within sport and exercise science has been

relatively scarce, despite repeated calls for researchers to embrace it (Buekers et al., 2017).

Recently, Piggott et al. (2018) identified only 25 studies since 1994 that had used an

interdisciplinary approach to address sport performance-related research questions. The

current research therefore adds to a small body of research that has adopted an

interdisciplinary approach and extends it to the stress-injury relationship. Specifically,

negative life event stress and personality characteristics were examined alongside

stress-related physiological markers that have previously been found to be related to both

psychological stress and injury occurrence. Such an approach is in line with Appaneal and

Perna’s (2014) Biopsychosocial Model of Stress, Athletic Injury and Health (BMSAIH),

which extends the widely cited Williams and Andersen (1998) model to include other

behavioural and physiological markers of stress that will act synergistically with

psychological sources of stress to exacerbate the risk of injury. Typically, however, these
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markers have been studied in isolation, thus the current study provides a contemporary,

interdisciplinary approach to the research problem.

Recently, Bittencourt et al. (2016) echoed the need for an interdisciplinary approach to the

sport injury problem and advocated concepts from complex systems to further advance our

understanding of the multifaceted nature of injury occurrence. Indeed, complex systems

theory provides a useful framework for interdisciplinary research, as it has several

characteristics that can help bring together different areas of the sport injury literature. A

central tenet of complex systems theory is that injury will arise from an interrelated “web

of determinants” (Bittencourt et al., 2016, p. 1) that may be linked in a non-linear

manner, with small changes in one area potentially leading to large and unexpected

consequences. This view differs from the traditional monodisciplinary approach that sport

injury research has adopted, typically using reductionist analysis techniques for linear

combinations of isolated predictive factors (Devantier, 2011; Galambos et al., 2005; Vacek

et al., 2016) The current research has attempted to address this issue by using analytical

techniques that are more closely aligned with the complex system approach and reflect the

uncertain nature of injury occurrence. The first study adopted a Bayesian network model

that was inspired by the “web of determinants” outlined by Bittencourt et al. (2016; p. 1).

In the network, the relationship between variables as well their effect on injury was

examined, and relationships were uncovered and explored using both prior knowledge and

data driven approaches. In the second study, Bayesian regression models where used to

investigate the relationships between predictor variables and both injury occurrence and

severity. Although these models were linear in nature, using a Bayesian approach allows for

the uncertainty to be estimated, and improves upon the maximal likelihood methods

commonly used within the frequentist paradigm (Heino et al., 2018). Such methods are

particularly useful for sport injury research which typically suffers from small samples sizes,

and small effects that can be problematic when using frequentist techniques (Mengersen,

Drovandi, Robert, Pyne, & Gore, 2016).

Theoretical links. The current body of research was underpinned by Williams and

Andersen’s (1998) model of injury prediction and Appaneal and Perna’s (2014) extension



125

of Williams and Andersen (1998) model. The stress-injury model proposed by Williams

and Andersen (1998) is one of the most widely cited models of injury within the sport

injury literature, and there has been considerable support for the role of several of the

psychological variables proposed in the model in the stress-injury literature, including;

negative life events (Gunnoe et al., 2001; Ivarsson & Johnson, 2010; Maddison &

Prapavessis, 2005; Rogers & Landers, 2005), personality characteristics (Junge, 2000;

Lavallée & Flint, 1996; Petrie, 1993) and coping resources (Hardy, 1992; Petrie, 1993). A

major criticism of Williams and Andersen’s (1998) model, however, is the focus on the

cognitive stress response and the absence of additional sources of stress, such as

environmental and physiological factors, that are also likely to influence injury occurrence

(Ivarsson et al., 2017). To address this issue, Appaneal and Perna (2014) proposed the

BMSAIH, which extended the original model to include other behavioural, environmental

and physiological factors that are also likely to contribute to the occurrence of injury. In

particular, the BMSAIH proposed that the synergistic action of both psychological stress

and physiological stress, such as that sustained in response to training, will exacerbate the

stress response and increase the risk of injury. However, despite providing a framework for

research to extend the findings of Williams and Andersen (1998) the BMSAIH has received

relatively little attention within the sport injury literature, potentially because of the

insufficient detail offered regarding additional predictive variables that could be included

alongside the psychosocial characteristics proposed in the original model. While the

BMSAIH alludes to autonomic nervous systems (ANS) and hypothalamic pituitary adrenal

(HPA) axis activity being responsible for the physiological response to stress, as well as

hormonal markers including cortisol and testosterone as potential mediating pathways for

the stress-injury relationship, few specific predictive variables are offered beyond this.

Based on Williams and Andersen’s (1998) and Appaneal and Perna’s (2014) models, and

the wider sport injury literature, the current research identified several related markers

that were in line with the ideas proposed in both frameworks and provided an

interdisciplinary perspective that united the psychological characteristics with the

stress-related physiological markers alluded to in the BMSAIH. To help visualise how these

markers fit within the original model, Figure 24 provides an updated version of Williams
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and Andersen’s (1998) model to demonstrate how the ideas presented in the BMSAIH can

be integrated. In Figure 24, the stress-related physiological markers are proposed to act

between the psychosocial factors and the stress response from the original model. In

addition to the direct effect of psychosocial characteristics on the stress response,

stress-related physiological markers are proposed to provide a pathway between the

psychosocial sources of stress and the stress response. Depending on the severity of the

stress response, the physiological activation may also have longer lasting effects and

consequently influence the state of the stress-related physiological markers. In particular,

the arrows from the stress response, through the stress-related markers and to the

psychosocial characteristics demonstrate how the stress response is likely to contribute to

an athlete’s “history of stressors” and play a role in their perception of similar stressful

events in the future. The dashed arrow from stress-related physiological markers to injury

indicates how the accumulation of stress and fatigue can contribute to injury occurrence

through overuse or burnout mechanisms, which the proposed mechanisms in the original

model does not adequately explain. The arrows towards injury are dashed to indicate that

injury is not always a certainty, and that an athlete can face a stressful situation and

recover, improving their tolerance for future similar stressful situations. Meeuwisse et al.

(2007) identified the linear approach to most injury models as unrealistic and Figure 24

attempts to integrate the dynamic, recursive nature of injury occurrence highlighted by

Meeuwisse et al. (2007).

With regards to the physiological markers themselves, HRV, muscle stiffness, postural

stability and cortisol were selected on the basis that they have been examined in a variety

of different stress-related disciplines including psychopathology, lifestyle and geriatric

research, as well as the sport injury literature (Bailey et al., 2013; Gervasi et al., 2017;

Ockenburg et al., 2015; Rath & Wade, 2017). Consequently, they provided markers of

stress alongside the psychosocial characteristics proposed by Williams and Andersen (1998)

to provide additional insights into the stress-injury relationship. In the current research,

many of the markers were associated with injury occurrence to varying degrees, with both

muscle stiffness and HRV also showing connections with NLE and personality

characteristics respectively. Specifically, high levels of muscles stiffness were found to be
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Figure 24 . Modified version of Williams and Andersen (1998) model of stress and injury.

the strongest predictor of injury across both studies in the thesis. This finding is consistent

with a small body of research that has investigated the link between stiffness, as measured

with the MyotonPRO, and injury (Morgan et al., 2018; Pickering-Rodriguez et al., 2017).

In the second network in Study 1, the combined effect of increases in both muscle stiffness

and NLE resulted in the highest probability of injury, supporting Appaneal and Perna’s

(2014) proposed synergistic action of both psychological and physiological markers of stress

interacting to exacerbate the risk of injury. A weaker relationship was observed for both

poor balance and low HRV, which were found to increase the probability of injury. Despite

the weak relationships with injury, the findings were in agreement with the relevant

literature for both HRV (Lima-Borges et al., 2018; Williams et al., 2017) and postural

stability (Romero-Franco et al., 2014; Trojian & McKeag, 2006), and further demonstrate

the importance of using a range of stress-related markers. In the second study, a weak

positive relationship between the change in cortisol following high intensity training and

the number of days lost to injury was observed for the rugby team (estimate = 0.54, 95%

CrI = [0.05, 1.05]), however the relationship was less clear for the football team (estimate
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= 0.10, 95% CrI = [-0.43, 0.62]) making the results inconclusive. There was also a weak

positive relationship between the change in cortisol and muscle stiffness (estimate = 0.07,

95% CrI = [-0.25, 0.40]), highlighting an interesting relationship for future research to

explore further.

One characteristic that all the markers share is their relationship with the autonomic

nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis. Appaneal and

Perna (2014) proposed the ANS, and subsequent HPA activity, as one of the mediating

pathways through which psychological stress will combine with other physiological effects

of training-related stress to exacerbate the overall stress response. Indeed, both the ANS

and HPA axis are extremely sensitive to all forms of “stress” and, either directly or

indirectly, will cause the modification of many systems within the body to prepare, react,

or cope with, increasing levels of stress (Bellenger et al., 2016; Chrousos, 2009; Yaribeygi,

Panahi, Sahraei, Johnston, & Sahebkar, 2017). These notions are central to the concept of

allostasis, or stability through change, which has surprisingly received little attention in the

sports injury literature despite a large body of research linking the psychological and

physiological effects of stress that would be of value to the stress-injury relationship

(Galambos et al., 2005; Ganzel et al., 2010; McEwen, 2007; Sterling & Eyer, 1988). Of

particular relevance to sport injury is the concept of allostatic load, which has been defined

as the “long-term carry-forward of the sequelae of stress and adversity” (Rutter, 1994, p.

373). A healthy athlete may experience negligible allostatic load, resulting in a

symptom-free health profile reflected by adequate recovery and positive responses to

training. However, allostatic load can accumulate as a result of daily low levels of stress in

the environment and discrete major life events, both of which are proposed to be related to

increased risk of injury (Appaneal & Perna, 2014). Furthermore, excessive increases in

training volumes or intensity can further contribute to the allostatic load, leading to a

more symptomatic profile with a greater risk of athletic injury. This global view of stress

helps to demonstrate how the effects of both psychological and physiological sources of

stress are related and highlights the need for stress-related injury research to continue to be

addressed from an interdisciplinary perspective. The current programme of research has

therefore provided the sport injury literature with an initial basis to move toward a more
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inclusive, holistic approach to injury prediction research that brings together disparate

disciplines to address the sport injury problem.

In addition to the inclusion of stress-related physiological markers, the current research has

also provided novel contributions to our understanding of the role of well-established

psychosocial variables included in the original Williams and Andersen (1998) model,

particularly with regard to the measures used to assess them. For example, the current

research sought to integrate Reinforcement Sensitivity Theory (RST; Corr, 2008), which

attempts to explain the multidimensional nature of personality. Initially proposed by Gray

(1982), the RST was revised by Gray and McNaughton (2000) to include three systems

that are proposed to govern an individual’s behaviour, specifically the behavioural

activation system (BAS), behavioural inhibition system (BIS) and fight-flight-freeze system

(FFFS). According to the RST, the FFFS and BAS are responsive to all punishing and

threatening stimuli (e.g., physical pain from training or competition) and all rewarding and

appetitive stimuli (e.g., prize money from winning a major competition) respectively.

When there is conflict between these two systems, BIS is activated and engages in risk

assessment and threat identification that may inhibit or result in a more cautious approach

or avoidance behaviour initially considered by the BAS or FFFS systems. Excessive BIS

activation can elicit the emotional state of anxiety, which provides a link to the original

Williams and Andersen (1998) model where high levels of anxiety have previously been

found to be related to injury occurrence (Ivarsson & Johnson, 2010; Lavallée & Flint, 1996;

Petrie, 1993)

Several measures of the revised theory have been developed (cf. Walker & Jackson, 2017),

and a recent version proposed by Corr and Cooper (2016) was validated by Young (2019)

using a sample of athletes from Study 1. The newly validated questionnaire was used

within Study 1 and the analysis revealed the FFFS to be the only factor that was directly

linked to injury. Specifically, low levels of FFFS were associated with a greater probability

of injury occurrence. RST states that FFFS reflects the emotion of fear, and these findings

suggest that those athletes who were less fearful potentially engaged in more risk-taking

behaviours and consequently were exposed to a greater risk of injury. Indeed, when
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coupled with high BAS and low BIS activation, low FFFS is thought to result in “reckless”

or “striving” behaviours (Corr et al., 2016), which could be considered “high risk, high

reward” behaviours in a sporting environment. For example, a 1500 m runner may have

this particular combination of characteristics (high BAS, low BIS and low FFFS) and begin

their sprint finish with 600 m still left to run. Their lack of fear (low FFFS) and anxiety

(low BIS) coupled with a strong motivation to succeed (high BAS) mean they are feeling

positive about making the move from a reasonably long way still left to run, and may

contrast to an athlete who has opposing characteristics (e.g., low BAS, high BIS and high

FFFS). If they are able to sustain their effort, they may end up winning the race (high

reward), however if they time their effort poorly and begin to fatigue too early, they may

end up being caught and finish outside of the medals, or potentially sustain an injury due

to the increased physical demand from sprinting so far out (high risk). Such an example,

derived from principles outlined by Corr et al. (2016), demonstrates how the components of

RST may interact and apply to a sporting context, and the current research provides the

first support for the relationship between RST and sports injury.

Although not related to injury prediction, the second Bayesian network in Study 1 revealed

a relationship between changes in BIS, FFFS and heart rate variability (HRV). In this

instance, increases in BIS were related to both increases in FFFS and decreases in HRV.

The positive relationship between BIS and FFFS is supported by RST and is likely to

result in moving from “apathetic” to “cautious” behaviour when BAS is low or from

“reckless” to “volatile” behaviour when BAS is high (Corr et al., 2016). Each of the latter

behaviours is related to higher anxiety, and the relationship with HRV provides

physiological evidence supporting this association. For example, high levels of anxiety and

anticipation of stressful situations are known to result in decreased high frequency HRV, as

measured by the root mean square successive difference (RMSSD) between heart beats

(Chalmers et al., 2014; Pulopulos et al., 2018). As such, the findings demonstrate a link

between the constructs and associated behaviours proposed in RST and physiological

response expected with such behaviours. Further research should continue to explore how

the RST can expand this area of the sports injury literature. To summarise, the current

body of research has both integrated elements from Appaneal and Perna’s (2014) BMSAIH
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by including stress-related physiological markers, and also made new contributions

regarding the psychosocial factors proposed in Williams and Andersen (1998) model. The

effect of these individual psychological factors and stress-related markers, in addition to

interactions between the different variables were explored to investigate how they act in a

synergistic fashion to exacerbate the stress response. The analysis drew inspiration from

Bayesian principles and complex systems theory to provide an approach that offers an

alternative to the commonly used frequentist multivariate regression-based techniques and

captures the holistic nature of the research. The result is a novel coalescence of traditional

theories and contemporary ideas, supported by an innovative analysis, that together

answer the calls for an interdisciplinary perspective within sports injury research.

Analysis. Throughout this thesis Bayesian statistics have been used in favour of

traditional frequentist methods of analysis in an attempt to address several issues

associated with the frequentist approach. Indeed, a shift towards Bayesian statistics has

occurred across the academic landscape, due in part to greater recognition of the issues

surrounding the p-value and null hypothesis testing paradigms (Wasserstein, Schirm, &

Lazar, 2019), and also an improvement in the accessibility to both hardware and software

which can enable effective Bayesian analysis (Carpenter et al., 2017). While other fields

such as clinical psychology (Heino et al., 2018) and medicine (Bittl & He, 2017) have

started to embrace Bayesian statistics, their use within the sports science literature

remains sparse, despite several characteristics which make Bayesian analysis particularly

suited to sport science (Bernards, Sato, Haff, & Bazyler, 2017). For example, a Bayesian

approach can help overcome issues when small sample sizes are present, and provide a

solution to some of the difficulties of evaluating small effects, both of which are common

issues within sport science research (Mengersen et al., 2016).

Despite the advantages offered by Bayesian statistics, there are a number of concerns with

using Bayesian methods. Indeed, Gelman (2008a) provides a comprehensive list of issues

that are commonly raised against Bayesian analysis2. One issue in particular that may

2 Gelman also provides a comprehensive counter arguments to these issues in his follow up paper (Gelman
2008b).
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raise concern is the use of subjective prior information within a model. While the idea of

including subjective information in a model that is supposed to be concerned with

objective knowledge may initially seem surprising, there are justifiable reasons for doing so.

For example, the prior allows information from previous experiments, historical data or

expert opinion to be included in the model, which can improve both the sampling and

inference. However, if no information is available, non-informative priors can be used,

allowing inferences to be driven by the data alone (Mengersen et al., 2016). Even if no

information is available, it is almost always possible to determine a range of values which

are plausible, compared to using a completely non-informative prior (Bernards et al.,

2017). While it is possible to use strong informative priors to influence results (akin to

p-hacking), authors should be able to justify the use of any particular prior. Indeed,

transparency in the decisions made when conducting Bayesian analysis is vital for both

validity of findings and reproducibility of results.

A second common issue that is the idea that Bayesian methods are presented as an

“automatic inference engine” (Gelman 2008a, p. 2). However, inference is only one part of

the process for conducting a Bayesian analysis. Before inference can occur, a model must

first be formulated. This step requires careful thought about what model is most realistic

to the data. After the model is is fit, several steps must be taken to check and evaluate the

model fit. Model convergence metrics and posterior predictive checks are examples of

necessary steps to ensure a robust model has been fit, and can help identify when there

may be issues with the model (Heino et al., 2018). These steps are far from automatic,

requiring careful thought and consideration, and are equally important to the model

building process as a whole (Gelman 2008b). Similarly to the choice of prior, it is vital that

the checks performed, and any adjustments to the model are recorded, to help provide a

transparent model building process.

To aid the necessary transparency in Bayesian analysis, Depaoli & van de Schoot (2017)

provided the WAMBS-checklist (When to worry and how to Avoid the Misuse of Bayesian

Statistics). By following the checklist, authors can ensure that each decision made is

defensible, and the Bayesian model that is used for analysis is robust and justified. In this
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thesis, Study 2 implemented a number of checks recommended by the Depaoli & van de

Schoot (2017), and the full analysis script is openly available for other researchers to access

(Appendix F). By adhering to a clear and transparent approach to Bayesian analysis, the

thesis aimed to address many of the potential issues cited by Gelman (2008a), and add to

the small, but growing, number of studies using a fully Bayesian approach within the

sports science literature and benefit from the numerous strengths a Bayesian approach has

to offer.

Measurement issues. The additional complexity of interdisciplinary research presents

researchers with several challenges in terms of measurement. To help researchers with these

challenges, Tobi and Kampen (2018) have recently proposed the Methodology for

Interdisciplinary Research (MIR) framework (Figure 25) that highlights several issues that

were present in the current research, particularly when choosing variables of interest, and

how they should be measured. Specifically, Tobi and Kampen (2018) discuss the impact

that instrument selection and associated reliability have on the execution of a data

collection plan and the quality of data that can be collected. While the data collection was

planned and executed prior to the publication of Tobi and Kampen’s (2018) framework,

the points discussed are particularly salient in the current research, which combined

questionnaire-based data collection with measurement of stress-related physiological

markers in an interdisciplinary setting. A clear difference between these types of data was

that questionnaires could be completed with relatively low input from the researcher, as

participants were simply given a set of instructions to follow and were able to complete the

questionnaire at their own pace during the data collection session. In contrast, each of the

physiological measures required the researcher to prepare and/or manually perform each

measurement. Due to the large-scale of the study, measures that had a high time cost were

therefore not suitable for the data collection procedure. Ease of administration of the

measures was favoured over the respective “gold standard” for each measure, which would

have been more time consuming and impractical for such a large scale data collection. In

line with Tobi and Kampen’s (2018) framework, a considerable amount of time was spent

during the variable identification, instrument selection and pilot testing stages (Chapter 2),

to ensure the measures that were chosen were robust and reliable, and that the quality of
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the data was not compromised by the chosen procedures and measures.

Figure 25 . Methodology for Interdisciplinary Research (MIR) framework (Tobi & Kampen,
2018).

During the execution of the data collection, the identified measures and instruments

generally performed as expected, and no major challenges were faced. Occasionally,

however, there were particular challenges with both the muscle stiffness measurement,

where results occasionally did not save and measurements had to be repeated; and heart

rate variability, where chest strap sensors failed to pick up heart rate signals and time was

spent adjusting or reconnecting chest straps. Given the rigorous planning prior to data

collection, these issues were quickly resolved and did not significantly impact the overall

execution of the data collection.

While the selection of variables of interest and choice of measurement instruments from an
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interdisciplinary perspective presented considerable challenges, the complexities of

measurement were further confounded due to the repeated measures design of the current

research. Specifically, the chosen measures also needed consideration with regard their

suitability over repeated measurement occasions. While efforts were made to ensure the

choice of measures were appropriate for a repeated measures design (Chapter 2), one issue

that became apparent was the use of the LESCA questionnaire over a shortened time

interval. The instructions in the original LESCA questionnaire ask participants to report

major life events that have occurred over the previous 12 months (Petrie, 1992), however in

the current study, participants completed the LESCA at approximately 4-monthly intervals

after the first data collection. To avoid inflated scores caused by reporting the same event

on multiple occasions, they were asked to report any events which had occurred since the

previous data collection session. An unintended consequence of this approach was

particularly low scores in the second and third data collection sessions, with 26% of

participants reporting 0 negative life events for the preceding four-month period. This

result suggests that the items on the LESCA may be less suitable for repeated

measurements with durations shorter than the original 12-months, and a measure that

captures more minor life events in addition to major events may be more appropriate

(cf. Fawkner et al., 1999).

A further consideration that was made regarding the repeated measures design was how

demanding and time consuming each measure would be for each participant. While

obtaining reliable and valid data across all variables was important, using arduous or

uncomfortable measures may have exacerbated participant drop-out which is a known

limitation of longitudinal, repeated measures research designs (Abshire et al., 2017).

Therefore, a goal of the current study was to establish the feasibility of valid and reliable

measures that would capture the variables of interest but also safeguard retention of

participants in a repeated measures design. Indeed, the field-based nature of the chosen

measures meant that it was possible to collect data in different locations, which was highly

convenient for completing testing with the local sports teams who were not based at the

university. In this instance, the choice of measures had a positive impact on participant

retention, and the measures chosen achieved the goal of being both valid and reliable, yet
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feasible within the large scale, longitudinal, repeated measures design adopted in the

current research.

With regard to the specific measures used in the research, there are several points that

warrant discussion, including:

• The scoring of the LESCA.

• The novelty of the MyotonPRO in sports injury research.

• The combined strength of the measures in an interdisciplinary study.

The LESCA has been widely used as the measure of life event stress for collegiate athlete,

with a preponderance of findings supporting the link between negative life events and

injury. (Gunnoe et al., 2001; Ivarsson et al., 2017; Maddison & Prapavessis, 2005; Williams

& Andersen, 2007). However, the current research did not support this relationship (Rider

& Hicks, 1995). Instead, it was the first study to highlight a potential issue with the

original scoring method. The original scoring method of the LESCA does not differentiate

between athletes who may experience few minor events and several major events. To

clarify, an athlete who reports one major event receives the score of -4, which is the same

as an athlete who reports four minor events (scored at -1 each). These two profiles, and the

associated responses are unlikely to be equivalent given their potential impact, and

medium to longer term consequences (Tosevski & Milovancevic, 2006). By using the

average life event response, it was possible to distinguish between these two profiles, which

revealed some promising findings. In Study 2, higher average NLE response was found to

both increase the risk of injury and was also associated with greater injury severity; a

finding that offers several possible avenues for future research.

The use of the MyotonPRO within sports science research has recently started to gain

traction, with several studies using the device to assess musculoskeletal characteristics such

as stiffness in athletes (Gervasi et al., 2017; Kalkhoven & Watsford, 2017; Pruyn et al.,

2015). However, these studies have typically focused on performance, and relatively few

studies have used the MyotonPRO to investigate the relationships between musculoskeletal

characteristics and sports injury (Pickering-Rodriguez et al., 2017). The current research
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found muscle stiffness to have the strongest relationship to injury, with high levels of

stiffness increasing the probability of sustaining an injury. Given the ease with which the

data could be collected when using the device, the MyotonPRO could be included in a

variety of study designs to further investigate the relationship between stiffness and injury.

Indeed, in contrast to other measures available to assess muscle stiffness, the MyotonPRO

presents an objective, non-invasive, cost effective method to obtain muscle stiffness

measurements that would be particularly useful for coaches and sports practitioners to

obtain data in a field-based environment. Data of this type would enable them to make

more informed decisions about an athlete’s muscle characteristics. As such, using a device

such as the MyotonPRO could become a vital part of a holistic assessment of an athletes

readiness to train and compete.

A major point of contention for interdisciplinary researchers is how to integrate measures

from different disciplines into a coherent data collection plan that addresses the research

question (Tobi & Kampen, 2018). In the current study, considerable time was spent

identifying, evaluating and pilot testing different measures to decide which ones would be

suitable for the planned data collection. Specifically, measures for the stress-related

physiological markers presented the most challenges, as these required the most amount of

time from the researcher. For example, postural stability was initially planned to be

assessed with a balance task using a force plate, however, this more complex mode of data

collection would have had a negative impacted on the other measures given the additional

time needed to complete the balance task. Instead, the Balance Error Scoring System

(BESS; Riemann et al., 1999) was identified as a reliable alternative that required

significantly less time to complete. Similarly, a specialised Bluetooth sensor was initially

planned to collect both heart rate and breathing rate data. While the data collected using

this sensor could have been used for a more sensitive analysis in the frequency domain,

participants would have needed to complete the collection individually, requiring almost

100 hours to record the necessary data, which was beyond the scope of the present research

programme. Instead, the PolarV800 was identified as a reliable and valid alternative that

did not measure breathing rate but was significantly lower in cost, enabling multiple units

to be used to collect heart rate data. This significantly reduced the time cost of collecting
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heart rate data and allowed groups of participants to be tested at the same time.

Combined with the psychological questionnaires, benefits of using the MyotonPRO for

muscle stiffness assessment and ease of collecting saliva using field based sampling kits, the

measures adopted in the current study enabled a truly interdisciplinary approach that

captures the combined strengths of multiple disciplines in a holistic data collection

procedure that outweighs the strengths of any one of the measures in isolation.

Practical implications

Several practical implications have emerged from the current research, with relevance for

athletes, coaches, practitioners and researchers interested in sports injury. For athletes and

coaches, awareness regarding the additive and interactive effects of multiple sources of

stress needs to be emphasised. Study 1 demonstrated how the combined effect of

psychological and physiological characteristics can increase the probability of injury to a

greater extent than any characteristic in isolation. As such, multiple related risk factors for

injury need to be considered when assessing an athlete’s training plan, readiness to engage

in, and recovery from, training. For example, in addition to monitoring training loads and

using tools to determine an athlete’s physiological status, coaches need to also consider an

athlete’s psychological state. In particular, when an athlete is facing significant life event

stress, training intensity and volume may need to be adjusted to help the athlete cope with

the additional duress they are experiencing. This holistic approach centred around the

athlete has recently been emphasised by Dijkstra, Pollock, Chakraverty, and Alonso (2014),

who advocate an integrated model regarding athlete’s performance, health and coaching.

Such an approach prioritises a balanced approach to training and competition,

incorporating information from several sources (i.e., psychological and physiological

markers of stress) to ensure the optimal health and well-being of the athlete. These

recommendations are supported and echoed by the current research that found when an

athlete is experiencing psychological stress due to exposure to negative life events in

conjunction with physiological characteristics that are associated with an increased risk of

injurious events, injury risk may be exacerbated further. Specifically, the identification of a

“high risk” profile may help to reduce the risk of injury for athletes. For example, while
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high muscle stiffness is important for optimal performance, the risk of injury also increases

with high muscle stiffness. This risk is likely to be exacerbated when there are also

increases in the negative life events experienced by an athlete. In addition, findings from

the current study also revealed poor balance, low HRV and low levels of fear to all be

associated with increased risk of injury. It is therefore important to acknowledge the

breadth of these characteristics and be receptive to changes in both the training and life

experiences of an athlete to understand how the risk of injury may increase over time.

For sport injury researchers, both studies in this programme of research have highlighted

the importance of taking an interdisciplinary approach to further advance the

understanding of the complex and multifaceted stress-injury relationship. Furthermore,

capturing how markers of stress change over time in response to prolonged exposure to

training, and changes in major events that may occur in athletes’ lives, is vital for the

development of the sport injury literature. For example, in the second network in Study 1,

the combination of increases in negative life events and muscle stiffness resulted in the

highest probability of injury occurrence. Given that stress is a dynamic, contextual

phenomenon, repeated measures designs are required to adequately understand how

fluctuating levels of stress, whether psychological or physiological, will impact injury risk.

As such, the author echoes the recommendations made by Johnson et al. (2014) and

Ivarsson et al. (2017) with regards to how future sport injury research should be designed

to further advance the field. In particular, an interdisciplinary approach combining related

factors from different areas of sports science combined with multiple measurements over a

period of time will yield the most productive and insightful findings.

In addition to adopting an interdisciplinary approach, there is also scope to explore the

implications of the individual markers in greater detail. Specifically, through more regular

monitoring of muscle stiffness it may be possible to determine what types of training are

likely to increase stiffness, compared to those sessions that have less of an effect. This

knowledge would be valuable for coaches who could use such information to help plan

training and competition cycles, with an objective indicator of an athlete’s muscle health.

In addition to muscle stiffness, researchers may also find further development of the RST in
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a sports injury setting useful in the identification of “at risk” psychological profiles in

athletes. In doing so, it may be possible to develop interventions that address the

undesirable characteristics and address injury prevention from a psychological perspective

alongside the physical preventative measures that are often used by coaches and athletes.

This would provide a more holistic approach to injury prevention in line with the

recommendations and benefits of interdisciplinary research discussed in the sports injury

literature.

Future research directions

In addition to the points already alluded to regarding future research directions, there are

several key lines of enquiry that would be beneficial;

• Further development of the LESCA questionnaire based on the issues raised in both

Study 1 and Study 2.

• Examination of other factors within the Williams and Andersen (1998) and Appaneal

and Perna (2014) models of injury.

• Examination of additional markers of stress.

• Continued development of the analytical techniques used to examine the complex

relationship between stress and injury.

While the LESCA remains the most widely used measure of life event stress with collegiate

level athletes, both Study 1 and Study 2 raised some potential issues with the measure.

Specifically, (a) the suitability of the LESCA for repeated measures designs where the time

interval between collections may be shorter than the original 12-month period proposed by

Petrie (1992); (b) many of the events listed on the original LESCA are unlikely to occur

repeatedly over relative short periods of time, thus a way of quantifying more minor events

is necessary. While previous research has used the daily hassles scale to capture more

minor life events (Fawkner et al., 1999; Ivarsson & Johnson, 2010), the scale is not designed

with athletes in mind and therefore lacks the construct validity of the LESCA.

Consequently, the development of a scale that can capture the impact of more minor events
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in athletes would therefore be desirable. In addition, the issues around the original scoring

of the LESCA that similarly weights multiple minor events and a single or smaller number

of major events is potentially problematic in relation to the stress response that might be

elicited. Study 2 addressed the issue by calculating an average response and found that

there was a weak relationship between higher average responses and increase risk of injury.

Future studies could examine this relationship in greater detail or develop a scale that is

better able to distinguish between and account for both minor and major life events.

A second line of enquiry advocated is for researchers to explore other factors that have been

proposed by both the Williams and Andersen’s (1998) and Appaneal and Perna’s (2014)

models, particularly in relation to an interdisciplinary perspective. For example, Williams

and Andersen (1998) proposed coping resources (e.g., coping behaviours, social support

systems and stress management) and Appaneal and Perna (2014) proposed behavioural

mechanisms (e.g., impaired self-care and poor sleep quality) as factors that are likely to be

related to injury occurrence. However, comparatively few studies have investigated these

factors in comparison to other psychosocial factors such as major life events and personality

characteristics (Ivarsson et al., 2017). Indeed, how these coping and behavioural factors

contribute alongside the physiological markers of stress, such as those used in the current

research, may provide a more holistic understanding of the stress-injury relationship.

To extend the proposed variables in both Williams and Andersen (1998) and Appaneal and

Perna (2014), future research should also continue to explore other factors that may be

related to injury occurrence. While the variables proposed by Williams and Andersen

(1998) and Appaneal and Perna (2014) provide a suitable starting point, there are many

other possibilities that may provide additional insight into the stress-injury relationship.

Indeed, allostatis may provide sports injury researches with several new avenues to

examine in addition to variables that have not yet been widely used in the sports injury

literature. For example the Allostaic Load Index has been proposed as a basis for assessing

the wear and tear on the body caused by chronic stress and combines 10 variables

including; cortisol, epinephrine, norepinephrine and dehydroepiandrosterone sulphate

(DHEAS), systolic and diastolic blood pressure, waist-hip ratio, high-density lipoprotein
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(HDL) and total cholesterol ratio and glycosylated haemoglobin (Seeman, Singer, Rowe,

Horwitz, & McEwen, 1997). A score is calculated based on the number of markers an

individual has in the highest risk quartile (Seeman et al., 1997). While other combinations

of markers have also been used, and there is not yet consensus regarding the best

combination of markers to measure allostatic load (Daniel, Li, Schmidt, Angerer, &

Jarczok, 2014), researchers could use these examples to generate new ideas for how to

integrate different markers of stress alongside commonly used measures in sports injury

research to extend our understanding of the stress-injury relationship.

Finally, the continued development of appropriate analysis techniques that address the

complex nature of the stress-injury relationship is required to increase our understanding of

the contributory factors and their interactions. Typically, multivariate regression-based

techniques have been widely used within the sports injury literature, however in line with

Bittencourt et al. (2016) recommendations regarding complex systems theory, research now

needs to explore the interactions between different variables and not just variables studied

in isolation. The current study addressed this issue by using Bayesian networks which offer

several advantages, including the ability to incorporate both expert knowledge and

empirical data, and the ability to investigate probabilistic dependences between any

combination of variables in the network. However, there are several other techniques that

may also be of use for researchers. For example, Johnson et al. (2014) recently proposed

latent growth curve modelling as an appropriate method to capture how psychosocial stress

change over time, and how changes in psychosocial stress are related to injury occurrence.

Johnson et al. (2014) also highlighted the need for intra-individual based analysis, given

the highly individualised responses to stress and complex nature of injury occurrence. A

further possibility is to explore machine learning (ML) based techniques that concentrate

on prediction by finding patterns in often large and unwieldy data sets (Bzdok, Altman, &

Krzywinski, 2018). As greater quantities of data become available, traditional statistical

methods can become intractable as the number of variables per participant increases and

suffer from issues such as multicollinearity and over-fitting (Iniesta, Stahl, & McGuffin,

2016). In contrast, ML techniques such as Classification and Regression Trees (CART),

random forests and gradient boosted trees greatly benefit from a large number of variables
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and may be used alongside traditional statistical methods (Bittencourt et al., 2016).

Indeed, Rossi et al. (2018) recently used a decision tree method to forecast injury

occurrence in soccer players using GPS data from training session with promising results.

The predictive ability of ML techniques may therefore have important implications for

sports injury researchers and help greatly in the identification of athletes who are at risk of

injury, allowing timely interventions to be put in place and injury to be averted.

Strengths

The current programme of research had several strengths that have been discussed in

earlier chapters. The points below provide a summary of the main strengths of the

programme of research.

• The interdisciplinary approach to the research and examination of both psychological

and physiological markers of stress and their relationship to injury (Ivarsson et al.,

2017).

• The prospective, longitudinal, repeated measures design of the research (Johnson et

al., 2014) .

• The use of an analytical approach that captures the complex nature of injury

occurrence (Bittencourt et al., 2016), including:

– A novel application of Bayesian networks to sports injury data in Study 1.

– The use of Bayesian hurdle regression and linear regression models in Study 2,

offering several advantages over traditional frequentist methods (Kruschke,

2013).

• Inclusion of a wide range of athletes from different sports, including both males and

females from individual and team-based sports (Johnson et al., 2014)

• Use of a novel device to measure muscle stiffness which added to the body of

literature linking muscle stiffness to injury (Pickering-Rodriguez et al., 2017)
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• The identification and proposed solution to a potential issue with the original LESCA

scoring system.

• The use of contemporary personality measure that has yet to be used within sports

injury literature (RST-PQ; Corr & Cooper, 2016)

• The field-based nature of the measures used in the research means that coaches and

practitioners can easily replicate the data collection procedure.

Limitations

Many of the research limitations of this research programme have also been identified in

the discussions of each individual study, and within earlier sections of this chapter. These

have been addressed in some detail and will only be listed here.

• Participant drop-out rate during the study (Abshire et al., 2017).

• Use of the LESCA questionnaire in a repeated measures design.

• The field-based nature of the cortisol collection and lack of control over the session

intensity.

• The field-based measures may have lacked sensitivity compared to the

“gold-standard” measures available.

Conclusions

The purpose of this thesis was to explore the multifaceted nature of the stress-injury

relationship. Findings from this programme of research have demonstrated that several

psychological and physiological factors combine and interact to exacerbate the risk of

injury. Specifically, muscle stiffness and increases in negative life event stress were

identified as strong predictors of injury, while other factors including personality

characteristics and postural stability were also found to contribute to the probability of

injury occurrence. Taken together, the interdisciplinary approach coupled with a complex
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systems framework has provided a novel examination of the stress-injury relationship that

has addressed many of the limitations identified in previous research. Furthermore, the

analytical techniques used have reflected the complex and uncertain nature of injury

occurrence and provide a contemporary approach to the research. As such, it is believed

that this thesis has achieved its purpose, as it presents athletes, coaches, practitioners and

researchers with valuable insights into the risk factors associated with the stress-injury

relationship, along with the importance of adopting an holistic approach to training and

competition to mitigate against the risk of injury.



Andersen, M. B., & Williams, J. M. (1988). A model of stress and athletic injury:

Prediction and prevention. Journal of Sport and Exercise Psychology, 10(3),

294–306. https://doi.org/10.1123/jsep.10.3.294

Andersen, M. B., & Williams, J. M. (1999). Athletic injury, psychosocial factors and

perceptual changes during stress. Journal of Sports Sciences, 17(9), 735–741.

https://doi.org/10.1080/026404199365597

Anderson, T., Lane, A. R., & Hackney, A. C. (2016). Cortisol and testosterone dynamics

following exhaustive endurance exercise. European Journal of Applied Physiology,

116(8), 1503–1509. https://doi.org/10.1007/s00421-016-3406-y

Anderson, T., & Wideman, L. (2017). Exercise and the cortisol awakening response: A

systematic review. Sports Medicine, 3(1), 37.

https://doi.org/10.1186/s40798-017-0102-3

Appaneal, R. N., Levine, B. R., Perna, F. M., & Roh, J. L. (2009). Measuring postinjury

depression among male and female competitive athletes. Journal of Sport and

Exercise Psychology, 31(1), 60–76. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/19325188

Appaneal, R. N., & Perna, F. M. (2014). Biopsychosocial model of injury. In R. C. Eklund

& G. Tenenbaum (Eds.), Encyclopedia of sport and exercise psychology (pp. 74–77).

Thousand Oaks, CA: Sage.

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown.

Retrieved from https://github.com/crsh/papaja

Bahr, R., & Krosshaug, T. (2005). Understanding injury mechanisms: A key component of

preventing injuries in sport. British Journal of Sports Medicine, 39(6), 324–329.

https://doi.org/10.1136/bjsm.2005.018341

Bailey, L., Dinesh, S., Warner, M., Stokes, M., & Samuel, D. (2013). Parameters

representing muscle tone, elasticity and stiffness of biceps brachii in healthy older

males: Symmetry and within-session reliability using the MyotonPRO. Journal of

Neurological Disorders, 1(1), 1–7. https://doi.org/10.4172/2329-6895.1000116

146



Bell, D. R., Guskiewicz, K. M., Clark, M. A., & Padua, D. A. (2011). Systematic review of

the balance error scoring system. Sports Health, 3(3), 287–295.

https://doi.org/10.1177/1941738111403122

Bellenger, C. R., Fuller, J. T., Thomson, R. L., Davison, K., Robertson, E. Y., & Buckley,

J. D. (2016). Monitoring athletic training status through autonomic heart rate

regulation: A systematic review and meta-analysis. Sports Medicine, 46(10),

1461–1486. https://doi.org/10.1007/s40279-016-0484-2

Bernards, J., Sato, K., Haff, G., & Bazyler, C. (2017). Current research and statistical

practices in sport science and a need for change. Sports, 5(4), 87.

https://doi.org/10.3390/sports5040087

Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M.,

… Molen, M. W. van der. (1997). Heart rate variability: Origins, methods, and

interpretive caveats. Psychophysiology, 34, 623–648.

https://doi.org/10.1111/j.1469-8986.1997.tb02140.x

Beuzen, T., Marshall, L., & Splinter, K. D. (2018). A comparison of methods for

discretizing continuous variables in Bayesian networks. Environmental Modelling

and Software, 108(Dec), 61–66. https://doi.org/10.1016/j.envsoft.2018.07.007

Bien, D. P., & Dubuque, T. J. (2015). Considerations for late stage ACL rehabilitation and

return to sport to limit re-injury risk and maximize athletic performance.

International Journal of Sports Physical Therapy, 10(2), 256–271. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/25883874

Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac

sympatho-vagal balance. Frontiers in Physiology, 4, 26.

https://doi.org/10.3389/fphys.2013.00026

Birkett, S. T., Nichols, S., Sawrey, R., Gleadall-Siddall, D., McGregor, G., & Ingle, L.

(2019). The effects of low-volume high-intensity interval training and circuit

training on maximal oxygen uptake. Sport Sciences for Health, 15(2), 443–451.

https://doi.org/10.1007/s11332-019-00552-2

147



Bittencourt, N. F. N., Meeuwisse, W. H., Mendonça, L. D., Nettel-Aguirre, A., Ocarino, J.

M., & Fonseca, S. T. (2016). Complex systems approach for sports injuries: Moving

from risk factor identification to injury pattern recognition - narrative review and

new concept. British Journal of Sports Medicine, 50(21), 1309–1314.

https://doi.org/10.1136/bjsports-2015-095850

Bittl, J. A., & He, Y. (2017). Bayesian analysis: A practical approach to interpret clinical

trials and create clinical practice guidelines. Circulation: Cardiovascular Quality

and Outcomes, 10(8), 1–11. https://doi.org/10.1161/CIRCOUTCOMES.117.003563

Bolker, B., & Robinson, D. (2019). Broom.mixed: Tidying methods for mixed models.

Retrieved from https://CRAN.R-project.org/package=broom.mixed

Borresen, J., & Lambert, M. (2009). The quantification of training load, the training

response and the effect on performance. Sports Medicine, 39(9), 779–795.

https://doi.org/10.2165/11317780-000000000-00000

Brachman, A., Kamieniarz, A., Michalska, J., Pawłowski, M., Słomka, K. J., & Juras, G.

(2017). Balance training programs in athletes – A systematic review. Journal of

Human Kinetics, 58(1), 45–64. https://doi.org/10.1515/hukin-2017-0088

Brewer, B. W. (2012). Psychology of sport injury rehabilitation. In G. Tenenbaum & R. C.

Eklund (Eds.), Handbook of sport psychology (3rd ed., pp. 404–424). Hoboken, NJ,

USA: Wiley. https://doi.org/10.1002/9781118270011.ch18

Brownlee, K. K., Moore, A. W., & Hackney, A. C. (2005). Relationship between circulating

cortisol and testosterone: Influence of physical exercise. Journal of Sports Science

and Medicine, 4(1), 76–83. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/24431964

Buekers, M., Ibáñez-Gijón, J., Morice, A. H. P., Rao, G., Mascret, N., Laurin, J., &

Montagne, G. (2017). Interdisciplinary research: A promising approach to

investigate elite performance in sports. Quest, 69(1), 65–79.

https://doi.org/10.1080/00336297.2016.1152982

148



Bueno, A. M., Pilgaard, M., Hulme, A., Forsberg, P., Ramskov, D., Damsted, C., &

Nielsen, R. O. (2018). Injury prevalence across sports: A descriptive analysis on a

representative sample of the Danish population. Injury Epidemiology, 5(1), 1–8.

https://doi.org/10.1186/s40621-018-0136-0

Burwitz, L., Moore, P. M., & Wilkinson, D. M. (1994). Future directions for

performance‐related sports science research: An interdisciplinary approach. Journal

of Sports Sciences, 12(1), 93–109. https://doi.org/10.1080/02640419408732159

Butler, R. J., Crowell, H. P., & Davis, I. M. C. (2003). Lower extremity stiffness:

Implications for performance and injury. Clinical Biomechanics, 18(6), 511–517.

https://doi.org/10.1016/S0268-0033(03)00071-8

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan.

Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan.

Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms.

The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017

Bzdok, D., Altman, N., & Krzywinski, M. (2018). Points of significance: Statistics versus

machine learning. Nature Methods, 15(4), 233–234.

https://doi.org/10.1038/nmeth.4642

Caminal, P., Sola, F., Gomis, P., Guasch, E., Perera, A., Soriano, N., & Mont, L. (2018).

Validity of the Polar V800 monitor for measuring heart rate variability in mountain

running route conditions. European Journal of Applied Physiology, 118(3), 669–677.

https://doi.org/10.1007/s00421-018-3808-0

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., …

Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of

Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01

149



Chalmers, J. A., Quintana, D. S., Abbott, M. J.-A., & Kemp, A. H. (2014). Anxiety

disorders are associated with reduced heart rate variability: A meta-analysis.

Frontiers in Psychiatry, 5, 80. https://doi.org/10.3389/fpsyt.2014.00080

Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling.

Environmental Modelling and Software, 37, 134–145.

https://doi.org/10.1016/j.envsoft.2012.03.012

Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews

Endocrinology, 5(7), 374–381. https://doi.org/10.1038/nrendo.2009.106

Chuang, L. L., Lin, K. C., Wu, C. Y., Chang, C. W., Chen, H. C., Yin, H. P., & Wang, L.

(2013). Relative and absolute reliabilities of the myotonometric measurements of

hemiparetic arms in patients with stroke. Archives of Physical Medicine and

Rehabilitation, 94(3), 459–466. https://doi.org/10.1016/j.apmr.2012.08.212

Chuang, L. L., Wu, C. Y., & Lin, K. C. (2012). Reliability, validity, and responsiveness of

myotonometric measurement of muscle tone, elasticity, and stiffness in patients with

stroke. Archives of Physical Medicine and Rehabilitation, 93(3), 532–540.

https://doi.org/10.1016/j.apmr.2011.09.014

Cingel, R. E. H. van, Hoogeboom, T. J., Melick, N. van, Meddeler, B. M., & Nijhuis-van

der Sanden, M. W. G. (2017). How to determine leg dominance: The agreement

between self-reported and observed performance in healthy adults. Plos One,

12(12), 1–9. https://doi.org/10.1371/journal.pone.0189876

Clement, D., Granquist, M. D., & Arvinen-Barrow, M. M. (2013). Psychosocial aspects of

athletic injuries as perceived by athletic trainers. Journal of Athletic Training,

48(4), 512–521. https://doi.org/10.4085/1062-6050-48.3.21

Coco, M., Fiore, A. S., Perciavalle, V., Maci, T., Petralia, M. C., & Perciavalle, V. (2015).

Stress exposure and postural control in young females. Molecular Medicine Reports,

11(3), 2135–2140. https://doi.org/10.3892/mmr.2014.2898

150



Cormack, S. J., Newton, R. U., McGuigan, M. R., & Cormie, P. (2008). Neuromuscular

and endocrine responses of elite players during an Australian rules football season.

International Journal of Sports Physiology and Performance, 3(4), 439–453.

https://doi.org/10.1123/ijspp.3.4.439

Corr, P. J. (2008). The Reinforcement Sensitivity Theory of Personality. Cambridge:

Cambridge University Press. https://doi.org/10.1017/CBO9780511819384

Corr, P. J. (2013). Approach and avoidance behaviour: Multiple systems and their

interactions. Emotion Review, 5(3), 285–290.

https://doi.org/10.1177/1754073913477507

Corr, P. J. (2016). Reinforcement Sensitivity Theory of Personality Questionnaires:

Structural survey with recommendations. Personality and Individual Differences,

89, 60–64. https://doi.org/10.1016/j.paid.2015.09.045

Corr, P. J., & Cooper, A. J. (2016). The reinforcement sensitivity theory of personality

questionnaire (RST-PQ): Development and validation. Psychological Assessment,

28(11), 1427–1440. https://doi.org/10.1037/pas0000273

Corr, P. J., McNaughton, N., Wilson, M. R., Hutchison, A., Burch, G., & Poropat, A.

(2016). Neuroscience of motivation and organizational behavior: Putting the

reinforcement sensitivity theory (RST) to work. Advances in Motivation and

Achievement, 19, 65–92. https://doi.org/10.1108/S0749-742320160000019010

Craven, B. C., & Morris, A. R. (2010). Modified Ashworth scale reliability for

measurement of lower extremity spasticity among patients with SCI. Spinal Cord,

48(3), 207–213. https://doi.org/10.1038/sc.2009.107

Cryan, P. D., & Alles, W. F. (1983). The relationship between stress and college football

injuries. The Journal of Sports Medicine and Physical Fitness, 23(1), 52–58.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6876787

151



Cumps, E., Verhagen, E., Armenians, L., & Meeusen, R. (2008). Injury rate and

socioeconomic costs resulting from sports injuries in Flanders: Data derived from

sports insurance statistics 2003. British Journal of Sports Medicine, 42(9), 767–772.

https://doi.org/10.1136/bjsm.2007.037937

Daniel, M., Li, J., Schmidt, B., Angerer, P., & Jarczok, M. N. (2014). Measuring allostatic

load in the workforce: A systematic review. Industrial Health, 53(1), 5–20.

https://doi.org/10.2486/indhealth.2014-0122

Denver, J. W., Reed, S. F., & Porges, S. W. (2007). Methodological issues in the

quantification of respiratory sinus arrhythmia. Biological Psychology, 74(2),

286–294. https://doi.org/10.1016/j.biopsycho.2005.09.005

Depaoli, S., & Schoot, R. van de. (2017). Improving transparency and replication in

Bayesian statistics: The WAMBS-checklist. Psychological Methods, 22(2), 240–261.

https://doi.org/10.1037/met0000065

Devantier, C. (2011). Psychological predictors of injury among professional soccer players.

Sport Science Review, 20(5-6), 5–36. https://doi.org/10.2478/v10237-011-0062-3

DeWitt, P. (2019). Qwraps2: Quick wraps 2. Retrieved from

https://CRAN.R-project.org/package=qwraps2

Dijkstra, H. P., Pollock, N., Chakraverty, R., & Alonso, J. M. (2014). Managing the health

of the elite athlete: A new integrated performance health management and coaching

model. British Journal of Sports Medicine, 48(7), 523–531.

https://doi.org/10.1136/bjsports-2013-093222

Dingenen, B., Malfait, B., Nijs, S., Peers, K. H. E., Vereecken, S., Verschueren, S. M. P., …

Staes, F. F. (2016). Postural stability during single-leg stance: A preliminary

evaluation of noncontact lower extremity injury risk. Journal of Orthopaedic and

Sports Physical Therapy, 46(8), 650–657. https://doi.org/10.2519/jospt.2016.6278

152



Dishman, R. K., Nakamura, Y., Garcia, M. E., Thompson, R. W., Dunn, A. L., & Blair, S.

N. (2000). Heart rate variability, trait anxiety, and perceived stress among

physically fit men and women. International Journal of Psychophysiology, 37(2),

121–133. https://doi.org/10.1016/S0167-8760(00)00085-4

Djaoui, L., Haddad, M., Chamari, K., & Dellal, A. (2017). Monitoring training load and

fatigue in soccer players with physiological markers. Physiology and Behavior,

181(1), 86–94. https://doi.org/10.1016/j.physbeh.2017.09.004

Dong, J. G. (2016). The role of heart rate variability in sports physiology (Review).

Experimental and Therapeutic Medicine, 11(5), 1531–1536.

https://doi.org/10.3892/etm.2016.3104

Doumas, M., Morsanyi, K., & Young, W. R. (2018). Cognitively and socially induced

stress affects postural control. Experimental Brain Research, 236(1), 305–314.

https://doi.org/10.1007/s00221-017-5128-8

Eddelbuettel, D., & Balamuta, J. J. (2017). Extending extitR with extitC++: A Brief

Introduction to extitRcpp. PeerJ Preprints, 5, e3188v1.

https://doi.org/10.7287/peerj.preprints.3188v1

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal

of Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08

Edwards, J. P., Walsh, N. P., Diment, P. C., & Roberts, R. (2018). Anxiety and perceived

psychological stress play an important role in the immune response after exercise.

Exercise Immunology Review, 24, 26–34.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. New York:

Chapman & Hall. Retrieved from https://www.crcpress.com/An-Introduction-to-

the-Bootstrap/Efron-Tibshirani/p/book/9780412042317

Enders, C. K. (2003). Using the expectation maximization algorithm to estimate coefficient

alpha for scales with item-level missing data. Psychological Methods, 8(3), 322–337.

https://doi.org/10.1037/1082-989X.8.3.322

153



Esco, M. R., & Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest

and post-exercise in athletes: Evaluating the agreement with accepted

recommendations. Journal of Sports Science and Medicine, 13(3), 535–541.

Esco, M. R., Williford, H. N., Flatt, A. A., Freeborn, T. J., & Nakamura, F. Y. (2018).

Ultra-shortened time-domain HRV parameters at rest and following exercise in

athletes: An alternative to frequency computation of sympathovagal balance.

European Journal of Applied Physiology, 118(1), 175–184.

https://doi.org/10.1007/s00421-017-3759-x

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive

performance: Attentional control theory. Emotion, 7(2), 336–353.

https://doi.org/10.1037/1528-3542.7.2.336

Fawkner, H. J., McMurrary, N. E., & Summers, J. J. (1999). Athletic injury and minor life

events: A prospective study. Journal of Science and Medicine in Sport, 2(2),

117–124. https://doi.org/10.1016/S1440-2440(99)80191-1

Fletcher, D., & Scott, M. (2010). Psychological stress in sports coaches: A review of

concepts, research, and practice. Journal of Sports Sciences, 28(2), 127–137.

https://doi.org/10.1080/02640410903406208

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with

unobservable variables and measurement error. Journal of Marketing Research,

18(1), 39–50. https://doi.org/10.2307/3151312

Freedson, P. (2009). Interdisciplinary research funding: Reaching outside the boundaries of

kinesiology. Quest, 61(1), 19–24. https://doi.org/10.1080/00336297.2009.10483597

Fulton, J., Wright, K., Kelly, M., Zebrosky, B., Zanis, M., Drvol, C., & Butler, R. (2014).

Injury risk is altered by previous injury: A systematic review of the literature and

presentation of causative neuromuscular factors. International Journal of Sports

Physical Therapy, 9(5), 583–595. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/25328821

154



Fuster-Parra, P., Vidal-Conti, J., Borràs, P. A., & Palou, P. (2017). Bayesian networks to

identify statistical dependencies. A case study of Spanish university students’

habits. Informatics for Health and Social Care, 42(2), 166–179.

https://doi.org/10.1080/17538157.2016.1178117

Gabbett, T. J. (2016). The training-injury prevention paradox: should athletes be training

smarter and harder? British Journal of Sports Medicine, 50(5), 273–280.

https://doi.org/10.1136/bjsports-2015-095788

Gabry, J. (2018). shinystan: Interactive, visual and numerical diagnostics and posterior

analysis for Bayesian models. Retrieved from

https://cran.r-project.org/package=shinystan

Galambos, S. A., Terry, P. C., Moyle, G. M., & Locke, S. A. (2005). Psychological

predictors of injury among elite athletes. British Journal of Sports Medicine, 39(6),

351–354. https://doi.org/10.1136/bjsm.2005.018440

Ganzel, B. L., Morris, P. A., & Wethington, E. (2010). Allostasis and the human brain:

Integrating models of stress from the social and life sciences. Psychological Review,

117(1), 134–174. https://doi.org/10.1037/a0017773

García Martínez, C. A., Otero Quintana, A., Vila, X. A., Lado Touriño, M. J.,

Rodríguez-Liñares, L., Rodríguez Presedo, J. M., & Méndez Penín, A. J. (2017).

Heart rate variability analysis with the R package RHRV. Springer.

https://doi.org/10.1007/978-3-319-65355-6

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis, 1(3), 515–533. https://doi.org/10.1214/06-BA117A

Gelman, A. (2008a). Objections to Bayesian statistics. Bayesian Analysis, 3(3), 445–450.

https://doi.org/10.1214/08-BA318

Gelman, A. (2008b). Rejoinder. Bayesian Analysis, 3(3), 467–478.

https://doi.org/10.1214/08-BA318REJ

155



Gelman, A., & Brooks, S. P. (1998). General methods for monitoring convergence of

iterative simulations. Journal of Computational and Graphical Statistics, 7(4),

434–455.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian Data Analysis (3rd ed.). Boca Raton: Chapman; Hall/CRC.

Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics.

British Journal of Mathematical and Statistical Psychology, 66(1), 8–38.

https://doi.org/10.1111/j.2044-8317.2011.02037.x

Gennisson, J. L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010).

Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed

by supersonic shear imaging. Ultrasound in Medicine and Biology, 36(5), 789–801.

https://doi.org/10.1016/j.ultrasmedbio.2010.02.013

Gentleman, R., Whalen, E., Huber, W., & Falcon, S. (2019). Graph: Graph: A package to

handle graph data structures.

Gerber, M., Brand, S., Lindwall, M., Elliot, C., Kalak, N., Herrmann, C., … Jonsdottir, I.

H. (2012). Concerns regarding hair cortisol as a biomarker of chronic stress in

exercise and sport science. Journal of Sports Science and Medicine, 11(4), 571–581.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24150065

Gervasi, M., Sisti, D., Amatori, S., Andreazza, M., Benelli, P., Sestili, P., … Calavalle, A.

R. (2017). Muscular viscoelastic characteristics of athletes participating in the

European Master Indoor Athletics Championship. European Journal of Applied

Physiology, 117(8), 1739–1746. https://doi.org/10.1007/s00421-017-3668-z

Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to

measure RR intervals at rest. European Journal of Applied Physiology, 116(3),

563–571. https://doi.org/10.1007/s00421-015-3303-9

Gisselman, A. S., Baxter, G. D., Wright, A., Hegedus, E., & Tumilty, S. (2016).

Musculoskeletal overuse injuries and heart rate variability: Is there a link? Medical

Hypotheses, 87, 1–7. https://doi.org/10.1016/j.mehy.2015.12.003

156



Goldstein, H., Bryk, A. S., & Raudenbush, S. W. (2006). Hierarchical linear models:

Applications and data analysis methods. Journal of the American Statistical

Association, 88(421), 386. https://doi.org/10.2307/2290750

Gordon, C.-M., Andrasik, F., Schleip, R., Birbaumer, N., & Rea, M. (2016). Myofascial

triggerpoint release (MTR) for treating chronic shoulder pain: A novel approach.

Journal of Bodywork and Movement Therapies, 20(3), 614–622.

https://doi.org/10.1016/j.jbmt.2016.01.009

Gozansky, W. S., Lynn, J. S., Laudenslager, M. L., & Kohrt, W. M. (2005). Salivary

cortisol determined by enzyme immunoassay is preferable to serum total cortisol for

assessment of dynamic hypothalamic-pituitary-adrenal axis activity. Clinical

Endocrinology, 63(3), 336–341. https://doi.org/10.1111/j.1365-2265.2005.02349.x

Gray, J. A. (1982). Précis of the neuropsychology of anxiety: An enquiry into the functions

of the septo-hippocampal system. Behavioral and Brain Sciences, 5(3), 469–484.

https://doi.org/10.1017/S0140525X00013066

Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into

the functions of the septo-hippocampal system. Oxford: Oxford University Press.

https://doi.org/10.1017/S0140525X00013066

Gröschl, M., Read, G. F., Hughes, I. A., & Riad-Fahmy, D. (2008). Current status of

salivary hormone analysis. Clinical Chemistry, 54(11), 1759–1769.

https://doi.org/10.1373/clinchem.2008.108910

Gucciardi, D., & Zyphur, M. (2016). Exploratory structural equation modelling and

Bayesian estimation. In N. Ntoumanis & N. Myers (Eds.), An introduction to

intermediate and advanced analyses for sport and exercise scientists (pp. 172–194).

London: Wiley.

Gunnoe, A. J., Horodyski, M., Tennant, L. K., & Murphey, M. (2001). The effect of life

events on incidence of injury in high school football players. Journal of Athletic

Training, 36(2), 150–155. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/12937456

157



Hahn, T., Foldspang, A., Vestergaard, E., & Ingemann-Hansen, T. (1999). One-leg

standing balance and sports activity. Scandinavian Journal of Medicine and Science

in Sport, 9(13), 15–18. https://doi.org/10.1111/j.1600-0838.1999.tb00201.x

Hanoch, Y., & Vitouch, O. (2004). When less is more: Information, emotional arousal and

the ecological reframing of the Yerkes-Dodson law. Theory & Psychology, 14(4),

427–452. https://doi.org/10.1177/0959354304044918

Hansen, K. D., Gentry, J., Long, L., Gentleman, R., Falcon, S., Hahne, F., & Sarkar, D.

(2019). Rgraphviz: Provides plotting capabilities for r graph objects.

Hardy, L. (1992). Psychological stress, performance, and injury in sport. British Medical

Bulletin, 48(2), 615–629. https://doi.org/10.1093/oxfordjournals.bmb.a072567

Hardy, L., Bell, J., & Beattie, S. (2014). A neuropsychological model of mentally tough

behavior. Journal of Personality, 82(1), 69–81. https://doi.org/10.1111/jopy.12034

Hashiguchi, N., Kaji, Y., Kozaki, T., Tochihara, Y., & Yasukouchi, A. (2009). Effects of

saliva collection using cotton swab on cortisol enzyme immunoassay. European

Journal of Applied Physiology, 107(6), 743–746.

https://doi.org/10.1007/s00421-009-1178-3

Hägglund, M., Waldén, M., & Ekstrand, J. (2006). Previous injury as a risk factor for

injury in elite football: A prospective study over two consecutive seasons. British

Journal of Sports Medicine, 40(9), 767–772.

https://doi.org/10.1136/bjsm.2006.026609

Heathers, J. A. J. (2014). Everything Hertz: Methodological issues in short-term

frequency-domain HRV. Frontiers in Physiology, 5, 1–15.

https://doi.org/10.3389/fphys.2014.00177

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20(3), 197–243.

https://doi.org/10.1023/A:1022623210503

158



Hedayatpour, N., & Falla, D. (2015). Physiological and neural adaptations to eccentric

exercise: Mechanisms and considerations for training. BioMed Research

International, 1–7. https://doi.org/10.1155/2015/193741

Heino, M. T. J., Vuorre, M., & Hankonen, N. (2018). Bayesian evaluation of behavior

change interventions: A brief introduction and a practical example. Health

Psychology and Behavioral Medicine, 6(1), 49–78.

https://doi.org/10.1080/21642850.2018.1428102

Henry, L., & Wickham, H. (2019). Purrr: Functional programming tools. Retrieved from

https://CRAN.R-project.org/package=purrr

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of

recommendations for SEMG sensors and sensor placement procedures. Journal of

Electromyography and Kinesiology, 10(5), 361–374.

https://doi.org/10.1016/S1050-6411(00)00027-4

Hertwig, R., & Todd, P. M. (2005). More is not always better: The benefits of cognitive

limits. In D. Hardman & L. Macchi (Eds.), Thinking: Psychological perspectives on

reasoning, judgment and decision making (pp. 213–231). Chichester, UK: Wiley.

https://doi.org/10.1002/047001332X.ch11

Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise

and circulating Cortisol levels: The intensity threshold effect. Journal of

Endocrinological Investigation, 31(7), 587–591.

https://doi.org/10.1007/BF03345606

Hill, L. K., Siebenbrock, A., Sollers III, J. J., & Thayer, J. F. (2009). Are all measures

created equal? Heart rate variability and respiration. Biomedical Sciences

Instrumentation, 45, 71–76. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/19369742

Holland, J. H. (1995). Hidden order: How adaptation builds complexity (p. 185).

Addison-Wesley. Retrieved from https://dl.acm.org/citation.cfm?id=225764

159



Holmes, T. H. (1970). Psychological screening in football injuries (pp. 211–214).

Washington, DC: National Academy of Sciences. https://doi.org/10.17226/20983

Holmes, T. H., & Rahe, R. H. (1967). The social readjustment rating scale. Journal of

Psychosomatic Research, 11(2), 213–218.

https://doi.org/10.1016/0022-3999(67)90010-4

Hrysomallis, C. (2011). Balance ability and athletic performance. Sports Medicine, 41(3),

221–232. https://doi.org/10.2165/11538560-000000000-00000

Hsu, C. J., Meierbachtol, A., George, S. Z., & Chmielewski, T. L. (2017). Fear of reinjury

in athletes: Implications for rehabilitation. Sports Health, 9(2), 162–167.

https://doi.org/10.1177/1941738116666813

Hu, M. C., Pavlicova, M., & Nunes, E. V. (2011). Zero-inflated and hurdle models of count

data with extra zeros: Examples from an HIV-risk reduction intervention trial.

American Journal of Drug and Alcohol Abuse, 37(5), 367–375.

https://doi.org/10.3109/00952990.2011.597280

Huber, W., Carey, J., V., Gentleman, R., … M. (2015). Orchestrating high-throughput

genomic analysis with Bioconductor. Nature Methods, 12(2), 115–121. Retrieved

from http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html

Hughes, G. (2014). A review of recent perspectives on biomechanical risk factors associated

with anterior cruciate ligament injury. Research in Sports Medicine, 22(2), 193–212.

https://doi.org/10.1080/15438627.2014.881821

Hulme, A., & Finch, C. F. (2015). From monocausality to systems thinking: A

complementary and alternative conceptual approach for better understanding the

development and prevention of sports injury. Injury Epidemiology, 2(1), 31.

https://doi.org/10.1186/s40621-015-0064-1

Hulme, A., Thompson, J., Nielsen, R. O., Read, G. J. M. M., & Salmon, P. M. (2018).

Towards a complex systems approach in sports injury research: Simulating

running-related injury development with agent-based modelling. British Journal of

Sports Medicine, 53(9), 560–569. https://doi.org/10.1136/bjsports-2017-098871

160



Hunt, T. N., Ferrara, M. S., Bornstein, R. A., & Baumgartner, T. A. (2009). The

reliability of the modified balance error scoring system. Clinical Journal of Sport

Medicine, 19(6), 471–475. https://doi.org/10.1097/JSM.0b013e3181c12c7b

Iannone, R. (2019). DiagrammeR: Graph/network visualization. Retrieved from

https://CRAN.R-project.org/package=DiagrammeR

Iniesta, R., Stahl, D., & McGuffin, P. (2016). Machine learning, statistical learning and the

future of biological research in psychiatry. Psychological Medicine, 46(12),

2455–2465. https://doi.org/10.1017/S0033291716001367

Ivarsson, A., & Johnson, U. (2010). Psychological factors as predictors of injuries among

senior soccer players. A prospective study. Journal of Sports Science and Medicine,

9(2), 347–352. Retrieved from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761721/

Ivarsson, A., Johnson, U., Andersen, M. B., Tranaeus, U., Stenling, A., & Lindwall, M.

(2017). Psychosocial factors and sport injuries: Meta-analyses for prediction and

prevention. Sports Medicine, 47(2), 353–365.

https://doi.org/10.1007/s40279-016-0578-x

Ivarsson, A., Johnson, U., Lindwall, M., Gustafsson, H., & Altemyr, M. (2014).

Psychosocial stress as a predictor of injury in elite junior soccer: A latent growth

curve analysis. Journal of Science and Medicine in Sport, 17(4), 366–370.

https://doi.org/10.1016/j.jsams.2013.10.242

Jackson, C. J. (2009). Jackson-5 scales of revised Reinforcement Sensitivity Theory

(r-RST) and their application to dysfunctional real world outcomes. Journal of

Research in Personality, 43(4), 556–569. https://doi.org/10.1016/j.jrp.2009.02.007

Johnson, U., Tranaeus, U., & Ivarsson, A. (2014). Current status and future challenges in

psychological research of sport injury prediction and prevention: A methodological

perspective. Revista de Psicologia Del Deporte, 23(2), 401–409. Retrieved from

https://www.rpd-online.com/article/view/v23-n2-johnson-tranaeus-ivarsson

161



Johnston, L. H., & Carroll, D. (2000). The psychological impact of injury: Effects of prior

sport and exercise involvement. British Journal of Sports Medicine, 34(6), 436–439.

https://doi.org/10.1136/bjsm.34.6.436

Junge, A. (2000). The influence of psychological factors on sports injuries. Review of the

literature. American Journal of Sports Medicine, 28(5 Suppl.), 10–15.

https://doi.org/10.1177/28.suppl_5.s-10

Kalkhoven, J. T., & Watsford, M. L. (2017). The relationship between mechanical stiffness

and athletic performance markers in sub-elite footballers. Journal of Sports

Sciences, 36(9), 1022–1029. https://doi.org/10.1080/02640414.2017.1349921

Kean, C. O., Behm, D. G., & Young, W. B. (2006). Fixed foot balance training increases

rectus femoris activation during landing and jump height in recreationally active

women. Journal of Sports Science and Medicine, 5(1), 138–148. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/24198691

Kelly, J. P., Koppenhaver, S. L., Michener, L. A., Proulx, L., Bisagni, F., & Cleland, J. A.

(2018). Characterization of tissue stiffness of the infraspinatus, erector spinae, and

gastrocnemius muscle using ultrasound shear wave elastography and superficial

mechanical deformation. Journal of Electromyography and Kinesiology, 38, 73–80.

https://doi.org/10.1016/j.jelekin.2017.11.001

Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H., & Koo, B.-H. (2018). Stress and heart

rate variability: A meta-analysis and review of the literature. Psychiatry

Investigation, 15(3), 235–245. https://doi.org/10.30773/pi.2017.08.17

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and

techniques - Adaptive computation and machine learning. Cambridge, MA: The

MIT Press. https://doi.org/10.1017/CBO9781107415324.004

Kolt, G., & Kirkby, R. (1996). Injury in Australian female competitive gymnasts: A

psychological perspective. The Australian Journal of Physiotherapy, 42(2), 121–126.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11676643

162



Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass

correlation coefficients for reliability research. Journal of Chiropractic Medicine,

15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Kraemer, W., Denegar, C., & Flanagan, S. (2009). Recovery from injury in sport:

Considerations in the transition from medical care to performance care. Sports

Health, 1(5), 392–395. https://doi.org/10.1177/1941738109343156

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental

Psychology: General, 142(2), 573–588. https://doi.org/10.1037/a0029146

Kucera, K. L., Marshall, S. W., Kirkendall, D. T., Marchak, P. M., & Garrett, W. E.

(2005). Injury history as a risk factor for incident injury in youth soccer. British

Journal of Sports Medicine, 39(7), 462–466.

https://doi.org/10.1136/bjsm.2004.013672

Kuhn, M. C. from J. W., Weston, S., Williams, A., Keefer, C., & Engelhardt, A. (2008).

caret: Classification and Regression Training. Journal of Statistical Software, 28(5).

https://doi.org/10.1053/j.sodo.2009.03.002

Kumar, S. (2001). Theories of musculoskeletal injury causation. Ergonomics, 44(1), 17–47.

https://doi.org/10.1080/00140130120716

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal

tone in psychophysiological research - Recommendations for experiment planning,

data analysis, and data reporting. Frontiers in Psychology, 8, 1–18.

https://doi.org/10.3389/fpsyg.2017.00213

Lacourpaille, L., Hug, F., Bouillard, K., Hogrel, J. Y., & Nordez, A. (2012). Supersonic

shear imaging provides a reliable measurement of resting muscle shear elastic

modulus. Physiological Measurement, 33(3), 19–28.

https://doi.org/10.1088/0967-3334/33/3/N19

Lang, K. M., Jorgensen, T. D., Moore, E. W. G., & Little, T. D. (2013). On the joys of

missing data. Journal of Pediatric Psychology, 39(2), 151–162.

https://doi.org/10.1093/jpepsy/jst048

163



Lavallée, L., & Flint, F. (1996). The relationship of stress, competitive anxiety, mood

state, and social support to athletic injury. Journal of Athletic Training, 31(4),

296–299. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16558413

Leddy, M. H., Lambert, M. J., & Ogles, B. M. (1994). Psychological consequences of

athletic injury among high-level competitors. Research Quarterly for Exercise and

Sport, 65(4), 347–354. https://doi.org/10.1080/02701367.1994.10607639

Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J.

(2017). Biomarkers in sports and exercise: Tracking health, performance, and

recovery in athletes. Journal of Strength and Conditioning Research, 31(10),

2920–2937. https://doi.org/10.1519/JSC.0000000000002122

Lima-Borges, D. S., Martinez, P. F., Vanderlei, L. C. M., Barbosa, F. S. S. S., &

Oliveira-Junior, S. A. (2018). Autonomic modulations of heart rate variability are

associated with sports injury incidence in sprint swimmers. Physician and Sports

Medicine, 46(3), 374–384. https://doi.org/10.1080/00913847.2018.1450606

Lüdecke, D. (2018). Sjmisc: Data and variable transformation functions. Journal of Open

Source Software, 3(26), 754. https://doi.org/10.21105/joss.00754

Maddison, R., & Prapavessis, H. (2005). A psychological approach to the prediction and

prevention of athletic injury. Journal of Sport and Exercise Psychology, 27(3),

289–310. https://doi.org/10.1123/jsep.27.3.289

Malik, M., Camm, A. J., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., … Singer,

D. H. (1996). Heart rate variability. Standards of measurement, physiological

interpretation, and clinical use. European Heart Journal, 17(3), 354–381.

https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

Mangine, G., Van Dusseldorp, T., Feito, Y., Holmes, A., Serafini, P., Box, A., & Gonzalez,

A. (2018). Testosterone and cortisol responses to five high-intensity functional

training competition workouts in recreationally active adults. Sports, 6(3), 1–14.

https://doi.org/10.3390/sports6030062

164



Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., &

Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA

and EFA: Application to students’ evaluations of university teaching. Structural

Equation Modeling, 16(3), 439–476. https://doi.org/10.1080/10705510903008220

Mather, R. C., Koenig, L., Kocher, M. S., Dall, T. M., Gallo, P., Scott, D. J., … Spindler,

K. P. (2013). Societal and economic impact of anterior cruciate ligament tears. The

Journal of Bone and Joint Surgery. American Volume, 95(19), 1751–1759.

https://doi.org/10.2106/JBJS.L.01705

McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, R. C., Dvořák, J., Echemendia, R. J., …

Turner, M. (2013). Consensus statement on concussion in sport: The 4th

international conference on concussion in sport, Zurich, November 2012. Journal of

Athletic Training, 48(4), 554–575. https://doi.org/10.4085/1062-6050-48.4.05

McEwen, B. S. (2005). Stressed or stressed out: What is the difference? Journal of

Psychiatry and Neuroscience, 30(5), 315–318. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/16151535

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role

of the brain. Physiological Reviews, 87(3), 873–904.

https://doi.org/10.1152/physrev.00041.2006.

McEwen, B. S. (2008). Central effects of stress hormones in health and disease:

Understanding the protective and damaging effects of stress and stress mediators.

European Journal of Pharmacology, 583(2-3), 174–185.

https://doi.org/10.1016/j.ejphar.2007.11.071

McGuine, T. A., Greene, J. J., Best, T., & Leverson, G. (2000). Balance as a predictor of

ankle injuries in high school basketball players. Clinical Journal of Sport Medicine,

10(4), 239–244. https://doi.org/10.1097/00042752-200010000-00003

McIntosh, A. S. (2005). Risk compensation, motivation, injuries, and biomechanics in

competitive sport. British Journal of Sports Medicine, 39(1), 2–3.

https://doi.org/10.1136/bjsm.2004.016188

165



McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense:

Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews,

28(3), 285–305. https://doi.org/10.1016/j.neubiorev.2004.03.005

Mechelen, W. van, Hlobil, H., & Kemper, H. C. G. (1992). Incidence, severity, aetiology

and prevention of sports injuries: A review of concepts. Sports Medicine, 14(2),

82–99. https://doi.org/10.2165/00007256-199214020-00002

Meeuwisse, W. H., Tyreman, H., Hagel, B., & Emery, C. (2007). A dynamic model of

etiology in sport injury: The recursive nature of risk and causation. Clinical Journal

of Sport Medicine, 17(3), 215–219. https://doi.org/10.1097/JSM.0b013e3180592a48

Mengersen, K. L., Drovandi, C. C., Robert, C. P., Pyne, D. B., & Gore, C. J. (2016).

Bayesian estimation of small effects in exercise and sports science. PLoS ONE,

11(4), e0147311. https://doi.org/10.1371/journal.pone.0147311

Meschiari, S. (2015). Latex2exp: Use latex expressions in plots. Retrieved from

https://CRAN.R-project.org/package=latex2exp

Montag, C., Smillie, L. D., Markett, S., Reuter, M., & Cooper, A. (2016). A new

measurement for the revised reinforcement sensitivity theory: Psychometric criteria

and genetic validation. Personality and Individual Differences, 9(38), 1–12.

https://doi.org/10.1016/j.paid.2016.05.274

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J. (2016). The

fallacy of placing confidence in confidence intervals. Psychonomic Bulletin and

Review, 23(1), 103–123. https://doi.org/10.3758/s13423-015-0947-8

Morgan, G. E., Martin, R., Williams, L., Pearce, O., & Morris, K. (2018). Objective

assessment of stiffness in Achilles tendinopathy: a novel approach using the

MyotonPRO. BMJ Open Sport & Exercise Medicine, 4(1), e000446.

https://doi.org/10.1136/bmjsem-2018-000446

166



Mullix, J., Warner, M., & Stokes, M. (2012). Testing muscle tone and mechanical

properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO

device: relative ratios and reliability. Working Papers in the Health Sciences, 1(1),

1–8. Retrieved from http://eprints.soton.ac.uk/345538/

Munoz, M. L., Roon, A. van, Riese, H., Thio, C., Oostenbroek, E., Westrik, I., … Snieder,

H. (2015). Validity of (Ultra-)Short Recordings for Heart Rate Variability

Measurements. PLOS ONE, 10(9), e0138921.

https://doi.org/10.1371/journal.pone.0138921

Murphy, D. F., Connolly, D. A. J., & Beynnon, B. D. (2003). Risk factors for lower

extremity injury: A review of the literature. British Journal of Sports Medicine,

37(1), 13–29. https://doi.org/10.1136/bjsm.37.1.13

Murphy, K. (2002). Dynamic Bayesian networks: Representation, inference and learning

(PhD thesis). UC Berkeley.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modelling: A more

flexible representation of substantive theory. Psychological Methods, 17(3), 313–335.

https://doi.org/10.1037/a0026802

Müller, K., & Wickham, H. (2019). Tibble: Simple data frames. Retrieved from

https://CRAN.R-project.org/package=tibble

Nair, K., Dougherty, J., Schaefer, E., Kelly, J., & Masi, A. (2014). Repeatability,

reproducibility, and calibration of the MyotonPRO on tissue mimicking phantoms.

In ASME summer bioengineering conference (pp. 1–2).

https://doi.org/10.1115/SBC2013-14622

Neely, F. G. (1998). Biomechanical risk factors for exercise-related lower limb injuries.

Sports Medicine, 26(6), 395–413.

https://doi.org/10.2165/00007256-199826060-00003

167



Ockenburg, S. L. van, Tak, L. M., Bakker, S. J. L., Gans, R. O. B., Jonge, P. de, &

Rosmalen, J. G. M. (2015). Effects of adverse life events on heart rate variability,

cortisol, and C-reactive protein. Acta Psychiatrica Scandinavica, 131(1), 40–50.

https://doi.org/10.1111/acps.12286

O’Donnell, S., Bird, S., Jacobson, G., & Driller, M. (2018). Sleep and stress hormone

responses to training and competition in elite female athletes. European Journal of

Sport Science, 18(5), 611–618. https://doi.org/10.1080/17461391.2018.1439535

Olmedilla, A., Rubio, V. J., Fuster-Parra, P., Pujals, C., & García-Mas, A. (2018). A

Bayesian approach to sport injuries likelihood: Does player’s self-efficacy and

environmental factors plays the main role? Frontiers in Psychology, 9, 1–10.

https://doi.org/10.3389/fpsyg.2018.01174

Otter, R., Brink, M., Diercks, R., & Lemmink, K. (2015). A negative life event impairs

psychosocial stress, recovery and running economy of runners. International Journal

of Sports Medicine, 37(03), 224–229. https://doi.org/10.1055/s-0035-1555932

Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake

in the grass. Journal of Experimental Psychology: General, 130(3), 466–478.

https://doi.org/10.1037/0096-3445.130.3.466

Öztürk, S., & Kiliç, D. (2013). What is the economic burden of sports injuries? Eklem

Hastaliklari Ve Cerrahisi, 24(2), 108–111. https://doi.org/10.5606/ehc.2013.24

Paillard, T., & Noé, F. (2015). Techniques and methods for testing the postural function in

healthy and pathological subjects. BioMed Research International, 1–15.

https://doi.org/10.1155/2015/891390

Paillard, T., Noé, F., Rivière, T., Marion, V., Montoya, R., & Dupui, P. (2006). Postural

performance and strategy in the unipedal stance of soccer players at different levels

of competition. Journal of Athletic Training, 41(2), 172–176. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/16791302

168



Palmer-Green, D., & Elliott, N. (2014). Sports injury and illness epidemiology: Great

Britain Olympic Team (TeamGB) surveillance during the Sochi 2014 Winter

Olympic Games. British Journal of Sports Medicine, 49(1), 25–29.

https://doi.org/10.1136/bjsports-2014-094206

Pargman, D., & Lunt, S. D. (1989). The relationship of self-concept and locus of control to

the severity of injury in freshmen collegiate football players. Sports Medicine,

Training and Rehabilitation, 1(3), 203–208.

https://doi.org/10.1080/15438628909511877

Paridon, K. N. van, Timmis, M. A., Nevison, C. M., & Bristow, M. (2017). The

anticipatory stress response to sport competition; A systematic review with

meta-analysis of cortisol reactivity. BMJ Open Sport and Exercise Medicine, 3(1),

e000261. https://doi.org/10.1136/bmjsem-2017-000261

Passer, M. W., & Seese, M. D. (1983). Life stress and athletic injury: Examination of

positive versus negative events and three moderator variables. Journal of Human

Stress, 9(4), 11–16. https://doi.org/10.1080/0097840X.1983.9935025

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible

inference. San Francisco, CA: Morgan Kaufmann Publishers.

Pedersen, T. L. (2017). Patchwork: The composer of ggplots. Retrieved from

https://github.com/thomasp85/patchwork

Perna, F. M., Antoni, M. H., Baum, A., Gordon, P., & Schneiderman, N. (2003). Cognitive

behavioral stress management effects on injury and illness among competitive

athletes: A randomized clinical trial. Annals of Behavioral Medicine, 25(1), 66–73.

Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037262738%7B/&%

7DpartnerID=40%7B/&%7Dmd5=37332ebe6a962abf5178e51d6ebaedb7

Perna, F. M., & McDowell, S. L. (1995). Role of psychological stress in cortisol recovery

from exhaustive exercise among elite athletes. International Journal of Behavioral

Medicine, 2(1), 13–26. https://doi.org/10.1207/s15327558ijbm0201_2

169



Perna, F., Schneiderman, N., & LaPerriere, A. (1997). Psychological stress, exercise and

immunity. International Journal of Sports Medicine, 18(S1), 78–83.

https://doi.org/10.1055/s-2007-972703

Petrie, T. A. (1992). Psychosocial antecedents of athletic injury: The effects of life stress

and social support on female collegiate gymnasts. Journal of Behavioral Medicine,

18(18), 127–138. https://doi.org/10.1080/08964289.1992.9936963

Petrie, T. A. (1993). Coping skills, competitive trait anxiety, and playing status:

Moderating effects on the life stress-injury relationship. Journal of Sport and

Exercise Psychology, 15(3), 261–274. https://doi.org/10.1123/jsep.15.3.261

Petrie, T. A., Deiters, J., & Harmison, R. J. (2014). Mental toughness, social support, and

athletic identity: Moderators of the life stress-injury relationship in collegiate

football players. Sport, Exercise, and Performance Psychology, 3(1), 13–27.

https://doi.org/10.1037/a0032698

Petrie, T. A., & Perna, F. M. (2004). Psychology of injury: Theory, research, and practice.

In T. Morris & J. Summers (Eds.), Sport psychology: Theory, applications and

issues (2nd ed., pp. 547–565). Milton, QLD, Australia: Wiley.

Philippe, P., & Mansi, O. (1998). Nonlinearity in the epidemiology of complex health and

disease processes. Theoretical Medicine and Bioethics, 19(6), 591–607. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/10051792

Pickering-Rodriguez, E. C., Watsford, M. L., Bower, R. G., & Murphy, A. J. (2017). The

relationship between lower body stiffness and injury incidence in female netballers.

Sports Biomechanics, 16(3), 361–373.

https://doi.org/10.1080/14763141.2017.1319970

Pieper, S., Brosschot, J. F., Van Der Leeden, R., & Thayer, J. F. (2007). Cardiac effects of

momentary assessed worry episodes and stressful events. Psychosomatic Medicine,

69(9), 901–909. https://doi.org/10.1097/PSY.0b013e31815a9230

170



Piggott, B., Müller, S., Chivers, P., Papaluca, C., & Hoyne, G. (2018). Is sports science

answering the call for interdisciplinary research? A systematic review. European

Journal of Sport Science, 0(0), 1–20.

https://doi.org/10.1080/17461391.2018.1508506

Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability

in elite triathletes, is variation in variability the key to effective training? A case

comparison. European Journal of Applied Physiology, 112(11), 3729–3741.

https://doi.org/10.1007/s00421-012-2354-4

Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., & Laursen, P. B. (2017).

Comparison of heart-rate-variability recording with smartphone

photoplethysmography, polar H7 chest strap, and electrocardiography. International

Journal of Sports Physiology and Performance, 12(10), 1324–1328.

https://doi.org/10.1123/ijspp.2016-0668

Plsek, P. E., & Greenhalgh, T. (2001). The challenge of complexity in health care. BMJ,

323(7313), 625–628. https://doi.org/10.1136/bmj.323.7313.625

Post, E. G., Trigsted, S. M., Riekena, J. W., Hetzel, S., McGuine, T. A., Brooks, M. A., &

Bell, D. R. (2017). The association of sport specialization and training volume with

injury history in youth athletes. American Journal of Sports Medicine, 45(6),

1405–1412. https://doi.org/10.1177/0363546517690848

Pruyn, E. C., Watsford, M. L., & Murphy, A. J. (2015). Differences in lower-body stiffness

between levels of netball competition. Journal of Strength and Conditioning

Research, 29(5), 1197–1202. https://doi.org/10.1519/JSC.0000000000000418

Pruyn, E. C., Watsford, M. L., & Murphy, A. J. (2016). Validity and reliability of three

methods of stiffness assessment. Journal of Sport and Health Science, 5(4), 476–483.

https://doi.org/10.1016/j.jshs.2015.12.001

Pruyn, E. C., Watsford, M., & Murphy, A. (2014). The relationship between lower-body

stiffness and dynamic performance. Applied Physiology, Nutrition, and Metabolism,

39(10), 1144–1150. https://doi.org/10.1139/apnm-2014-0063

171



Pulopulos, M. M., Vanderhasselt, M. A., & De Raedt, R. (2018). Association between

changes in heart rate variability during the anticipation of a stressful situation and

the stress-induced cortisol response. Psychoneuroendocrinology, 94(May), 63–71.

https://doi.org/10.1016/j.psyneuen.2018.05.004

Qian, S. S., & Miltner, R. J. (2015). A continuous variable Bayesian networks model for

water quality modeling: A case study of setting nitrogen criterion for small rivers

and streams in Ohio, USA. Environmental Modelling and Software, 69, 14–22.

https://doi.org/10.1016/j.envsoft.2015.03.001

Quintana, D. S., Alvares, G. A., & Heathers, J. A. J. (2016). Guidelines for Reporting

Articles on Psychiatry and Heart rate variability (GRAPH): Recommendations to

advance research communication. Translational Psychiatry, 6(5), e803.

https://doi.org/10.1038/tp.2016.73

Rath, R., & Wade, M. G. (2017). The two faces of postural control in older adults:

Stability and function. EBioMedicine, 21, 5–6.

https://doi.org/10.1016/j.ebiom.2017.03.030

R Core Team. (2019a). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.r-project.org/

R Core Team. (2019b). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.R-project.org/

Reiner, M., Niermann, C., Jekauc, D., & Woll, A. (2013). Long-term health benefits of

physical activity–a systematic review of longitudinal studies. BMC Public Health,

13(1), 1–9. https://doi.org/10.1186/1471-2458-13-813

Rider, S. P., & Hicks, R. A. (1995). Stress, coping and injuries in males and female high

school basketball players. Perceptual and Motor Skills, 81(2), 499–503.

https://doi.org/10.2466/pms.1995.81.2.499

172



Riemann, B. L., Guskiewicz, K. M., & Shields, E. W. (1999). Relationship between clinical

and forceplate measures of postural stability. Journal of Sport Rehabilitation, 8(2),

71–82. https://doi.org/10.1123/jsr.8.2.71

Robinson, D., & Hayes, A. (2019). Broom: Convert statistical analysis objects into tidy

tibbles. Retrieved from https://CRAN.R-project.org/package=broom

Rodriguez-Linares, L., Vila, X., Lado, M. J., Mendez, A., Otero, A., & Garcia, C. A.

(2019). RHRV: Heart rate variability analysis of ecg data. Retrieved from

https://CRAN.R-project.org/package=RHRV

Rogers, T., & Landers, D. M. (2005). Mediating effects of peripheral vision in the life event

stress/athletic injury relationship. Journal of Sport and Exercise Psychology, 27(3),

271–288. https://doi.org/10.1002/9781444303650

Romero-Franco, N., Gallego-Izquierdo, T., Martínez-López, E. J., Hita-Contreras, F.,

Osuna-Pére, Catalina, M., & Martínez-Amat, A. (2014). Postural stability and

subsequent sports injuries during indoor season of athletes. Journal of Physical

Therapy Science, 26(5), 683–687. https://doi.org/10.1589/jpts.26.683

Roos, L. G., Levens, S. M., & Bennett, J. M. (2018). Stressful life events, relationship

stressors, and cortisol reactivity: The moderating role of suppression.

Psychoneuroendocrinology, 89, 69–77.

https://doi.org/10.1016/j.psyneuen.2017.12.026

Rosa, B. B., Asperti, A. M., Helito, C. P., Demange, M. K., Fernandes, T. L., &

Hernandez, A. J. (2014). Epidemiology of sports injuries on collegiate athletes at a

single center. Acta Ortopédica Brasileira, 22(6), 321–324.

https://doi.org/10.1590/1413-78522014220601007

Ross, S. E., Linens, S. W., Wright, C. J., & Arnold, B. L. (2011). Balance assessments for

predicting functional ankle instability and stable ankles. Gait and Posture, 34(4),

539–542. https://doi.org/10.1016/j.gaitpost.2011.07.011

173



Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernàndez, J., & Medina, D. (2018).

Effective injury forecasting in soccer with GPS training data and machine learning.

Plos One, 13(7), e0201264. https://doi.org/10.1371/journal.pone.0201264

Rowell, A. E., Aughey, R. J., Hopkins, W. G., Esmaeili, A., Lazarus, B. H., & Cormack, S.

J. (2018). Effects of training and competition load on neuromuscular recovery,

testosterone, cortisol, and match performance during a season of professional

football. Frontiers in Physiology, 9, 1–11. https://doi.org/10.3389/fphys.2018.00668

Russell, S. J., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.).

Prentice Hall. Retrieved from http://aima.cs.berkeley.edu/

Rutter, M. (1994). Stress research: Accomplishments and the tasks ahead. In M. Haggerty

R, Sherrod L, Rutter (Ed.), Stress, risk, and resilience in children and adolescents:

Processes, mechanisms, and interventions (pp. 354–386). Cambridge, MA:

Cambridge University Press.

Ryan, J. L., Pracht, E. E., & Orban, B. L. (2019). Inpatient and emergency department

costs from sports injuries among youth aged 5-18 years. BMJ Open Sport and

Exercise Medicine, 5(1), e000491. https://doi.org/10.1136/bmjsem-2018-000491

Saboul, D., Pialoux, V., & Hautier, C. (2014). The breathing effect of the LF/HF ratio in

the heart rate variability measurements of athletes. European Journal of Sport

Science, 14(Supp 1), 282–288. https://doi.org/10.1080/17461391.2012.691116

Salavati, M., Moghadam, M., Ebrahimi, I., & Arab, A. M. (2007). Changes in postural

stability with fatigue of lower extremity frontal and sagittal plane movers. Gait and

Posture, 26(2), 214–218. https://doi.org/10.1016/j.gaitpost.2006.09.001

Salimetrics. (2018). Salivary cortisol enzyme immunoassay kit (pp. 1–21). Retrieved from

https://salimetrics.com/wp-content/uploads/2018/03/salivary-cortisol-elisa-kit.pdf

Sarason, I. G., Johnson, J. H., & Siegel, J. M. (1978). Assessing the impact of life changes:

Development of the Life Experiences Survey. Journal of Consulting and Clinical

Psychology, 46(5), 932–946. https://doi.org/10.1037/0022-006X.46.5.932

174



Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., … Yamamoto,

Y. (2015). Advances in heart rate variability signal analysis: Joint position

statement by the e-Cardiology ESC Working Group and the European Heart

Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society.

Europace, 17(9), 1341–1353. https://doi.org/10.1093/europace/euv015

Scutari, M. (2010). Learning bayesian networks with the bnlearn R package. Journal of

Statistical Software, 35(3), 1–22. https://doi.org/10.18637/jss.v035.i03

Scutari, M. (2017). Bayesian network constraint-based structure learning algorithms:

Parallel and optimized implementations in the bnlearn R package. Journal of

Statistical Software, 77(2), 1–20. https://doi.org/10.18637/jss.v077.i02

Scutari, M., Auconi, P., Caldarelli, G., & Franchi, L. (2017). Bayesian networks analysis of

malocclusion data. Scientific Reports, 7(1), 1–11.

https://doi.org/10.1038/s41598-017-15293-w

Scutari, M., & Denis, J.-B. (2014). Bayesian networks: with examples in R (1st ed.).

Chapman & Hall/CRC. Retrieved from https://www.crcpress.com/Bayesian-

Networks-With-Examples-in-R/Scutari-Denis/p/book/9781482225587

Scutari, M., & Nagarajan, R. (2013). Identifying significant edges in graphical models of

molecular networks. Artificial Intelligence in Medicine, 57(3), 207–217.

https://doi.org/10.1016/j.artmed.2012.12.006

Seeman, T. E., Singer, B. H., Rowe, J. W., Horwitz, R. I., & McEwen, B. S. (1997). Price

of adaptation–allostatic load and its health consequences. MacArthur studies of

successful aging. Archives of Internal Medicine, 157(19), 2259–2268. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/9343003

Sell, T. C., Tsai, Y.-S., Smoliga, J. M., Myers, J. B., & Lephart, S. M. (2007). Strength,

flexibility, and balance characteristics of highly proficient golfers. The Journal of

Strength and Conditioning Research, 21(4), 1166.

https://doi.org/10.1519/R-21826.1

175



Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and

norms. Frontiers in Public Health, 5, 1–17.

https://doi.org/10.3389/fpubh.2017.00258

Sheu, Y., Chen, L. H., & Hedegaard, H. (2016). Sports- and recreation-related injury

episodes in the United States, 2011-2014. National Health Statistics Reports, (99),

1–12. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27906643

Siart, B., Nimmerichter, A., Vidotto, C., & Wallner, B. (2017). Status, stress and

performance in track and field athletes during the European games in Baku

(Azerbaijan). Scientific Reports, 7(1), 1–9.

https://doi.org/10.1038/s41598-017-06461-z

Sibold, J., & Zizzi, S. (2012). Psychosocial variables and time to injury onset: A hurdle

regression analysis model. Journal of Athletic Training, 47(5), 537–540.

https://doi.org/10.4085/1062-6050-47.3.15

Sin, N. L., Sloan, R. P., McKinley, P. S., & Almeida, D. M. (2016). Linking daily stress

processes and laboratory-based heart rate variability in a national sample of midlife

and older adults. Psychosomatic Medicine, 78(5), 573–582.

https://doi.org/10.1097/PSY.0000000000000306

Slimani, M., Bragazzi, N. L., Znazen, H., Paravlic, A., Azaiez, F., & Tod, D. (2018).

Psychosocial predictors and psychological prevention of soccer injuries: A

systematic review and meta-analysis of the literature. Physical Therapy in Sport,

32, 293–300. https://doi.org/10.1016/j.ptsp.2018.05.006

Smederevac, S., Mitrović, D., Čolović, P., & Nikolašević, Ž. (2014). Validation of the

measure of revised reinforcement sensitivity theory constructs. Journal of Individual

Differences, 35(1), 12–21. https://doi.org/10.1027/1614-0001/a000121

Smith, C. A., Chimera, N. J., & Warren, M. (2015). Association of Y balance test reach

asymmetry and injury in Division I Athletes. Medicine and Science in Sports and

Exercise, 47(1), 136–141. https://doi.org/10.1249/MSS.0000000000000380

176



Smith, R. E., Smoll, F. L., & Ptacek, J. T. (1990). Conjunctive moderator variables in

vulnerability and resiliency research: Life stress, social support and coping skills,

and adolescent sport injuries. Journal of Personality and Social Psychology, 58(2),

360–370. https://doi.org/10.1037/0022-3514.58.2.360

Steffen, K., Pensgaard, A. M., & Bahr, R. (2009). Self-reported psychological

characteristics as risk factors for injuries in female youth football. Scandinavian

Journal of Medicine and Science in Sports, 19(3), 442–451.

https://doi.org/10.1111/j.1600-0838.2008.00797.x

Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology.

In Handbook of life stress, cognition and health. (pp. 629–649). Oxford, England:

Wiley.

Strahorn, J., Serpell, B. G., McKune, A., & Pumpa, K. L. (2017). Effects of physical and

psychosocial interventions on hormone and performance outcomes in professional

rugby union players: A systematic review. Journal of Strength and Conditioning

Research, 31(11), 3158–3169.

Swanik, C. B., Covassin, T., Stearne, D. J., & Schatz, P. (2007). The relationship between

neurocognitive function and noncontact anterior cruciate ligament injuries.

American Journal of Sports Medicine, 35(6), 943–948.

https://doi.org/10.1177/0363546507299532

Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O., & Karjalainen, P. A.

(2014). Kubios HRV - Heart rate variability analysis software. Computer Methods

and Programs in Biomedicine, 113(1), 210–220.

https://doi.org/10.1016/j.cmpb.2013.07.024

Tobi, H., & Kampen, J. K. (2018). Research design: the methodology for interdisciplinary

research framework. Quality and Quantity, 52(3), 1209–1225.

https://doi.org/10.1007/s11135-017-0513-8

177



Tosevski, D. L., & Milovancevic, M. P. (2006). Stressful life events and physical health.

Current Opinion in Psychiatry, 19(2), 184–189.

https://doi.org/10.1097/01.yco.0000214346.44625.57

Trojian, T. H., & McKeag, D. B. (2006). Single leg balance test to identify risk of ankle

sprains. British Journal of Sports Medicine, 40(7), 610–613.

https://doi.org/10.1136/bjsm.2005.024356

Tropp, H., Ekstrand, J., & Gillquist, J. (1984). Stabilometry in functional instability of the

ankle and its value in predicting injury. Medicine and Science in Sports and

Exercise, 16, 64–66. https://doi.org/10.1249/00005768-198401000-00013

Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine

factors and stress. Journal of Psychosomatic Research, 53(4), 865–871. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/12377295

Vacek, P. M., Slauterbeck, J. R., Tourville, T. W., Sturnick, D. R., Holterman, L. A.,

Smith, H. C., … Beynnon, B. D. (2016). Multivariate analysis of the risk factors for

first-time noncontact ACL injury in high school and college athletes: A prospective

cohort study with a nested, matched case-control analysis. American Journal of

Sports Medicine, 44(6), 1492–1501. https://doi.org/10.1177/0363546516634682

Valovich, T. C., Perrin, D. H., & Gansneder, B. M. (2003). Repeat administration elicits a

practice effect with the Balance Error Scoring System but not with the Standardized

Assessment of Concussion in high school athletes. Journal of Athletic Training,

38(1), 51–56. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12937472

Walker, B. R., & Jackson, C. J. (2017). Examining the validity of the revised

Reinforcement Sensitivity Theory scales. Personality and Individual Differences,

106, 90–94. https://doi.org/10.1016/j.paid.2016.10.035

178



Wang, H. K., Chen, C. H., Shiang, T. Y., Jan, M. H., & Lin, K. H. (2006). Risk-factor

analysis of high school basketball-player ankle injuries: A prospective controlled

cohort study evaluating postural sway, ankle strength, and flexibility. Archives of

Physical Medicine and Rehabilitation, 87(6), 821–825.

https://doi.org/10.1016/j.apmr.2006.02.024

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “p <

0.05”. American Statistician, 73(sup1), 1–19.

https://doi.org/10.1080/00031305.2019.1583913

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag New

York. Retrieved from https://ggplot2.tidyverse.org

Wickham, H. (2017). Tidyverse: Easily install and load the ’tidyverse’. Retrieved from

https://CRAN.R-project.org/package=tidyverse

Wickham, H. (2019a). Forcats: Tools for working with categorical variables (factors).

Retrieved from https://CRAN.R-project.org/package=forcats

Wickham, H. (2019b). Stringr: Simple, consistent wrappers for common string operations.

Retrieved from https://CRAN.R-project.org/package=stringr

Wickham, H., François, R., Henry, L., & Müller, K. (2019). Dplyr: A grammar of data

manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr

Wickham, H., & Henry, L. (2019). Tidyr: Easily tidy data with ’spread()’ and ’gather()’

functions. Retrieved from https://CRAN.R-project.org/package=tidyr

Wickham, H., Hester, J., & Francois, R. (2018). Readr: Read rectangular text data.

Retrieved from https://CRAN.R-project.org/package=readr

Wiese-Bjornstal, D. M. (2009). Sport injury and college athlete health across the lifespan.

Journal of Intercollegiate Sport, 2(1), 64–80. https://doi.org/10.1123/jis.2.1.64

Wilkerson, G. B. (2012). Neurocognitive reaction time predicts lower extremity sprains and

strains. International Journal of Athletic Therapy and Training, 17(6), 4–9.

https://doi.org/10.1123/ijatt.17.6.4

179



Williams, J. M., & Andersen, M. B. (1998). Psychosocial antecedents of sport injury:

review and critique of the stress and injury model. Journal of Applied Sport

Psychology, 10, 5–25. https://doi.org/10.1080/10413209808406375

Williams, J. M., & Andersen, M. B. (2007). Psychosocial antecedents of sport injury and

interventions for risk reduction. In G. Tenenbaum & R. C. Eklund (Eds.), Handbook

of sport psychology (3rd ed., pp. 379–403). Hoboken, NJ, USA: Wiley.

https://doi.org/10.1002/9781118270011.ch17

Williams, S., Booton, T., Watson, M., Rowland, D., & Altini, M. (2017). Heart rate

variability is a moderating factor in the workload-injury relationship of competitive

crossfit™ athletes. Journal of Sports Science and Medicine, 16(4), 443–449.

Williams, S., Trewartha, G., Kemp, S. P. T., Brooks, J. H. M., Fuller, C. W., Taylor, A. E.,

… Stokes, K. A. (2017). How much rugby is too much? A seven-season prospective

cohort study of match exposure and injury risk in professional rugby union players.

Sports Medicine, 47(11), 2395–2402. https://doi.org/10.1007/s40279-017-0721-3

Xiao-xuan, H., Hui, W., & Shuo, W. (2008). Using expert’s knowledge to build Bayesian

networks. In International conference on computational intelligence and security

workshops (pp. 220–223). IEEE. https://doi.org/10.1109/cisw.2007.4425484

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida:

Chapman; Hall/CRC. Retrieved from https://yihui.name/knitr/

Xu, J. G., Zhao, Y., Chen, J., & Han, C. (2015). A structure learning algorithm for

Bayesian network using prior knowledge. Journal of Computer Science and

Technology, 30(4), 713–724. https://doi.org/10.1007/s11390-015-1556-8

Yaggie, J. A., & Campbell, B. M. (2006). Effects of balance training on selected skills.

Journal of Strength and Conditioning Research, 20(2), 422–428.

https://doi.org/10.1519/R-17294.1

180



Yang, J., Tibbetts, A. S., Covassin, T., Cheng, G., Nayar, S., & Heiden, E. (2012).

Epidemiology of overuse and acute injuries among competitive collegiate athletes.

Journal of Athletic Training, 47(2), 198–204.

https://doi.org/10.4085/1062-6050-47.2.198

Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T. P., & Sahebkar, A. (2017). The

impact of stress on body function: A review. EXCLI Journal, 16, 1057–1072.

https://doi.org/10.17179/excli2017-480

Young, T. (2019). Validation of the revised Reinforcement Sensitivity Theory - Personality

Questionnaire (RST-PQ). (PhD thesis). University of South Wales.

Zhu, H. (2019). KableExtra: Construct complex table with ’kable’ and pipe syntax.

Retrieved from https://CRAN.R-project.org/package=kableExtra

Abshire, M., Dinglas, V. D., Cajita, M. I. A., Eakin, M. N., Needham, D. M., &

Himmelfarb, C. D. (2017). Participant retention practices in longitudinal clinical

research studies with high retention rates. BMC Medical Research Methodology,

17(1), 1–10. https://doi.org/10.1186/s12874-017-0310-z

Ackermann, P. W. (2016). Neuronal pathways in tendon healing and tendinopathy -

update. Frontiers in Bioscience, 19(8), 1251–1278. https://doi.org/10.2741/4280

Agyapong-Badu, S., Aird, L., Bailey, L., Mooney, K., Mullix, J., Warner, M., … Stokes, M.

(2013). Interrater reliability of muscle tone, stiffness and elasticity measurements of

rectus femoris and biceps brachii in healthy young and older males. Working Papers

in the Health Sciences, 1(4), 1–11. Retrieved from

http://eprints.soton.ac.uk/356600/

Agyapong-Badu, S., Warner, M., Samuel, D., & Stokes, M. (2016). Measurement of ageing

effects on muscle tone and mechanical properties of rectus femoris and biceps

brachii in healthy males and females using a novel hand-held myometric device.

Archives of Gerontology and Geriatrics, 62, 59–67.

https://doi.org/10.1016/j.archger.2015.09.011

181



Aird, L., Samuel, D., & Stokes, M. (2012). Quadriceps muscle tone, elasticity and stiffness

in older males: Reliability and symmetry using the MyotonPRO. Archives of

Gerontology and Geriatrics, 55(2), e31–e39.

https://doi.org/https://doi.org/10.1016/j.archger.2012.03.005

Al Haddad, H., Laursen, P. B., Chollet, D., Ahmaidi, S., & Buchheit, M. (2011).

Reliability of resting and postexercise heart rate measures. International Journal of

Sports Medicine, 32(8), 598–605. https://doi.org/10.1055/s-0031-1275356

Aman, M., Forssblad, M., & Henriksson-Larsén, K. (2016). Incidence and severity of

reported acute sports injuries in 35 sports using insurance registry data.

Scandinavian Journal of Medicine and Science in Sports, 26(4), 451–462.

https://doi.org/10.1111/sms.12462

Andersen, M. B., & Williams, J. M. (1988). A model of stress and athletic injury:

Prediction and prevention. Journal of Sport and Exercise Psychology, 10(3),

294–306. https://doi.org/10.1123/jsep.10.3.294

Andersen, M. B., & Williams, J. M. (1999). Athletic injury, psychosocial factors and

perceptual changes during stress. Journal of Sports Sciences, 17(9), 735–741.

https://doi.org/10.1080/026404199365597

Anderson, T., Lane, A. R., & Hackney, A. C. (2016). Cortisol and testosterone dynamics

following exhaustive endurance exercise. European Journal of Applied Physiology,

116(8), 1503–1509. https://doi.org/10.1007/s00421-016-3406-y

Anderson, T., & Wideman, L. (2017). Exercise and the cortisol awakening response: A

systematic review. Sports Medicine, 3(1), 37.

https://doi.org/10.1186/s40798-017-0102-3

Appaneal, R. N., Levine, B. R., Perna, F. M., & Roh, J. L. (2009). Measuring postinjury

depression among male and female competitive athletes. Journal of Sport and

Exercise Psychology, 31(1), 60–76. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/19325188

182



Appaneal, R. N., & Perna, F. M. (2014). Biopsychosocial model of injury. In R. C. Eklund

& G. Tenenbaum (Eds.), Encyclopedia of sport and exercise psychology (pp. 74–77).

Thousand Oaks, CA: Sage.

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown.

Retrieved from https://github.com/crsh/papaja

Bahr, R., & Krosshaug, T. (2005). Understanding injury mechanisms: A key component of

preventing injuries in sport. British Journal of Sports Medicine, 39(6), 324–329.

https://doi.org/10.1136/bjsm.2005.018341

Bailey, L., Dinesh, S., Warner, M., Stokes, M., & Samuel, D. (2013). Parameters

representing muscle tone, elasticity and stiffness of biceps brachii in healthy older

males: Symmetry and within-session reliability using the MyotonPRO. Journal of

Neurological Disorders, 1(1), 1–7. https://doi.org/10.4172/2329-6895.1000116

Bell, D. R., Guskiewicz, K. M., Clark, M. A., & Padua, D. A. (2011). Systematic review of

the balance error scoring system. Sports Health, 3(3), 287–295.

https://doi.org/10.1177/1941738111403122

Bellenger, C. R., Fuller, J. T., Thomson, R. L., Davison, K., Robertson, E. Y., & Buckley,

J. D. (2016). Monitoring athletic training status through autonomic heart rate

regulation: A systematic review and meta-analysis. Sports Medicine, 46(10),

1461–1486. https://doi.org/10.1007/s40279-016-0484-2

Bernards, J., Sato, K., Haff, G., & Bazyler, C. (2017). Current research and statistical

practices in sport science and a need for change. Sports, 5(4), 87.

https://doi.org/10.3390/sports5040087

Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M.,

… Molen, M. W. van der. (1997). Heart rate variability: Origins, methods, and

interpretive caveats. Psychophysiology, 34, 623–648.

https://doi.org/10.1111/j.1469-8986.1997.tb02140.x

183



Beuzen, T., Marshall, L., & Splinter, K. D. (2018). A comparison of methods for

discretizing continuous variables in Bayesian networks. Environmental Modelling

and Software, 108(Dec), 61–66. https://doi.org/10.1016/j.envsoft.2018.07.007

Bien, D. P., & Dubuque, T. J. (2015). Considerations for late stage ACL rehabilitation and

return to sport to limit re-injury risk and maximize athletic performance.

International Journal of Sports Physical Therapy, 10(2), 256–271. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/25883874

Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac

sympatho-vagal balance. Frontiers in Physiology, 4, 26.

https://doi.org/10.3389/fphys.2013.00026

Birkett, S. T., Nichols, S., Sawrey, R., Gleadall-Siddall, D., McGregor, G., & Ingle, L.

(2019). The effects of low-volume high-intensity interval training and circuit

training on maximal oxygen uptake. Sport Sciences for Health, 15(2), 443–451.

https://doi.org/10.1007/s11332-019-00552-2

Bittencourt, N. F. N., Meeuwisse, W. H., Mendonça, L. D., Nettel-Aguirre, A., Ocarino, J.

M., & Fonseca, S. T. (2016). Complex systems approach for sports injuries: Moving

from risk factor identification to injury pattern recognition - narrative review and

new concept. British Journal of Sports Medicine, 50(21), 1309–1314.

https://doi.org/10.1136/bjsports-2015-095850

Bittl, J. A., & He, Y. (2017). Bayesian analysis: A practical approach to interpret clinical

trials and create clinical practice guidelines. Circulation: Cardiovascular Quality

and Outcomes, 10(8), 1–11. https://doi.org/10.1161/CIRCOUTCOMES.117.003563

Bolker, B., & Robinson, D. (2019). Broom.mixed: Tidying methods for mixed models.

Retrieved from https://CRAN.R-project.org/package=broom.mixed

Borresen, J., & Lambert, M. (2009). The quantification of training load, the training

response and the effect on performance. Sports Medicine, 39(9), 779–795.

https://doi.org/10.2165/11317780-000000000-00000

184



Brachman, A., Kamieniarz, A., Michalska, J., Pawłowski, M., Słomka, K. J., & Juras, G.

(2017). Balance training programs in athletes – A systematic review. Journal of

Human Kinetics, 58(1), 45–64. https://doi.org/10.1515/hukin-2017-0088

Brewer, B. W. (2012). Psychology of sport injury rehabilitation. In G. Tenenbaum & R. C.

Eklund (Eds.), Handbook of sport psychology (3rd ed., pp. 404–424). Hoboken, NJ,

USA: Wiley. https://doi.org/10.1002/9781118270011.ch18

Brownlee, K. K., Moore, A. W., & Hackney, A. C. (2005). Relationship between circulating

cortisol and testosterone: Influence of physical exercise. Journal of Sports Science

and Medicine, 4(1), 76–83. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/24431964

Buekers, M., Ibáñez-Gijón, J., Morice, A. H. P., Rao, G., Mascret, N., Laurin, J., &

Montagne, G. (2017). Interdisciplinary research: A promising approach to

investigate elite performance in sports. Quest, 69(1), 65–79.

https://doi.org/10.1080/00336297.2016.1152982

Bueno, A. M., Pilgaard, M., Hulme, A., Forsberg, P., Ramskov, D., Damsted, C., &

Nielsen, R. O. (2018). Injury prevalence across sports: A descriptive analysis on a

representative sample of the Danish population. Injury Epidemiology, 5(1), 1–8.

https://doi.org/10.1186/s40621-018-0136-0

Burwitz, L., Moore, P. M., & Wilkinson, D. M. (1994). Future directions for

performance‐related sports science research: An interdisciplinary approach. Journal

of Sports Sciences, 12(1), 93–109. https://doi.org/10.1080/02640419408732159

Butler, R. J., Crowell, H. P., & Davis, I. M. C. (2003). Lower extremity stiffness:

Implications for performance and injury. Clinical Biomechanics, 18(6), 511–517.

https://doi.org/10.1016/S0268-0033(03)00071-8

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan.

Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan.

Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

185



Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms.

The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017

Bzdok, D., Altman, N., & Krzywinski, M. (2018). Points of significance: Statistics versus

machine learning. Nature Methods, 15(4), 233–234.

https://doi.org/10.1038/nmeth.4642

Caminal, P., Sola, F., Gomis, P., Guasch, E., Perera, A., Soriano, N., & Mont, L. (2018).

Validity of the Polar V800 monitor for measuring heart rate variability in mountain

running route conditions. European Journal of Applied Physiology, 118(3), 669–677.

https://doi.org/10.1007/s00421-018-3808-0

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., …

Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of

Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01

Chalmers, J. A., Quintana, D. S., Abbott, M. J.-A., & Kemp, A. H. (2014). Anxiety

disorders are associated with reduced heart rate variability: A meta-analysis.

Frontiers in Psychiatry, 5, 80. https://doi.org/10.3389/fpsyt.2014.00080

Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling.

Environmental Modelling and Software, 37, 134–145.

https://doi.org/10.1016/j.envsoft.2012.03.012

Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews

Endocrinology, 5(7), 374–381. https://doi.org/10.1038/nrendo.2009.106

Chuang, L. L., Lin, K. C., Wu, C. Y., Chang, C. W., Chen, H. C., Yin, H. P., & Wang, L.

(2013). Relative and absolute reliabilities of the myotonometric measurements of

hemiparetic arms in patients with stroke. Archives of Physical Medicine and

Rehabilitation, 94(3), 459–466. https://doi.org/10.1016/j.apmr.2012.08.212

Chuang, L. L., Wu, C. Y., & Lin, K. C. (2012). Reliability, validity, and responsiveness of

myotonometric measurement of muscle tone, elasticity, and stiffness in patients with

stroke. Archives of Physical Medicine and Rehabilitation, 93(3), 532–540.

https://doi.org/10.1016/j.apmr.2011.09.014

186



Cingel, R. E. H. van, Hoogeboom, T. J., Melick, N. van, Meddeler, B. M., & Nijhuis-van

der Sanden, M. W. G. (2017). How to determine leg dominance: The agreement

between self-reported and observed performance in healthy adults. Plos One,

12(12), 1–9. https://doi.org/10.1371/journal.pone.0189876

Clement, D., Granquist, M. D., & Arvinen-Barrow, M. M. (2013). Psychosocial aspects of

athletic injuries as perceived by athletic trainers. Journal of Athletic Training,

48(4), 512–521. https://doi.org/10.4085/1062-6050-48.3.21

Coco, M., Fiore, A. S., Perciavalle, V., Maci, T., Petralia, M. C., & Perciavalle, V. (2015).

Stress exposure and postural control in young females. Molecular Medicine Reports,

11(3), 2135–2140. https://doi.org/10.3892/mmr.2014.2898

Cormack, S. J., Newton, R. U., McGuigan, M. R., & Cormie, P. (2008). Neuromuscular

and endocrine responses of elite players during an Australian rules football season.

International Journal of Sports Physiology and Performance, 3(4), 439–453.

https://doi.org/10.1123/ijspp.3.4.439

Corr, P. J. (2008). The Reinforcement Sensitivity Theory of Personality. Cambridge:

Cambridge University Press. https://doi.org/10.1017/CBO9780511819384

Corr, P. J. (2013). Approach and avoidance behaviour: Multiple systems and their

interactions. Emotion Review, 5(3), 285–290.

https://doi.org/10.1177/1754073913477507

Corr, P. J. (2016). Reinforcement Sensitivity Theory of Personality Questionnaires:

Structural survey with recommendations. Personality and Individual Differences,

89, 60–64. https://doi.org/10.1016/j.paid.2015.09.045

Corr, P. J., & Cooper, A. J. (2016). The reinforcement sensitivity theory of personality

questionnaire (RST-PQ): Development and validation. Psychological Assessment,

28(11), 1427–1440. https://doi.org/10.1037/pas0000273

187



Corr, P. J., McNaughton, N., Wilson, M. R., Hutchison, A., Burch, G., & Poropat, A.

(2016). Neuroscience of motivation and organizational behavior: Putting the

reinforcement sensitivity theory (RST) to work. Advances in Motivation and

Achievement, 19, 65–92. https://doi.org/10.1108/S0749-742320160000019010

Craven, B. C., & Morris, A. R. (2010). Modified Ashworth scale reliability for

measurement of lower extremity spasticity among patients with SCI. Spinal Cord,

48(3), 207–213. https://doi.org/10.1038/sc.2009.107

Cryan, P. D., & Alles, W. F. (1983). The relationship between stress and college football

injuries. The Journal of Sports Medicine and Physical Fitness, 23(1), 52–58.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6876787

Cumps, E., Verhagen, E., Armenians, L., & Meeusen, R. (2008). Injury rate and

socioeconomic costs resulting from sports injuries in Flanders: Data derived from

sports insurance statistics 2003. British Journal of Sports Medicine, 42(9), 767–772.

https://doi.org/10.1136/bjsm.2007.037937

Daniel, M., Li, J., Schmidt, B., Angerer, P., & Jarczok, M. N. (2014). Measuring allostatic

load in the workforce: A systematic review. Industrial Health, 53(1), 5–20.

https://doi.org/10.2486/indhealth.2014-0122

Denver, J. W., Reed, S. F., & Porges, S. W. (2007). Methodological issues in the

quantification of respiratory sinus arrhythmia. Biological Psychology, 74(2),

286–294. https://doi.org/10.1016/j.biopsycho.2005.09.005

Depaoli, S., & Schoot, R. van de. (2017). Improving transparency and replication in

Bayesian statistics: The WAMBS-checklist. Psychological Methods, 22(2), 240–261.

https://doi.org/10.1037/met0000065

Devantier, C. (2011). Psychological predictors of injury among professional soccer players.

Sport Science Review, 20(5-6), 5–36. https://doi.org/10.2478/v10237-011-0062-3

DeWitt, P. (2019). Qwraps2: Quick wraps 2. Retrieved from

https://CRAN.R-project.org/package=qwraps2

188



Dijkstra, H. P., Pollock, N., Chakraverty, R., & Alonso, J. M. (2014). Managing the health

of the elite athlete: A new integrated performance health management and coaching

model. British Journal of Sports Medicine, 48(7), 523–531.

https://doi.org/10.1136/bjsports-2013-093222

Dingenen, B., Malfait, B., Nijs, S., Peers, K. H. E., Vereecken, S., Verschueren, S. M. P., …

Staes, F. F. (2016). Postural stability during single-leg stance: A preliminary

evaluation of noncontact lower extremity injury risk. Journal of Orthopaedic and

Sports Physical Therapy, 46(8), 650–657. https://doi.org/10.2519/jospt.2016.6278

Dishman, R. K., Nakamura, Y., Garcia, M. E., Thompson, R. W., Dunn, A. L., & Blair, S.

N. (2000). Heart rate variability, trait anxiety, and perceived stress among

physically fit men and women. International Journal of Psychophysiology, 37(2),

121–133. https://doi.org/10.1016/S0167-8760(00)00085-4

Djaoui, L., Haddad, M., Chamari, K., & Dellal, A. (2017). Monitoring training load and

fatigue in soccer players with physiological markers. Physiology and Behavior,

181(1), 86–94. https://doi.org/10.1016/j.physbeh.2017.09.004

Dong, J. G. (2016). The role of heart rate variability in sports physiology (Review).

Experimental and Therapeutic Medicine, 11(5), 1531–1536.

https://doi.org/10.3892/etm.2016.3104

Doumas, M., Morsanyi, K., & Young, W. R. (2018). Cognitively and socially induced

stress affects postural control. Experimental Brain Research, 236(1), 305–314.

https://doi.org/10.1007/s00221-017-5128-8

Eddelbuettel, D., & Balamuta, J. J. (2017). Extending extitR with extitC++: A Brief

Introduction to extitRcpp. PeerJ Preprints, 5, e3188v1.

https://doi.org/10.7287/peerj.preprints.3188v1

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal

of Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08

189



Edwards, J. P., Walsh, N. P., Diment, P. C., & Roberts, R. (2018). Anxiety and perceived

psychological stress play an important role in the immune response after exercise.

Exercise Immunology Review, 24, 26–34.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. New York:

Chapman & Hall. Retrieved from https://www.crcpress.com/An-Introduction-to-

the-Bootstrap/Efron-Tibshirani/p/book/9780412042317

Enders, C. K. (2003). Using the expectation maximization algorithm to estimate coefficient

alpha for scales with item-level missing data. Psychological Methods, 8(3), 322–337.

https://doi.org/10.1037/1082-989X.8.3.322

Esco, M. R., & Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest

and post-exercise in athletes: Evaluating the agreement with accepted

recommendations. Journal of Sports Science and Medicine, 13(3), 535–541.

Esco, M. R., Williford, H. N., Flatt, A. A., Freeborn, T. J., & Nakamura, F. Y. (2018).

Ultra-shortened time-domain HRV parameters at rest and following exercise in

athletes: An alternative to frequency computation of sympathovagal balance.

European Journal of Applied Physiology, 118(1), 175–184.

https://doi.org/10.1007/s00421-017-3759-x

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive

performance: Attentional control theory. Emotion, 7(2), 336–353.

https://doi.org/10.1037/1528-3542.7.2.336

Fawkner, H. J., McMurrary, N. E., & Summers, J. J. (1999). Athletic injury and minor life

events: A prospective study. Journal of Science and Medicine in Sport, 2(2),

117–124. https://doi.org/10.1016/S1440-2440(99)80191-1

Fletcher, D., & Scott, M. (2010). Psychological stress in sports coaches: A review of

concepts, research, and practice. Journal of Sports Sciences, 28(2), 127–137.

https://doi.org/10.1080/02640410903406208

190



Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with

unobservable variables and measurement error. Journal of Marketing Research,

18(1), 39–50. https://doi.org/10.2307/3151312

Freedson, P. (2009). Interdisciplinary research funding: Reaching outside the boundaries of

kinesiology. Quest, 61(1), 19–24. https://doi.org/10.1080/00336297.2009.10483597

Fulton, J., Wright, K., Kelly, M., Zebrosky, B., Zanis, M., Drvol, C., & Butler, R. (2014).

Injury risk is altered by previous injury: A systematic review of the literature and

presentation of causative neuromuscular factors. International Journal of Sports

Physical Therapy, 9(5), 583–595. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/25328821

Fuster-Parra, P., Vidal-Conti, J., Borràs, P. A., & Palou, P. (2017). Bayesian networks to

identify statistical dependencies. A case study of Spanish university students’

habits. Informatics for Health and Social Care, 42(2), 166–179.

https://doi.org/10.1080/17538157.2016.1178117

Gabbett, T. J. (2016). The training-injury prevention paradox: should athletes be training

smarter and harder? British Journal of Sports Medicine, 50(5), 273–280.

https://doi.org/10.1136/bjsports-2015-095788

Gabry, J. (2018). shinystan: Interactive, visual and numerical diagnostics and posterior

analysis for Bayesian models. Retrieved from

https://cran.r-project.org/package=shinystan

Galambos, S. A., Terry, P. C., Moyle, G. M., & Locke, S. A. (2005). Psychological

predictors of injury among elite athletes. British Journal of Sports Medicine, 39(6),

351–354. https://doi.org/10.1136/bjsm.2005.018440

Ganzel, B. L., Morris, P. A., & Wethington, E. (2010). Allostasis and the human brain:

Integrating models of stress from the social and life sciences. Psychological Review,

117(1), 134–174. https://doi.org/10.1037/a0017773

191



García Martínez, C. A., Otero Quintana, A., Vila, X. A., Lado Touriño, M. J.,

Rodríguez-Liñares, L., Rodríguez Presedo, J. M., & Méndez Penín, A. J. (2017).

Heart rate variability analysis with the R package RHRV. Springer.

https://doi.org/10.1007/978-3-319-65355-6

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis, 1(3), 515–533. https://doi.org/10.1214/06-BA117A

Gelman, A. (2008a). Objections to Bayesian statistics. Bayesian Analysis, 3(3), 445–450.

https://doi.org/10.1214/08-BA318

Gelman, A. (2008b). Rejoinder. Bayesian Analysis, 3(3), 467–478.

https://doi.org/10.1214/08-BA318REJ

Gelman, A., & Brooks, S. P. (1998). General methods for monitoring convergence of

iterative simulations. Journal of Computational and Graphical Statistics, 7(4),

434–455.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian Data Analysis (3rd ed.). Boca Raton: Chapman; Hall/CRC.

Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics.

British Journal of Mathematical and Statistical Psychology, 66(1), 8–38.

https://doi.org/10.1111/j.2044-8317.2011.02037.x

Gennisson, J. L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010).

Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed

by supersonic shear imaging. Ultrasound in Medicine and Biology, 36(5), 789–801.

https://doi.org/10.1016/j.ultrasmedbio.2010.02.013

Gentleman, R., Whalen, E., Huber, W., & Falcon, S. (2019). Graph: Graph: A package to

handle graph data structures.

Gerber, M., Brand, S., Lindwall, M., Elliot, C., Kalak, N., Herrmann, C., … Jonsdottir, I.

H. (2012). Concerns regarding hair cortisol as a biomarker of chronic stress in

exercise and sport science. Journal of Sports Science and Medicine, 11(4), 571–581.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24150065

192



Gervasi, M., Sisti, D., Amatori, S., Andreazza, M., Benelli, P., Sestili, P., … Calavalle, A.

R. (2017). Muscular viscoelastic characteristics of athletes participating in the

European Master Indoor Athletics Championship. European Journal of Applied

Physiology, 117(8), 1739–1746. https://doi.org/10.1007/s00421-017-3668-z

Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to

measure RR intervals at rest. European Journal of Applied Physiology, 116(3),

563–571. https://doi.org/10.1007/s00421-015-3303-9

Gisselman, A. S., Baxter, G. D., Wright, A., Hegedus, E., & Tumilty, S. (2016).

Musculoskeletal overuse injuries and heart rate variability: Is there a link? Medical

Hypotheses, 87, 1–7. https://doi.org/10.1016/j.mehy.2015.12.003

Goldstein, H., Bryk, A. S., & Raudenbush, S. W. (2006). Hierarchical linear models:

Applications and data analysis methods. Journal of the American Statistical

Association, 88(421), 386. https://doi.org/10.2307/2290750

Gordon, C.-M., Andrasik, F., Schleip, R., Birbaumer, N., & Rea, M. (2016). Myofascial

triggerpoint release (MTR) for treating chronic shoulder pain: A novel approach.

Journal of Bodywork and Movement Therapies, 20(3), 614–622.

https://doi.org/10.1016/j.jbmt.2016.01.009

Gozansky, W. S., Lynn, J. S., Laudenslager, M. L., & Kohrt, W. M. (2005). Salivary

cortisol determined by enzyme immunoassay is preferable to serum total cortisol for

assessment of dynamic hypothalamic-pituitary-adrenal axis activity. Clinical

Endocrinology, 63(3), 336–341. https://doi.org/10.1111/j.1365-2265.2005.02349.x

Gray, J. A. (1982). Précis of the neuropsychology of anxiety: An enquiry into the functions

of the septo-hippocampal system. Behavioral and Brain Sciences, 5(3), 469–484.

https://doi.org/10.1017/S0140525X00013066

Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into

the functions of the septo-hippocampal system. Oxford: Oxford University Press.

https://doi.org/10.1017/S0140525X00013066

193



Gröschl, M., Read, G. F., Hughes, I. A., & Riad-Fahmy, D. (2008). Current status of

salivary hormone analysis. Clinical Chemistry, 54(11), 1759–1769.

https://doi.org/10.1373/clinchem.2008.108910

Gucciardi, D., & Zyphur, M. (2016). Exploratory structural equation modelling and

Bayesian estimation. In N. Ntoumanis & N. Myers (Eds.), An introduction to

intermediate and advanced analyses for sport and exercise scientists (pp. 172–194).

London: Wiley.

Gunnoe, A. J., Horodyski, M., Tennant, L. K., & Murphey, M. (2001). The effect of life

events on incidence of injury in high school football players. Journal of Athletic

Training, 36(2), 150–155. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/12937456

Hahn, T., Foldspang, A., Vestergaard, E., & Ingemann-Hansen, T. (1999). One-leg

standing balance and sports activity. Scandinavian Journal of Medicine and Science

in Sport, 9(13), 15–18. https://doi.org/10.1111/j.1600-0838.1999.tb00201.x

Hanoch, Y., & Vitouch, O. (2004). When less is more: Information, emotional arousal and

the ecological reframing of the Yerkes-Dodson law. Theory & Psychology, 14(4),

427–452. https://doi.org/10.1177/0959354304044918

Hansen, K. D., Gentry, J., Long, L., Gentleman, R., Falcon, S., Hahne, F., & Sarkar, D.

(2019). Rgraphviz: Provides plotting capabilities for r graph objects.

Hardy, L. (1992). Psychological stress, performance, and injury in sport. British Medical

Bulletin, 48(2), 615–629. https://doi.org/10.1093/oxfordjournals.bmb.a072567

Hardy, L., Bell, J., & Beattie, S. (2014). A neuropsychological model of mentally tough

behavior. Journal of Personality, 82(1), 69–81. https://doi.org/10.1111/jopy.12034

Hashiguchi, N., Kaji, Y., Kozaki, T., Tochihara, Y., & Yasukouchi, A. (2009). Effects of

saliva collection using cotton swab on cortisol enzyme immunoassay. European

Journal of Applied Physiology, 107(6), 743–746.

https://doi.org/10.1007/s00421-009-1178-3

194



Hägglund, M., Waldén, M., & Ekstrand, J. (2006). Previous injury as a risk factor for

injury in elite football: A prospective study over two consecutive seasons. British

Journal of Sports Medicine, 40(9), 767–772.

https://doi.org/10.1136/bjsm.2006.026609

Heathers, J. A. J. (2014). Everything Hertz: Methodological issues in short-term

frequency-domain HRV. Frontiers in Physiology, 5, 1–15.

https://doi.org/10.3389/fphys.2014.00177

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20(3), 197–243.

https://doi.org/10.1023/A:1022623210503

Hedayatpour, N., & Falla, D. (2015). Physiological and neural adaptations to eccentric

exercise: Mechanisms and considerations for training. BioMed Research

International, 1–7. https://doi.org/10.1155/2015/193741

Heino, M. T. J., Vuorre, M., & Hankonen, N. (2018). Bayesian evaluation of behavior

change interventions: A brief introduction and a practical example. Health

Psychology and Behavioral Medicine, 6(1), 49–78.

https://doi.org/10.1080/21642850.2018.1428102

Henry, L., & Wickham, H. (2019). Purrr: Functional programming tools. Retrieved from

https://CRAN.R-project.org/package=purrr

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of

recommendations for SEMG sensors and sensor placement procedures. Journal of

Electromyography and Kinesiology, 10(5), 361–374.

https://doi.org/10.1016/S1050-6411(00)00027-4

Hertwig, R., & Todd, P. M. (2005). More is not always better: The benefits of cognitive

limits. In D. Hardman & L. Macchi (Eds.), Thinking: Psychological perspectives on

reasoning, judgment and decision making (pp. 213–231). Chichester, UK: Wiley.

https://doi.org/10.1002/047001332X.ch11

195



Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise

and circulating Cortisol levels: The intensity threshold effect. Journal of

Endocrinological Investigation, 31(7), 587–591.

https://doi.org/10.1007/BF03345606

Hill, L. K., Siebenbrock, A., Sollers III, J. J., & Thayer, J. F. (2009). Are all measures

created equal? Heart rate variability and respiration. Biomedical Sciences

Instrumentation, 45, 71–76. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/19369742

Holland, J. H. (1995). Hidden order: How adaptation builds complexity (p. 185).

Addison-Wesley. Retrieved from https://dl.acm.org/citation.cfm?id=225764

Holmes, T. H. (1970). Psychological screening in football injuries (pp. 211–214).

Washington, DC: National Academy of Sciences. https://doi.org/10.17226/20983

Holmes, T. H., & Rahe, R. H. (1967). The social readjustment rating scale. Journal of

Psychosomatic Research, 11(2), 213–218.

https://doi.org/10.1016/0022-3999(67)90010-4

Hrysomallis, C. (2011). Balance ability and athletic performance. Sports Medicine, 41(3),

221–232. https://doi.org/10.2165/11538560-000000000-00000

Hsu, C. J., Meierbachtol, A., George, S. Z., & Chmielewski, T. L. (2017). Fear of reinjury

in athletes: Implications for rehabilitation. Sports Health, 9(2), 162–167.

https://doi.org/10.1177/1941738116666813

Hu, M. C., Pavlicova, M., & Nunes, E. V. (2011). Zero-inflated and hurdle models of count

data with extra zeros: Examples from an HIV-risk reduction intervention trial.

American Journal of Drug and Alcohol Abuse, 37(5), 367–375.

https://doi.org/10.3109/00952990.2011.597280

Huber, W., Carey, J., V., Gentleman, R., … M. (2015). Orchestrating high-throughput

genomic analysis with Bioconductor. Nature Methods, 12(2), 115–121. Retrieved

from http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html

196



Hughes, G. (2014). A review of recent perspectives on biomechanical risk factors associated

with anterior cruciate ligament injury. Research in Sports Medicine, 22(2), 193–212.

https://doi.org/10.1080/15438627.2014.881821

Hulme, A., & Finch, C. F. (2015). From monocausality to systems thinking: A

complementary and alternative conceptual approach for better understanding the

development and prevention of sports injury. Injury Epidemiology, 2(1), 31.

https://doi.org/10.1186/s40621-015-0064-1

Hulme, A., Thompson, J., Nielsen, R. O., Read, G. J. M. M., & Salmon, P. M. (2018).

Towards a complex systems approach in sports injury research: Simulating

running-related injury development with agent-based modelling. British Journal of

Sports Medicine, 53(9), 560–569. https://doi.org/10.1136/bjsports-2017-098871

Hunt, T. N., Ferrara, M. S., Bornstein, R. A., & Baumgartner, T. A. (2009). The

reliability of the modified balance error scoring system. Clinical Journal of Sport

Medicine, 19(6), 471–475. https://doi.org/10.1097/JSM.0b013e3181c12c7b

Iannone, R. (2019). DiagrammeR: Graph/network visualization. Retrieved from

https://CRAN.R-project.org/package=DiagrammeR

Iniesta, R., Stahl, D., & McGuffin, P. (2016). Machine learning, statistical learning and the

future of biological research in psychiatry. Psychological Medicine, 46(12),

2455–2465. https://doi.org/10.1017/S0033291716001367

Ivarsson, A., & Johnson, U. (2010). Psychological factors as predictors of injuries among

senior soccer players. A prospective study. Journal of Sports Science and Medicine,

9(2), 347–352. Retrieved from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761721/

Ivarsson, A., Johnson, U., Andersen, M. B., Tranaeus, U., Stenling, A., & Lindwall, M.

(2017). Psychosocial factors and sport injuries: Meta-analyses for prediction and

prevention. Sports Medicine, 47(2), 353–365.

https://doi.org/10.1007/s40279-016-0578-x

197



Ivarsson, A., Johnson, U., Lindwall, M., Gustafsson, H., & Altemyr, M. (2014).

Psychosocial stress as a predictor of injury in elite junior soccer: A latent growth

curve analysis. Journal of Science and Medicine in Sport, 17(4), 366–370.

https://doi.org/10.1016/j.jsams.2013.10.242

Jackson, C. J. (2009). Jackson-5 scales of revised Reinforcement Sensitivity Theory

(r-RST) and their application to dysfunctional real world outcomes. Journal of

Research in Personality, 43(4), 556–569. https://doi.org/10.1016/j.jrp.2009.02.007

Johnson, U., Tranaeus, U., & Ivarsson, A. (2014). Current status and future challenges in

psychological research of sport injury prediction and prevention: A methodological

perspective. Revista de Psicologia Del Deporte, 23(2), 401–409. Retrieved from

https://www.rpd-online.com/article/view/v23-n2-johnson-tranaeus-ivarsson

Johnston, L. H., & Carroll, D. (2000). The psychological impact of injury: Effects of prior

sport and exercise involvement. British Journal of Sports Medicine, 34(6), 436–439.

https://doi.org/10.1136/bjsm.34.6.436

Junge, A. (2000). The influence of psychological factors on sports injuries. Review of the

literature. American Journal of Sports Medicine, 28(5 Suppl.), 10–15.

https://doi.org/10.1177/28.suppl_5.s-10

Kalkhoven, J. T., & Watsford, M. L. (2017). The relationship between mechanical stiffness

and athletic performance markers in sub-elite footballers. Journal of Sports

Sciences, 36(9), 1022–1029. https://doi.org/10.1080/02640414.2017.1349921

Kean, C. O., Behm, D. G., & Young, W. B. (2006). Fixed foot balance training increases

rectus femoris activation during landing and jump height in recreationally active

women. Journal of Sports Science and Medicine, 5(1), 138–148. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/24198691

198



Kelly, J. P., Koppenhaver, S. L., Michener, L. A., Proulx, L., Bisagni, F., & Cleland, J. A.

(2018). Characterization of tissue stiffness of the infraspinatus, erector spinae, and

gastrocnemius muscle using ultrasound shear wave elastography and superficial

mechanical deformation. Journal of Electromyography and Kinesiology, 38, 73–80.

https://doi.org/10.1016/j.jelekin.2017.11.001

Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H., & Koo, B.-H. (2018). Stress and heart

rate variability: A meta-analysis and review of the literature. Psychiatry

Investigation, 15(3), 235–245. https://doi.org/10.30773/pi.2017.08.17

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and

techniques - Adaptive computation and machine learning. Cambridge, MA: The

MIT Press. https://doi.org/10.1017/CBO9781107415324.004

Kolt, G., & Kirkby, R. (1996). Injury in Australian female competitive gymnasts: A

psychological perspective. The Australian Journal of Physiotherapy, 42(2), 121–126.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11676643

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass

correlation coefficients for reliability research. Journal of Chiropractic Medicine,

15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Kraemer, W., Denegar, C., & Flanagan, S. (2009). Recovery from injury in sport:

Considerations in the transition from medical care to performance care. Sports

Health, 1(5), 392–395. https://doi.org/10.1177/1941738109343156

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental

Psychology: General, 142(2), 573–588. https://doi.org/10.1037/a0029146

Kucera, K. L., Marshall, S. W., Kirkendall, D. T., Marchak, P. M., & Garrett, W. E.

(2005). Injury history as a risk factor for incident injury in youth soccer. British

Journal of Sports Medicine, 39(7), 462–466.

https://doi.org/10.1136/bjsm.2004.013672

199



Kuhn, M. C. from J. W., Weston, S., Williams, A., Keefer, C., & Engelhardt, A. (2008).

caret: Classification and Regression Training. Journal of Statistical Software, 28(5).

https://doi.org/10.1053/j.sodo.2009.03.002

Kumar, S. (2001). Theories of musculoskeletal injury causation. Ergonomics, 44(1), 17–47.

https://doi.org/10.1080/00140130120716

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal

tone in psychophysiological research - Recommendations for experiment planning,

data analysis, and data reporting. Frontiers in Psychology, 8, 1–18.

https://doi.org/10.3389/fpsyg.2017.00213

Lacourpaille, L., Hug, F., Bouillard, K., Hogrel, J. Y., & Nordez, A. (2012). Supersonic

shear imaging provides a reliable measurement of resting muscle shear elastic

modulus. Physiological Measurement, 33(3), 19–28.

https://doi.org/10.1088/0967-3334/33/3/N19

Lang, K. M., Jorgensen, T. D., Moore, E. W. G., & Little, T. D. (2013). On the joys of

missing data. Journal of Pediatric Psychology, 39(2), 151–162.

https://doi.org/10.1093/jpepsy/jst048

Lavallée, L., & Flint, F. (1996). The relationship of stress, competitive anxiety, mood

state, and social support to athletic injury. Journal of Athletic Training, 31(4),

296–299. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16558413

Leddy, M. H., Lambert, M. J., & Ogles, B. M. (1994). Psychological consequences of

athletic injury among high-level competitors. Research Quarterly for Exercise and

Sport, 65(4), 347–354. https://doi.org/10.1080/02701367.1994.10607639

Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J.

(2017). Biomarkers in sports and exercise: Tracking health, performance, and

recovery in athletes. Journal of Strength and Conditioning Research, 31(10),

2920–2937. https://doi.org/10.1519/JSC.0000000000002122

200



Lima-Borges, D. S., Martinez, P. F., Vanderlei, L. C. M., Barbosa, F. S. S. S., &

Oliveira-Junior, S. A. (2018). Autonomic modulations of heart rate variability are

associated with sports injury incidence in sprint swimmers. Physician and Sports

Medicine, 46(3), 374–384. https://doi.org/10.1080/00913847.2018.1450606

Lüdecke, D. (2018). Sjmisc: Data and variable transformation functions. Journal of Open

Source Software, 3(26), 754. https://doi.org/10.21105/joss.00754

Maddison, R., & Prapavessis, H. (2005). A psychological approach to the prediction and

prevention of athletic injury. Journal of Sport and Exercise Psychology, 27(3),

289–310. https://doi.org/10.1123/jsep.27.3.289

Malik, M., Camm, A. J., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., … Singer,

D. H. (1996). Heart rate variability. Standards of measurement, physiological

interpretation, and clinical use. European Heart Journal, 17(3), 354–381.

https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

Mangine, G., Van Dusseldorp, T., Feito, Y., Holmes, A., Serafini, P., Box, A., & Gonzalez,

A. (2018). Testosterone and cortisol responses to five high-intensity functional

training competition workouts in recreationally active adults. Sports, 6(3), 1–14.

https://doi.org/10.3390/sports6030062

Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., &

Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA

and EFA: Application to students’ evaluations of university teaching. Structural

Equation Modeling, 16(3), 439–476. https://doi.org/10.1080/10705510903008220

Mather, R. C., Koenig, L., Kocher, M. S., Dall, T. M., Gallo, P., Scott, D. J., … Spindler,

K. P. (2013). Societal and economic impact of anterior cruciate ligament tears. The

Journal of Bone and Joint Surgery. American Volume, 95(19), 1751–1759.

https://doi.org/10.2106/JBJS.L.01705

201



McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, R. C., Dvořák, J., Echemendia, R. J., …

Turner, M. (2013). Consensus statement on concussion in sport: The 4th

international conference on concussion in sport, Zurich, November 2012. Journal of

Athletic Training, 48(4), 554–575. https://doi.org/10.4085/1062-6050-48.4.05

McEwen, B. S. (2005). Stressed or stressed out: What is the difference? Journal of

Psychiatry and Neuroscience, 30(5), 315–318. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/16151535

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role

of the brain. Physiological Reviews, 87(3), 873–904.

https://doi.org/10.1152/physrev.00041.2006.

McEwen, B. S. (2008). Central effects of stress hormones in health and disease:

Understanding the protective and damaging effects of stress and stress mediators.

European Journal of Pharmacology, 583(2-3), 174–185.

https://doi.org/10.1016/j.ejphar.2007.11.071

McGuine, T. A., Greene, J. J., Best, T., & Leverson, G. (2000). Balance as a predictor of

ankle injuries in high school basketball players. Clinical Journal of Sport Medicine,

10(4), 239–244. https://doi.org/10.1097/00042752-200010000-00003

McIntosh, A. S. (2005). Risk compensation, motivation, injuries, and biomechanics in

competitive sport. British Journal of Sports Medicine, 39(1), 2–3.

https://doi.org/10.1136/bjsm.2004.016188

McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense:

Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews,

28(3), 285–305. https://doi.org/10.1016/j.neubiorev.2004.03.005

Mechelen, W. van, Hlobil, H., & Kemper, H. C. G. (1992). Incidence, severity, aetiology

and prevention of sports injuries: A review of concepts. Sports Medicine, 14(2),

82–99. https://doi.org/10.2165/00007256-199214020-00002

202



Meeuwisse, W. H., Tyreman, H., Hagel, B., & Emery, C. (2007). A dynamic model of

etiology in sport injury: The recursive nature of risk and causation. Clinical Journal

of Sport Medicine, 17(3), 215–219. https://doi.org/10.1097/JSM.0b013e3180592a48

Mengersen, K. L., Drovandi, C. C., Robert, C. P., Pyne, D. B., & Gore, C. J. (2016).

Bayesian estimation of small effects in exercise and sports science. PLoS ONE,

11(4), e0147311. https://doi.org/10.1371/journal.pone.0147311

Meschiari, S. (2015). Latex2exp: Use latex expressions in plots. Retrieved from

https://CRAN.R-project.org/package=latex2exp

Montag, C., Smillie, L. D., Markett, S., Reuter, M., & Cooper, A. (2016). A new

measurement for the revised reinforcement sensitivity theory: Psychometric criteria

and genetic validation. Personality and Individual Differences, 9(38), 1–12.

https://doi.org/10.1016/j.paid.2016.05.274

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J. (2016). The

fallacy of placing confidence in confidence intervals. Psychonomic Bulletin and

Review, 23(1), 103–123. https://doi.org/10.3758/s13423-015-0947-8

Morgan, G. E., Martin, R., Williams, L., Pearce, O., & Morris, K. (2018). Objective

assessment of stiffness in Achilles tendinopathy: a novel approach using the

MyotonPRO. BMJ Open Sport & Exercise Medicine, 4(1), e000446.

https://doi.org/10.1136/bmjsem-2018-000446

Mullix, J., Warner, M., & Stokes, M. (2012). Testing muscle tone and mechanical

properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO

device: relative ratios and reliability. Working Papers in the Health Sciences, 1(1),

1–8. Retrieved from http://eprints.soton.ac.uk/345538/

Munoz, M. L., Roon, A. van, Riese, H., Thio, C., Oostenbroek, E., Westrik, I., … Snieder,

H. (2015). Validity of (Ultra-)Short Recordings for Heart Rate Variability

Measurements. PLOS ONE, 10(9), e0138921.

https://doi.org/10.1371/journal.pone.0138921

203



Murphy, D. F., Connolly, D. A. J., & Beynnon, B. D. (2003). Risk factors for lower

extremity injury: A review of the literature. British Journal of Sports Medicine,

37(1), 13–29. https://doi.org/10.1136/bjsm.37.1.13

Murphy, K. (2002). Dynamic Bayesian networks: Representation, inference and learning

(PhD thesis). UC Berkeley.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modelling: A more

flexible representation of substantive theory. Psychological Methods, 17(3), 313–335.

https://doi.org/10.1037/a0026802

Müller, K., & Wickham, H. (2019). Tibble: Simple data frames. Retrieved from

https://CRAN.R-project.org/package=tibble

Nair, K., Dougherty, J., Schaefer, E., Kelly, J., & Masi, A. (2014). Repeatability,

reproducibility, and calibration of the MyotonPRO on tissue mimicking phantoms.

In ASME summer bioengineering conference (pp. 1–2).

https://doi.org/10.1115/SBC2013-14622

Neely, F. G. (1998). Biomechanical risk factors for exercise-related lower limb injuries.

Sports Medicine, 26(6), 395–413.

https://doi.org/10.2165/00007256-199826060-00003

Ockenburg, S. L. van, Tak, L. M., Bakker, S. J. L., Gans, R. O. B., Jonge, P. de, &

Rosmalen, J. G. M. (2015). Effects of adverse life events on heart rate variability,

cortisol, and C-reactive protein. Acta Psychiatrica Scandinavica, 131(1), 40–50.

https://doi.org/10.1111/acps.12286

O’Donnell, S., Bird, S., Jacobson, G., & Driller, M. (2018). Sleep and stress hormone

responses to training and competition in elite female athletes. European Journal of

Sport Science, 18(5), 611–618. https://doi.org/10.1080/17461391.2018.1439535

Olmedilla, A., Rubio, V. J., Fuster-Parra, P., Pujals, C., & García-Mas, A. (2018). A

Bayesian approach to sport injuries likelihood: Does player’s self-efficacy and

environmental factors plays the main role? Frontiers in Psychology, 9, 1–10.

https://doi.org/10.3389/fpsyg.2018.01174

204



Otter, R., Brink, M., Diercks, R., & Lemmink, K. (2015). A negative life event impairs

psychosocial stress, recovery and running economy of runners. International Journal

of Sports Medicine, 37(03), 224–229. https://doi.org/10.1055/s-0035-1555932

Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake

in the grass. Journal of Experimental Psychology: General, 130(3), 466–478.

https://doi.org/10.1037/0096-3445.130.3.466

Öztürk, S., & Kiliç, D. (2013). What is the economic burden of sports injuries? Eklem

Hastaliklari Ve Cerrahisi, 24(2), 108–111. https://doi.org/10.5606/ehc.2013.24

Paillard, T., & Noé, F. (2015). Techniques and methods for testing the postural function in

healthy and pathological subjects. BioMed Research International, 1–15.

https://doi.org/10.1155/2015/891390

Paillard, T., Noé, F., Rivière, T., Marion, V., Montoya, R., & Dupui, P. (2006). Postural

performance and strategy in the unipedal stance of soccer players at different levels

of competition. Journal of Athletic Training, 41(2), 172–176. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/16791302

Palmer-Green, D., & Elliott, N. (2014). Sports injury and illness epidemiology: Great

Britain Olympic Team (TeamGB) surveillance during the Sochi 2014 Winter

Olympic Games. British Journal of Sports Medicine, 49(1), 25–29.

https://doi.org/10.1136/bjsports-2014-094206

Pargman, D., & Lunt, S. D. (1989). The relationship of self-concept and locus of control to

the severity of injury in freshmen collegiate football players. Sports Medicine,

Training and Rehabilitation, 1(3), 203–208.

https://doi.org/10.1080/15438628909511877

Paridon, K. N. van, Timmis, M. A., Nevison, C. M., & Bristow, M. (2017). The

anticipatory stress response to sport competition; A systematic review with

meta-analysis of cortisol reactivity. BMJ Open Sport and Exercise Medicine, 3(1),

e000261. https://doi.org/10.1136/bmjsem-2017-000261

205



Passer, M. W., & Seese, M. D. (1983). Life stress and athletic injury: Examination of

positive versus negative events and three moderator variables. Journal of Human

Stress, 9(4), 11–16. https://doi.org/10.1080/0097840X.1983.9935025

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible

inference. San Francisco, CA: Morgan Kaufmann Publishers.

Pedersen, T. L. (2017). Patchwork: The composer of ggplots. Retrieved from

https://github.com/thomasp85/patchwork

Perna, F. M., Antoni, M. H., Baum, A., Gordon, P., & Schneiderman, N. (2003). Cognitive

behavioral stress management effects on injury and illness among competitive

athletes: A randomized clinical trial. Annals of Behavioral Medicine, 25(1), 66–73.

Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037262738%7B/&%

7DpartnerID=40%7B/&%7Dmd5=37332ebe6a962abf5178e51d6ebaedb7

Perna, F. M., & McDowell, S. L. (1995). Role of psychological stress in cortisol recovery

from exhaustive exercise among elite athletes. International Journal of Behavioral

Medicine, 2(1), 13–26. https://doi.org/10.1207/s15327558ijbm0201_2

Perna, F., Schneiderman, N., & LaPerriere, A. (1997). Psychological stress, exercise and

immunity. International Journal of Sports Medicine, 18(S1), 78–83.

https://doi.org/10.1055/s-2007-972703

Petrie, T. A. (1992). Psychosocial antecedents of athletic injury: The effects of life stress

and social support on female collegiate gymnasts. Journal of Behavioral Medicine,

18(18), 127–138. https://doi.org/10.1080/08964289.1992.9936963

Petrie, T. A. (1993). Coping skills, competitive trait anxiety, and playing status:

Moderating effects on the life stress-injury relationship. Journal of Sport and

Exercise Psychology, 15(3), 261–274. https://doi.org/10.1123/jsep.15.3.261

206



Petrie, T. A., Deiters, J., & Harmison, R. J. (2014). Mental toughness, social support, and

athletic identity: Moderators of the life stress-injury relationship in collegiate

football players. Sport, Exercise, and Performance Psychology, 3(1), 13–27.

https://doi.org/10.1037/a0032698

Petrie, T. A., & Perna, F. M. (2004). Psychology of injury: Theory, research, and practice.

In T. Morris & J. Summers (Eds.), Sport psychology: Theory, applications and

issues (2nd ed., pp. 547–565). Milton, QLD, Australia: Wiley.

Philippe, P., & Mansi, O. (1998). Nonlinearity in the epidemiology of complex health and

disease processes. Theoretical Medicine and Bioethics, 19(6), 591–607. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/10051792

Pickering-Rodriguez, E. C., Watsford, M. L., Bower, R. G., & Murphy, A. J. (2017). The

relationship between lower body stiffness and injury incidence in female netballers.

Sports Biomechanics, 16(3), 361–373.

https://doi.org/10.1080/14763141.2017.1319970

Pieper, S., Brosschot, J. F., Van Der Leeden, R., & Thayer, J. F. (2007). Cardiac effects of

momentary assessed worry episodes and stressful events. Psychosomatic Medicine,

69(9), 901–909. https://doi.org/10.1097/PSY.0b013e31815a9230

Piggott, B., Müller, S., Chivers, P., Papaluca, C., & Hoyne, G. (2018). Is sports science

answering the call for interdisciplinary research? A systematic review. European

Journal of Sport Science, 0(0), 1–20.

https://doi.org/10.1080/17461391.2018.1508506

Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability

in elite triathletes, is variation in variability the key to effective training? A case

comparison. European Journal of Applied Physiology, 112(11), 3729–3741.

https://doi.org/10.1007/s00421-012-2354-4

207



Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., & Laursen, P. B. (2017).

Comparison of heart-rate-variability recording with smartphone

photoplethysmography, polar H7 chest strap, and electrocardiography. International

Journal of Sports Physiology and Performance, 12(10), 1324–1328.

https://doi.org/10.1123/ijspp.2016-0668

Plsek, P. E., & Greenhalgh, T. (2001). The challenge of complexity in health care. BMJ,

323(7313), 625–628. https://doi.org/10.1136/bmj.323.7313.625

Post, E. G., Trigsted, S. M., Riekena, J. W., Hetzel, S., McGuine, T. A., Brooks, M. A., &

Bell, D. R. (2017). The association of sport specialization and training volume with

injury history in youth athletes. American Journal of Sports Medicine, 45(6),

1405–1412. https://doi.org/10.1177/0363546517690848

Pruyn, E. C., Watsford, M. L., & Murphy, A. J. (2015). Differences in lower-body stiffness

between levels of netball competition. Journal of Strength and Conditioning

Research, 29(5), 1197–1202. https://doi.org/10.1519/JSC.0000000000000418

Pruyn, E. C., Watsford, M. L., & Murphy, A. J. (2016). Validity and reliability of three

methods of stiffness assessment. Journal of Sport and Health Science, 5(4), 476–483.

https://doi.org/10.1016/j.jshs.2015.12.001

Pruyn, E. C., Watsford, M., & Murphy, A. (2014). The relationship between lower-body

stiffness and dynamic performance. Applied Physiology, Nutrition, and Metabolism,

39(10), 1144–1150. https://doi.org/10.1139/apnm-2014-0063

Pulopulos, M. M., Vanderhasselt, M. A., & De Raedt, R. (2018). Association between

changes in heart rate variability during the anticipation of a stressful situation and

the stress-induced cortisol response. Psychoneuroendocrinology, 94(May), 63–71.

https://doi.org/10.1016/j.psyneuen.2018.05.004

Qian, S. S., & Miltner, R. J. (2015). A continuous variable Bayesian networks model for

water quality modeling: A case study of setting nitrogen criterion for small rivers

and streams in Ohio, USA. Environmental Modelling and Software, 69, 14–22.

https://doi.org/10.1016/j.envsoft.2015.03.001

208



Quintana, D. S., Alvares, G. A., & Heathers, J. A. J. (2016). Guidelines for Reporting

Articles on Psychiatry and Heart rate variability (GRAPH): Recommendations to

advance research communication. Translational Psychiatry, 6(5), e803.

https://doi.org/10.1038/tp.2016.73

Rath, R., & Wade, M. G. (2017). The two faces of postural control in older adults:

Stability and function. EBioMedicine, 21, 5–6.

https://doi.org/10.1016/j.ebiom.2017.03.030

R Core Team. (2019a). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.r-project.org/

R Core Team. (2019b). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.R-project.org/

Reiner, M., Niermann, C., Jekauc, D., & Woll, A. (2013). Long-term health benefits of

physical activity–a systematic review of longitudinal studies. BMC Public Health,

13(1), 1–9. https://doi.org/10.1186/1471-2458-13-813

Rider, S. P., & Hicks, R. A. (1995). Stress, coping and injuries in males and female high

school basketball players. Perceptual and Motor Skills, 81(2), 499–503.

https://doi.org/10.2466/pms.1995.81.2.499

Riemann, B. L., Guskiewicz, K. M., & Shields, E. W. (1999). Relationship between clinical

and forceplate measures of postural stability. Journal of Sport Rehabilitation, 8(2),

71–82. https://doi.org/10.1123/jsr.8.2.71

Robinson, D., & Hayes, A. (2019). Broom: Convert statistical analysis objects into tidy

tibbles. Retrieved from https://CRAN.R-project.org/package=broom

Rodriguez-Linares, L., Vila, X., Lado, M. J., Mendez, A., Otero, A., & Garcia, C. A.

(2019). RHRV: Heart rate variability analysis of ecg data. Retrieved from

https://CRAN.R-project.org/package=RHRV

209



Rogers, T., & Landers, D. M. (2005). Mediating effects of peripheral vision in the life event

stress/athletic injury relationship. Journal of Sport and Exercise Psychology, 27(3),

271–288. https://doi.org/10.1002/9781444303650

Romero-Franco, N., Gallego-Izquierdo, T., Martínez-López, E. J., Hita-Contreras, F.,

Osuna-Pére, Catalina, M., & Martínez-Amat, A. (2014). Postural stability and

subsequent sports injuries during indoor season of athletes. Journal of Physical

Therapy Science, 26(5), 683–687. https://doi.org/10.1589/jpts.26.683

Roos, L. G., Levens, S. M., & Bennett, J. M. (2018). Stressful life events, relationship

stressors, and cortisol reactivity: The moderating role of suppression.

Psychoneuroendocrinology, 89, 69–77.

https://doi.org/10.1016/j.psyneuen.2017.12.026

Rosa, B. B., Asperti, A. M., Helito, C. P., Demange, M. K., Fernandes, T. L., &

Hernandez, A. J. (2014). Epidemiology of sports injuries on collegiate athletes at a

single center. Acta Ortopédica Brasileira, 22(6), 321–324.

https://doi.org/10.1590/1413-78522014220601007

Ross, S. E., Linens, S. W., Wright, C. J., & Arnold, B. L. (2011). Balance assessments for

predicting functional ankle instability and stable ankles. Gait and Posture, 34(4),

539–542. https://doi.org/10.1016/j.gaitpost.2011.07.011

Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernàndez, J., & Medina, D. (2018).

Effective injury forecasting in soccer with GPS training data and machine learning.

Plos One, 13(7), e0201264. https://doi.org/10.1371/journal.pone.0201264

Rowell, A. E., Aughey, R. J., Hopkins, W. G., Esmaeili, A., Lazarus, B. H., & Cormack, S.

J. (2018). Effects of training and competition load on neuromuscular recovery,

testosterone, cortisol, and match performance during a season of professional

football. Frontiers in Physiology, 9, 1–11. https://doi.org/10.3389/fphys.2018.00668

Russell, S. J., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.).

Prentice Hall. Retrieved from http://aima.cs.berkeley.edu/

210



Rutter, M. (1994). Stress research: Accomplishments and the tasks ahead. In M. Haggerty

R, Sherrod L, Rutter (Ed.), Stress, risk, and resilience in children and adolescents:

Processes, mechanisms, and interventions (pp. 354–386). Cambridge, MA:

Cambridge University Press.

Ryan, J. L., Pracht, E. E., & Orban, B. L. (2019). Inpatient and emergency department

costs from sports injuries among youth aged 5-18 years. BMJ Open Sport and

Exercise Medicine, 5(1), e000491. https://doi.org/10.1136/bmjsem-2018-000491

Saboul, D., Pialoux, V., & Hautier, C. (2014). The breathing effect of the LF/HF ratio in

the heart rate variability measurements of athletes. European Journal of Sport

Science, 14(Supp 1), 282–288. https://doi.org/10.1080/17461391.2012.691116

Salavati, M., Moghadam, M., Ebrahimi, I., & Arab, A. M. (2007). Changes in postural

stability with fatigue of lower extremity frontal and sagittal plane movers. Gait and

Posture, 26(2), 214–218. https://doi.org/10.1016/j.gaitpost.2006.09.001

Salimetrics. (2018). Salivary cortisol enzyme immunoassay kit (pp. 1–21). Retrieved from

https://salimetrics.com/wp-content/uploads/2018/03/salivary-cortisol-elisa-kit.pdf

Sarason, I. G., Johnson, J. H., & Siegel, J. M. (1978). Assessing the impact of life changes:

Development of the Life Experiences Survey. Journal of Consulting and Clinical

Psychology, 46(5), 932–946. https://doi.org/10.1037/0022-006X.46.5.932

Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., … Yamamoto,

Y. (2015). Advances in heart rate variability signal analysis: Joint position

statement by the e-Cardiology ESC Working Group and the European Heart

Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society.

Europace, 17(9), 1341–1353. https://doi.org/10.1093/europace/euv015

Scutari, M. (2010). Learning bayesian networks with the bnlearn R package. Journal of

Statistical Software, 35(3), 1–22. https://doi.org/10.18637/jss.v035.i03

Scutari, M. (2017). Bayesian network constraint-based structure learning algorithms:

Parallel and optimized implementations in the bnlearn R package. Journal of

Statistical Software, 77(2), 1–20. https://doi.org/10.18637/jss.v077.i02

211



Scutari, M., Auconi, P., Caldarelli, G., & Franchi, L. (2017). Bayesian networks analysis of

malocclusion data. Scientific Reports, 7(1), 1–11.

https://doi.org/10.1038/s41598-017-15293-w

Scutari, M., & Denis, J.-B. (2014). Bayesian networks: with examples in R (1st ed.).

Chapman & Hall/CRC. Retrieved from https://www.crcpress.com/Bayesian-

Networks-With-Examples-in-R/Scutari-Denis/p/book/9781482225587

Scutari, M., & Nagarajan, R. (2013). Identifying significant edges in graphical models of

molecular networks. Artificial Intelligence in Medicine, 57(3), 207–217.

https://doi.org/10.1016/j.artmed.2012.12.006

Seeman, T. E., Singer, B. H., Rowe, J. W., Horwitz, R. I., & McEwen, B. S. (1997). Price

of adaptation–allostatic load and its health consequences. MacArthur studies of

successful aging. Archives of Internal Medicine, 157(19), 2259–2268. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/9343003

Sell, T. C., Tsai, Y.-S., Smoliga, J. M., Myers, J. B., & Lephart, S. M. (2007). Strength,

flexibility, and balance characteristics of highly proficient golfers. The Journal of

Strength and Conditioning Research, 21(4), 1166.

https://doi.org/10.1519/R-21826.1

Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and

norms. Frontiers in Public Health, 5, 1–17.

https://doi.org/10.3389/fpubh.2017.00258

Sheu, Y., Chen, L. H., & Hedegaard, H. (2016). Sports- and recreation-related injury

episodes in the United States, 2011-2014. National Health Statistics Reports, (99),

1–12. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27906643

Siart, B., Nimmerichter, A., Vidotto, C., & Wallner, B. (2017). Status, stress and

performance in track and field athletes during the European games in Baku

(Azerbaijan). Scientific Reports, 7(1), 1–9.

https://doi.org/10.1038/s41598-017-06461-z

212



Sibold, J., & Zizzi, S. (2012). Psychosocial variables and time to injury onset: A hurdle

regression analysis model. Journal of Athletic Training, 47(5), 537–540.

https://doi.org/10.4085/1062-6050-47.3.15

Sin, N. L., Sloan, R. P., McKinley, P. S., & Almeida, D. M. (2016). Linking daily stress

processes and laboratory-based heart rate variability in a national sample of midlife

and older adults. Psychosomatic Medicine, 78(5), 573–582.

https://doi.org/10.1097/PSY.0000000000000306

Slimani, M., Bragazzi, N. L., Znazen, H., Paravlic, A., Azaiez, F., & Tod, D. (2018).

Psychosocial predictors and psychological prevention of soccer injuries: A

systematic review and meta-analysis of the literature. Physical Therapy in Sport,

32, 293–300. https://doi.org/10.1016/j.ptsp.2018.05.006

Smederevac, S., Mitrović, D., Čolović, P., & Nikolašević, Ž. (2014). Validation of the

measure of revised reinforcement sensitivity theory constructs. Journal of Individual

Differences, 35(1), 12–21. https://doi.org/10.1027/1614-0001/a000121

Smith, C. A., Chimera, N. J., & Warren, M. (2015). Association of Y balance test reach

asymmetry and injury in Division I Athletes. Medicine and Science in Sports and

Exercise, 47(1), 136–141. https://doi.org/10.1249/MSS.0000000000000380

Smith, R. E., Smoll, F. L., & Ptacek, J. T. (1990). Conjunctive moderator variables in

vulnerability and resiliency research: Life stress, social support and coping skills,

and adolescent sport injuries. Journal of Personality and Social Psychology, 58(2),

360–370. https://doi.org/10.1037/0022-3514.58.2.360

Steffen, K., Pensgaard, A. M., & Bahr, R. (2009). Self-reported psychological

characteristics as risk factors for injuries in female youth football. Scandinavian

Journal of Medicine and Science in Sports, 19(3), 442–451.

https://doi.org/10.1111/j.1600-0838.2008.00797.x

Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology.

In Handbook of life stress, cognition and health. (pp. 629–649). Oxford, England:

Wiley.

213



Strahorn, J., Serpell, B. G., McKune, A., & Pumpa, K. L. (2017). Effects of physical and

psychosocial interventions on hormone and performance outcomes in professional

rugby union players: A systematic review. Journal of Strength and Conditioning

Research, 31(11), 3158–3169.

Swanik, C. B., Covassin, T., Stearne, D. J., & Schatz, P. (2007). The relationship between

neurocognitive function and noncontact anterior cruciate ligament injuries.

American Journal of Sports Medicine, 35(6), 943–948.

https://doi.org/10.1177/0363546507299532

Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O., & Karjalainen, P. A.

(2014). Kubios HRV - Heart rate variability analysis software. Computer Methods

and Programs in Biomedicine, 113(1), 210–220.

https://doi.org/10.1016/j.cmpb.2013.07.024

Tobi, H., & Kampen, J. K. (2018). Research design: the methodology for interdisciplinary

research framework. Quality and Quantity, 52(3), 1209–1225.

https://doi.org/10.1007/s11135-017-0513-8

Tosevski, D. L., & Milovancevic, M. P. (2006). Stressful life events and physical health.

Current Opinion in Psychiatry, 19(2), 184–189.

https://doi.org/10.1097/01.yco.0000214346.44625.57

Trojian, T. H., & McKeag, D. B. (2006). Single leg balance test to identify risk of ankle

sprains. British Journal of Sports Medicine, 40(7), 610–613.

https://doi.org/10.1136/bjsm.2005.024356

Tropp, H., Ekstrand, J., & Gillquist, J. (1984). Stabilometry in functional instability of the

ankle and its value in predicting injury. Medicine and Science in Sports and

Exercise, 16, 64–66. https://doi.org/10.1249/00005768-198401000-00013

Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine

factors and stress. Journal of Psychosomatic Research, 53(4), 865–871. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/12377295

214



Vacek, P. M., Slauterbeck, J. R., Tourville, T. W., Sturnick, D. R., Holterman, L. A.,

Smith, H. C., … Beynnon, B. D. (2016). Multivariate analysis of the risk factors for

first-time noncontact ACL injury in high school and college athletes: A prospective

cohort study with a nested, matched case-control analysis. American Journal of

Sports Medicine, 44(6), 1492–1501. https://doi.org/10.1177/0363546516634682

Valovich, T. C., Perrin, D. H., & Gansneder, B. M. (2003). Repeat administration elicits a

practice effect with the Balance Error Scoring System but not with the Standardized

Assessment of Concussion in high school athletes. Journal of Athletic Training,

38(1), 51–56. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12937472

Walker, B. R., & Jackson, C. J. (2017). Examining the validity of the revised

Reinforcement Sensitivity Theory scales. Personality and Individual Differences,

106, 90–94. https://doi.org/10.1016/j.paid.2016.10.035

Wang, H. K., Chen, C. H., Shiang, T. Y., Jan, M. H., & Lin, K. H. (2006). Risk-factor

analysis of high school basketball-player ankle injuries: A prospective controlled

cohort study evaluating postural sway, ankle strength, and flexibility. Archives of

Physical Medicine and Rehabilitation, 87(6), 821–825.

https://doi.org/10.1016/j.apmr.2006.02.024

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “p <

0.05”. American Statistician, 73(sup1), 1–19.

https://doi.org/10.1080/00031305.2019.1583913

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag New

York. Retrieved from https://ggplot2.tidyverse.org

Wickham, H. (2017). Tidyverse: Easily install and load the ’tidyverse’. Retrieved from

https://CRAN.R-project.org/package=tidyverse

Wickham, H. (2019a). Forcats: Tools for working with categorical variables (factors).

Retrieved from https://CRAN.R-project.org/package=forcats

Wickham, H. (2019b). Stringr: Simple, consistent wrappers for common string operations.

Retrieved from https://CRAN.R-project.org/package=stringr

215



Wickham, H., François, R., Henry, L., & Müller, K. (2019). Dplyr: A grammar of data

manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr

Wickham, H., & Henry, L. (2019). Tidyr: Easily tidy data with ’spread()’ and ’gather()’

functions. Retrieved from https://CRAN.R-project.org/package=tidyr

Wickham, H., Hester, J., & Francois, R. (2018). Readr: Read rectangular text data.

Retrieved from https://CRAN.R-project.org/package=readr

Wiese-Bjornstal, D. M. (2009). Sport injury and college athlete health across the lifespan.

Journal of Intercollegiate Sport, 2(1), 64–80. https://doi.org/10.1123/jis.2.1.64

Wilkerson, G. B. (2012). Neurocognitive reaction time predicts lower extremity sprains and

strains. International Journal of Athletic Therapy and Training, 17(6), 4–9.

https://doi.org/10.1123/ijatt.17.6.4

Williams, J. M., & Andersen, M. B. (1998). Psychosocial antecedents of sport injury:

review and critique of the stress and injury model. Journal of Applied Sport

Psychology, 10, 5–25. https://doi.org/10.1080/10413209808406375

Williams, J. M., & Andersen, M. B. (2007). Psychosocial antecedents of sport injury and

interventions for risk reduction. In G. Tenenbaum & R. C. Eklund (Eds.), Handbook

of sport psychology (3rd ed., pp. 379–403). Hoboken, NJ, USA: Wiley.

https://doi.org/10.1002/9781118270011.ch17

Williams, S., Booton, T., Watson, M., Rowland, D., & Altini, M. (2017). Heart rate

variability is a moderating factor in the workload-injury relationship of competitive

crossfit™ athletes. Journal of Sports Science and Medicine, 16(4), 443–449.

Williams, S., Trewartha, G., Kemp, S. P. T., Brooks, J. H. M., Fuller, C. W., Taylor, A. E.,

… Stokes, K. A. (2017). How much rugby is too much? A seven-season prospective

cohort study of match exposure and injury risk in professional rugby union players.

Sports Medicine, 47(11), 2395–2402. https://doi.org/10.1007/s40279-017-0721-3

Xiao-xuan, H., Hui, W., & Shuo, W. (2008). Using expert’s knowledge to build Bayesian

networks. In International conference on computational intelligence and security

workshops (pp. 220–223). IEEE. https://doi.org/10.1109/cisw.2007.4425484

216



Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida:

Chapman; Hall/CRC. Retrieved from https://yihui.name/knitr/

Xu, J. G., Zhao, Y., Chen, J., & Han, C. (2015). A structure learning algorithm for

Bayesian network using prior knowledge. Journal of Computer Science and

Technology, 30(4), 713–724. https://doi.org/10.1007/s11390-015-1556-8

Yaggie, J. A., & Campbell, B. M. (2006). Effects of balance training on selected skills.

Journal of Strength and Conditioning Research, 20(2), 422–428.

https://doi.org/10.1519/R-17294.1

Yang, J., Tibbetts, A. S., Covassin, T., Cheng, G., Nayar, S., & Heiden, E. (2012).

Epidemiology of overuse and acute injuries among competitive collegiate athletes.

Journal of Athletic Training, 47(2), 198–204.

https://doi.org/10.4085/1062-6050-47.2.198

Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T. P., & Sahebkar, A. (2017). The

impact of stress on body function: A review. EXCLI Journal, 16, 1057–1072.

https://doi.org/10.17179/excli2017-480

Young, T. (2019). Validation of the revised Reinforcement Sensitivity Theory - Personality

Questionnaire (RST-PQ). (PhD thesis). University of South Wales.

Zhu, H. (2019). KableExtra: Construct complex table with ’kable’ and pipe syntax.

Retrieved from https://CRAN.R-project.org/package=kableExtra

217



R (Version 3.6.2; R Core Team, 2019b) and the R-packages BiocGenerics (Version 0.30.0;

Huber et al., 2015), bnlearn (Version 4.5; Scutari, 2017, 2010), brms (Version 2.10.0;

Bürkner, 2017, 2018), broom (Version 0.5.3.9000; Robinson & Hayes, 2019; Bolker &

Robinson, 2019), broom.mixed (Version 0.2.4; Bolker & Robinson, 2019),

DiagrammeR (Version 1.0.1; Iannone, 2019), dplyr (Version 0.8.3; Wickham et al.,

2019), forcats (Version 0.4.0; Wickham, 2019a), ggplot2 (Version 3.2.1; Wickham,

2016), graph (Version 1.62.0; Gentleman, Whalen, Huber, & Falcon, 2019; Hansen et

al., 2019), kableExtra (Version 1.1.0; Zhu, 2019), knitr (Version 1.26; Xie, 2015),

latex2exp (Version 0.4.0; Meschiari, 2015), papaja (Version 0.1.0.9842; Aust & Barth,

2018), patchwork (Version 1.0.0; Pedersen, 2017), purrr (Version 0.3.3; Henry &

Wickham, 2019), qwraps2 (Version 0.4.2; DeWitt, 2019), Rcpp (Version 1.0.3;

Eddelbuettel & François, 2011; Eddelbuettel & Balamuta, 2017), readr (Version

1.3.1; Wickham, Hester, & Francois, 2018), Rgraphviz (Version 2.28.0; Hansen et al.,

2019), sjmisc (Version 2.8.2; Lüdecke, 2018), stringr (Version 1.4.0; Wickham,

2019b), tibble (Version 2.1.3; Müller & Wickham, 2019), tidyr (Version 1.0.0;

Wickham & Henry, 2019), and tidyverse (Version 1.3.0; Wickham, 2017)

218



R (Version 3.6.2; R Core Team, 2019b) and the R-packages BiocGenerics (Version 0.30.0;

Huber et al., 2015), bnlearn (Version 4.5; Scutari, 2017, 2010), brms (Version 2.10.0;

Bürkner, 2017, 2018), broom (Version 0.5.3.9000; Robinson & Hayes, 2019; Bolker &

Robinson, 2019), broom.mixed (Version 0.2.4; Bolker & Robinson, 2019), DiagrammeR

(Version 1.0.1; Iannone, 2019), dplyr (Version 0.8.3; Wickham et al., 2019), forcats (Version

0.4.0; Wickham, 2019a), ggplot2 (Version 3.2.1; Wickham, 2016), graph (Version 1.62.0;

Gentleman, Whalen, Huber, & Falcon, 2019; Hansen et al., 2019), kableExtra (Version

1.1.0; Zhu, 2019), knitr (Version 1.26; Xie, 2015), latex2exp (Version 0.4.0; Meschiari,

2015), papaja (Version 0.1.0.9842; Aust & Barth, 2018), patchwork (Version 1.0.0;

Pedersen, 2017), purrr (Version 0.3.3; Henry & Wickham, 2019), qwraps2 (Version 0.4.2;

DeWitt, 2019), Rcpp (Version 1.0.3; Eddelbuettel & François, 2011; Eddelbuettel &

Balamuta, 2017), readr (Version 1.3.1; Wickham, Hester, & Francois, 2018), Rgraphviz

(Version 2.28.0; Hansen et al., 2019), sjmisc (Version 2.8.2; Lüdecke, 2018), stringr

(Version 1.4.0; Wickham, 2019b), tibble (Version 2.1.3; Müller & Wickham, 2019), tidyr

(Version 1.0.0; Wickham & Henry, 2019), and tidyverse (Version 1.3.0; Wickham, 2017)



220

Appendix A

Life Event Survey for Collegiate Athletes



Instructions: Listed below are 69 events that sometimes occur in the lives of college athletes. These
events often produce change within an individual’s life that require some adjustment by the
individual. For each event that you have experienced within the last year (12 months), indicate what
kind of effect it had on your life when the event occurred.
 
A rating of -4 would indicate that the event had an extremely negative effect on you.
 
A rating of +4 would indicate that the event had an extremely positive effect on you.
 
For those events that have happened more than once, indicate the average effect across all
occurrences. If you have not experienced an event within the last year, leave that item blank. The
events are listed in no particular order, and there are no right or wrong answers. Please respond to
each event honestly as applies to you.

If you have NOT experienced an event listed below (e.g., Marriage) in the past 12 months, leave that
item blank.
ONLY respond to items you have experienced.

Life Event Survey

Data collection 1

3
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Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Marriage

Death of mate
(boyfriend, girlfriend,
spouse, significant
other)

Major change in
sleeping habits
(increase or decrease in
amount of sleep)

Death of a close family
member(s) - Specify
below:

               Father

               Mother

               Brother

               Sister

               Grandfather

               Grandmother

               Other

Death of close friend(s)

Outstanding personal
achievement

Male: mate pregnant

Female: becoming
pregnant

2. P1

4

222



Life Event Survey

Data collection 1

 
Extremely
Negative 

-4
Negative

-3

Moderately
Negative 

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Sexual difficulties

Being fired from job

Being apart from mate
(boy/girlfriend, spouse,
etc) due to sport

Serious injury or illness
to close family
member(s) - Specify
below:

              Father

              Mother

              Brother

              Sister

              Grandfather

              Grandmother

              Other

Major change in the
number (more/less) of
arguments with mate

Major personal injury or
illness

Major change in the
frequency (increased or
decreased) of social
activities due to
participation in sport

Serious injury or illness
to close friend

3. P2

5
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Life Event Survey

Data collection 1

6
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Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Breaking up with mate
(boy/girlfriend, etc)

Beginning a new school
experience (beginning
university, transferring
university etc)

Engagement

Academic
probation/ineligibility

Being dismissed from
halls or other residence

Failing an important
exam

Major change in
relationship with coach
(better or worse)

Failing a course

Major change in the
length and/or conditions
of practice/training
(better or worse)

Financial problems
concerning school

Major change in
relationship with family
member(s) (better or
worse)

Conflict with roommate

Male: mate having an
abortion

Female: having an
abortion

Major change in the
amount (more or less) of
academic activity (home
work, class time, etc)

4. P3

7
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Life Event Survey

Data collection 1

 
Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Pressure to gain/lose
weight-due to
participation in sport

Discrimination from
teammates/coaches

Major change in
relationship(s) with
team-mate(s)
(better/worse)

Suspended from team
for non-academic
reasons

Trouble with academic
counsellor

Major change in use of
alcohol/drugs (increased
or decreased)

Beginning sexual activity

Major change in
relationship(s) with
friend(s) (better or
worse)

Recovery from
illness/injury/operation

Major change in level of
athletic performance in
actual competition
(better or worse)

Divorce or separation of
your parents

Major change in level of
responsibility on team
(increased/decreased)

Receiving an athletic
scholarship

5. P4

8
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Not attaining personal
goals in sport

Major change in playing
status on team

 
Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

9
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Life Event Survey

Data collection 1

 
Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Injury to team-mates

Being absent from
university (classes)
because of participation
in sport

Troubles with athletic
association and/or
athletic director

Difficulties with
trainer/physician

Major change in playing
time (playing more or
less) – due to injury

Major errors/mistakes in
actual competition

Losing your athletic
scholarship

No recognition/praise of
accomplishments from
coaching staff

Pressure from family to
perform well

Loss of confidence due
to injury

Unable to find a job

Change in coaching staff

Female: menstrual
period/PMS

Major change in level of
academic performance
(doing better or worse)

Making career decisions
(applying for Masters
degree, interviewing for
jobs, etc)

6. P5

10
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Life Event Survey

Data collection 1

 
Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Being cut/dropped from
the team

Continual poor
performance of team

Change in graduation
schedule

Major change in family
finances (increased or
decreased)

Major change in attitude
toward sport (like/enjoy
more or less)

Victim of
harassment/abuse
(sexual, emotional,
physical)

Victim of personal attack
(rape, robbery, assault,
etc)

7. P6

12
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Extremely
Negative

-4
Negative

-3

Moderately
Negative

-2

Somewhat
Negative

-1

Somewhat
Positive

+1

Moderately
Positive

+2
Positive

+3

Extremely
Positive

+4

Other
A

Other (please specify)

Other
B

Other (please specify)

Other
C

Other (please specify)

Other
D

Other (please specify)

Other
E

Other (please specify)

8. P7 - Other events might have occurred to you in the past year (and affected you in a positive or negative
manner) but were not included in the questionnaire. If there were such events, please list them below and
rate them accordingly.

13
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Appendix B

Reinforcement Sensitivity Theory Personality Questionnaire



Below are a list of statements about everyday feelings and behaviours.

Please rate how accurately each statement describes you in general.

Select only one response per question.

Do not spend too much time thinking about the questions and please answer honestly. Your
answers will remain confidential.

Make sure to answer all of the questions.

Personality Questionnaire

Data collection 1

 Not at all Slightly Moderately Highly

I feel sad when I suffer
even minor setbacks.

I am often preoccupied
with unpleasant
thoughts.

Sometimes even little
things in life can give me
great pleasure.

I am especially sensitive
to reward.

I put in a big effort to
accomplish important
goals in my life.

I sometimes feel ‘blue’
for no good reason.

When feeling ‘down’, I
tend to stay away from
people.

I often experience a
surge of pleasure
running through my
body.

I would be frozen to the
spot by the sight of a
snake or spider.

9. P1*

14
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I have often spent a lot
of time on my own to
“get away from it all”.

I am a very active
person.

I’m motivated to be
successful in my
personal life.

I am always ‘on the go’.

I regularly try new
activities just to see if I
enjoy them.

I get carried away by
new projects.

Good news makes me
feel over-joyed.

The thought of mistakes
in my work worries me.

When nervous, I
sometimes find my
thoughts are interrupted.

I would run quickly if fire
alarms in a shopping
mall started ringing.

I often overcome hurdles
to achieve my ambitions.

 Not at all Slightly Moderately Highly

15
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Personality Questionnaire

Data collection 1

 Not at all Slightly Moderately Highly

I often feel depressed.

I think I should ‘stop and
think’ more instead of
jumping into things too
quickly.

I often feel that I am on
an emotional ‘high’.

I love winning
competitions.

I get a special thrill when
I am praised for
something I’ve done
well.

I take a great deal of
interest in hobbies.

I sometimes cannot stop
myself talking when I
know I should keep my
mouth closed.

I often do risky things
without thinking of the
consequences.

My mind is sometimes
dominated by thoughts
of the bad things I’ve
done.

I get very excited when I
get what I want.

I feel driven to succeed
in my chosen career.

I’m always finding new
and interesting things to
do.

I’m always weighing-up
the risk of bad things
happening in my life.

10. P2*

16
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People are often telling
me not to worry.

I am very open to new
experiences in life.

I always celebrate when
I accomplish something
important.

I find myself reacting
strongly to pleasurable
things in life.

I find myself doing things
on the spur of the
moment.

I would instantly freeze if
I opened the door to find
a stranger in the house.

I’m always buying things
on impulse.

I am very persistent in
achieving my goals.

When trying to make a
decision, I find myself
constantly chewing it
over.

I often worry about
letting down other
people.

I would go on a holiday
at the last minute.

I would run fast if I knew
someone was following
me late at night.

I would leave the park if I
saw a group of dogs
running around barking
at people.

I worry a lot.

I would freeze if I was on
a turbulent aircraft.

 Not at all Slightly Moderately Highly

17
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Personality Questionnaire

Data collection 1

 Not at all Slightly Moderately Highly

My behavior is easily
interrupted.

It’s difficult to get some
things out of my mind.

I think the best nights
out are unplanned.

There are some things
that I simply cannot go
near.

If I see something I
want, I act straight away.

I think it is necessary to
make plans in order to
get what you want in life.

When nervous, I find it
hard to say the right
words.

I find myself thinking
about the same thing
over and over again.

I often wake up with
many thoughts running
through my mind.

I would not hold a snake
or spider.

Looking down from a
great height makes me
freeze.

I often find myself ‘going
into my shell’.

My mind is dominated
by recurring thoughts.

I am the sort of person
who easily freezes-up
when scared.

I take a long time to
make decisions.

11. P3*

18
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I often find myself lost for
words.

I will actively put plans in
place to accomplish
goals in my life.

 Not at all Slightly Moderately Highly

19
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Appendix C

HRV analysis script



setwd("/Users/HarryFisher/Downloads/ProjectR/phdthesis/data/hrv/complete/")
path <- "~/Downloads/ProjectR/phdthesis/data/hrv/complete/"
file.names <- dir(path, pattern = ".txt")

out.file <- "" # empty file for results
# setting loop to go through files
for (i in 1:length(file.names)) {

rrTable <- read.table(file.names[i],
sep = "",
dec = ".",
stringsAsFactors = FALSE

)

colnames(rrTable) <- c("time", "rr")

# create HRV data analysis
hrv.data <- CreateHRVData() %>%

SetVerbose(FALSE) %>%
LoadBeatVector(rrTable$time) %>%
BuildNIHR()

new.hrv <- Window(hrv.data, 180, 480) # extract 5 min segment
originalbeat <- length(new.hrv$Beat$niHR)
# adaptive threshold filter
new.hrv <- FilterNIHR(new.hrv, long = 20, minbpm = 20, maxbpm = 140)
acceptedbeat <- length(new.hrv$Beat$niHR)

# time analysis not used in results
new.hrv <- CreateTimeAnalysis(new.hrv, size = 60, interval = 7.8125) %>%

# interpolate at 4hz using spline method
InterpolateNIHR(method = "spline") %>%
CreateFreqAnalysis() %>%
CalculatePowerBand(indexFreqAnalysis = 1, size = 256, shift = 10) %>%
# STFT
CreateFreqAnalysis() %>%
# FFT analysis
CalculatePSD(1,

method = "pgram", ULFmin = NULL, detrend = T,
doPlot = FALSE

)

# collect results
results <- tibble(

id = as.numeric(data.frame(str_sub(file.names[i],
start = 1,
end = 3

),
stringsAsFactors = F
)),
time = as.numeric(data.frame(str_sub(file.names[i],

start = 6,
end = 6

),
stringsAsFactors = FALSE
)),
meanHR = mean(new.hrv[["Beat"]][["niHR"]]),
# time doamin measures
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sdnn = new.hrv[["TimeAnalysis"]][[1]][["SDNN"]],
rmssd = new.hrv[["TimeAnalysis"]][[1]][["rMSSD"]],
HFmean = mean(new.hrv[["FreqAnalysis"]][[1]][["HF"]]),
# STFT
artifacts = (originalbeat - acceptedbeat) / originalbeat * 100
# % of artifacts

)
out.file <- rbind.data.frame(out.file, results) ## tidying up
out.file <- lapply(out.file, as.numeric) %>%

data.frame() %>%
drop_na() %>%
round(digits = 2)

rownames(out.file) <- seq(length = nrow(out.file))
}

write_csv(out.file, "~/Downloads/ProjectR/phdthesis/data/hrv/hrvdata.csv")

241



242

Appendix D
Additional tables from Study 1

Table D1
All variables included in the initial network structure.

Variable Definition State 1 State 2
clevel Current competitive level Club_university_county National_international
gender Gender of the participant Female Male
hours Number of hours spent

training per week
0-9 (Low) >9-35 (High)

ind_team Participate in an individual
or team based sport

Individual Team

pi Previous injury - Whether
an injury had been
sustained in the previous
12 months prior to the
study

No Injury Injury

nlebase Untransformed NLE at TP
1

0-13 (Low) >13-93 (High)

FFFS Fight-Flight-Freeze System 8-16 (Low) >16-30 (High)
BIS Behavioural Inhibition

System
17-38 (Low) >38-68 (High)

RI Reward Interest 4-10 (Low) >10-16 (High)
RR Reward reactivity 8-21 (Low) >21-31 (High)
I Impulsivity 7-16 (Low) >16-27 (High)

GDP Goal drive persistence 7-22 (Low) >22-28 (High)
stiffness Sum of all stiffness

locations
1543-2330 (Low) >2330-4518 (High)

rmssd Root mean squared
difference of successive RR
intervals

2.03-4.02 (Low) >4.02-5.94 (High)

sdnn Standard deviation of RR
series

20.2-83.5 (Low) >83.5-432.42 (High)

bal_asym Percentage difference
between left and right leg
balance score

0-1 (Low) >1-14 (High)

balance Total balance score 5-15 (Low) >15-46 (High)
nlelg_1 Log NLE at TP 1 0-2.64 (Low) >2.64-4.54 (High)
nlelg_2 Log NLE at TP 2 0-3.04 (Low) >3.04-5.19 (High)
nlelg_3 Log NLE at TP 3 0-3.18 (Low) >3.18-4.79 (High)
tlelg_1 Log TLE at TP 1 1.79-3.4 (Low) >3.4-4.88 (High)
tlelg_2 Log TLE at TP 2 1.79-3.74 (Low) >3.74-5.42 (High)
tlelg_3 Log TLE at TP 3 1.79-3.81 (Low) >3.81-5.18 (High)
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Table D2
All arc strengths greater than 0.3 included in
the network.

from to strength direction
nlebase nlelg_1 1.00 1.00
nlebase nlelg_2 1.00 1.00
nlelg_1 injured_1 1.00 1.00
nlelg_2 injured_2 1.00 1.00
BIS_1 FFFS_1 0.99 0.63
FFFS_1 BIS_1 0.99 0.37
ind_team hours 0.88 0.50
hours ind_team 0.88 0.50
nlebase RI_1 0.83 1.00
ind_team nlebase 0.82 1.00
gender stiffness_1 0.76 1.00
BIS_2 FFFS_2 0.72 0.72
FFFS_2 BIS_2 0.72 0.28
gender stiffness_2 0.64 1.00
pi stiffness_1 0.55 1.00
injured_1 stiffness_1 0.55 0.32
stiffness_1 injured_1 0.55 0.68
clevel balance_1 0.52 1.00
FFFS_1 BIS_2 0.52 1.00
nlelg_1 BIS_1 0.51 0.98
BIS_1 nlelg_1 0.51 0.02
injured_2 stiffness_2 0.50 0.66
stiffness_2 injured_2 0.50 0.34
gender FFFS_1 0.45 1.00
hours injured_1 0.42 1.00
FFFS_1 injured_2 0.40 1.00
pi nlelg_2 0.39 1.00
pi clevel 0.38 0.50
clevel pi 0.38 0.50
nlebase rmssd_1 0.37 1.00
gender FFFS_2 0.37 1.00
clevel RI_2 0.37 1.00
RI_1 BIS_2 0.37 1.00
pi ind_team 0.36 0.46
ind_team pi 0.36 0.54
hours rmssd_1 0.36 1.00
injured_1 balance_1 0.36 0.70
balance_1 injured_1 0.36 0.30
nlebase RI_2 0.34 1.00
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Table D2 continued

from to strength direction
pi stiffness_2 0.32 1.00
BIS_1 FFFS_2 0.32 1.00
RI_1 BIS_1 0.32 0.55
BIS_1 RI_1 0.32 0.45
rmssd_1 nlelg_2 0.31 1.00
injured_2 rmssd_2 0.30 0.82
injured_2 balance_2 0.30 0.97
rmssd_2 injured_2 0.30 0.18
balance_2 injured_2 0.30 0.03
ind_team FFFS_1 0.30 1.00

Table D3
Probabilities of injury conditional on the variables
in the Markov blanket for injured_1.

prob hours nlelg_1 stiffness_1 balance_1

0.51 High Low High High
0.40 High Low High Low
0.38 Low High High High
0.32 High High High High
0.28 Low High Low High
0.28 High High Low High
0.27 Low High High Low
0.23 High High High Low
0.19 Low High Low Low
0.19 High High Low Low
0.16 Low Low High High
0.15 High Low Low High
0.10 Low Low High Low
0.10 High Low Low Low
0.07 Low Low Low High
0.04 Low Low Low Low
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Table D4
Probabilities of injury conditional on the variables in the Markov
blanket for injured_2.

prob FFFS_1 nlelg_2 stiffness_2 rmssd_2 balance_2

0.53 Low Low High Low High
0.45 Low High High Low High
0.41 Low Low High High High
0.39 Low Low High Low Low
0.34 Low High High High High
0.32 Low High High Low Low
0.31 Low Low Low Low High
0.29 Low Low High High Low
0.28 Low High Low Low High
0.25 High Low High Low High
0.23 Low High High High Low
0.22 Low Low Low High High
0.21 High High High Low High
0.20 Low Low Low Low Low
0.19 Low High Low High High
0.18 Low High Low Low Low
0.18 High Low High High High
0.16 High Low High Low Low
0.14 High High High High High
0.14 Low Low Low High Low
0.13 High High High Low Low
0.13 High Low Low Low High
0.12 Low High Low High Low
0.11 High High Low Low High
0.11 High Low High High Low
0.09 High High High High Low
0.08 High Low Low High High
0.08 High High Low High High
0.07 High Low Low Low Low
0.07 High High Low Low Low
0.05 High Low Low High Low
0.04 High High Low High Low
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Appendix E
High intensity training session

Rugby
Session 1 (pre season conditioning)
Total time = 55mins
Warmup / rehab drills 15 mins (light jogging, strectching, mobility)
3 work stations:
- Bike - 10 seconds flat out sprint - Row machine travel 100m fast - Ski travel 100m fast
- 60 seconds to complete distance / time and move to next station, repeat each station
three times in a set (two sets in total).
- 2 minutes recovery between rounds in a set.
- 10 minutes between sets.
- Double distance on second set (20 sec bike, 200m row and ski).
Session 2
Total time = 1:30
warm up 15 mins / jogging / passing
Core skills roations 3 x 6 mins
- Handling - Contact - tackle bags scrum etc - Defense blitz
Team attack and defence 12min each (high intensity) - practicing skills from previous
section
Match play 15 minutes (high intensity)
Session 3
Repeat of session 2
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Football

Session 1
Total time = 1:55
- Strength and conditioning and warm-up: 25mins
- Technical passing drill 20 minutes (5 x 4 minute blocks)
- Strength and conditioning exercises (10mins)
- Possession based activity multi-directional activity. 4 teams, 2 resting, 2 works (30mins, 4
minute blocks)
- 7 vs 7 small sided game
- High intensity sprints – 30 seconds each
Session 2
Total time = 1:45
- Warm up 25 mins
- Technique – passing drills 30s x 6 reps cone – cone
- 1v1 / 2v2 possession games - Groups of 6 2 min rotations
- 3v3 possesion + overload 2 x 2 mins
- 2 touch / 1 touch game
- 2 minute games (high intensity)
Session 2
Total time = 2:00
- Warm up combined with rondos (15-20 minutes). 3 rounds which are progressively more
intense.
- A circuit of 3 passing drills (repeated twice, 15mins)
- Possession based exercise with three teams (repeated twice, 20mins)
- 6 box-to-box runs
- 11 vs 11 practice match – frequently intervened by the coaches (25/30mins)
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Appendix F
Bayesian analysis in Study 2

The following code was used for the Bayesian analysis in Study 2. The data and code can
be downloaded from https://github.com/HarryFisher1/phd-thesis.

https://github.com/HarryFisher1/phd-thesis


# data available at:
# https://github.com/HarryFisher1/phd-thesis
sem <- read_csv("data/study2_cleandata.csv")

## First model

options(mc.cores = parallel::detectCores())

prior1 <- c(
set_prior("normal(0, 10)", class = "Intercept"),
set_prior("normal(0,2.5)", class = "b"),
set_prior("cauchy(0,1)", class = "sd")

)

fit1 <- brm(
bf(

days_missed ~ negsev_z + delta_new_z:sportg + stiffness_z + (1 | id),
hu ~ negsev_z + delta_new_z:sportg + stiffness_z + (1 | id)

),
prior = prior1,
data = sem,
family = hurdle_negbinomial(),
control = list(adapt_delta = 0.99)

)

## Summary
summary(fit1)

## Clean table
tidy_stan(fit1)

## Interactive model checks
launch_shinystan(fit1)

x <- marginal_effects(fit1, dpar = "hu", probs = c(0.2, 0.8))
y <- marginal_effects(fit1, probs = c(0.2, 0.8))

## Second model

bf1 <- bf(delta_new_z ~ negsev_z + stiffness_z + (1 | ID | id))
bf2 <- bf(stiffness_z ~ negsev_z + (1 | ID | id))

prior2 <- c(
set_prior("normal(0, 10)", class = "Intercept"),
set_prior("normal(0,2.5)", class = "b")

)

fullmod <- bf1 + bf2 + set_rescor(FALSE)

fmod <- brm(
fullmod,
data = sem,
control = list(adapt_delta = 0.99),
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iter = 3000,
prior = prior2

)

# Posterior predictive check
pp <- pp_check(fmod, resp = "stiffnessz", nsamples = 100)
pp
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Appendix G
Salemetrics cortisol assay procedure



 

Page | 9 
 

Reagent Preparation 

 

• Bring all reagents to room temperature and mix before use. A minimum of 1.5 hours is 
recommended for the 24 mL of Assay Diluent used in Step 5 (conjugate dilution) to 
come to room temperature.  

• Bring Microtitre Plate to room temperature before use. It is important to keep the 
foil pouch with the plate strips closed until warmed to room temperature, as 
humidity may have an effect on the coated wells.  

• Prepare 1X wash buffer by diluting Wash Buffer Concentrate (10X) 10-fold with room-
temperature deionized water (100 mL of Wash Buffer Concentrate (10X) to 900 mL of 
deionized H2O). Dilute only enough for current day’s use and discard any 
leftover reagent. (If precipitate has formed in the concentrated wash buffer, it may 
be heated to 40°C for 15 minutes. Cool to room temperature before use in assay.)  

 
Procedure 

Step 1:  Read and prepare reagents according to the Reagent Preparation section before 
beginning assay.  Determine your plate layout.  Here is a suggested layout.  (Standards, 
controls, and saliva samples should be assayed in duplicate.) 
 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 3.000 Std  3.000 Std  Ctrl-H  Ctrl-H          

B 1.000 Std  1.000 Std  Ctrl-L  Ctrl-L          

C 0.333 Std  0.333 Std  SMP-1  SMP-1          

D 0.111 Std  0.111 Std  SMP-2  SMP-2          

E 0.037 Std  0.037 Std  SMP-3  SMP-3          

F 0.012 Std  0.012 Std  SMP-4  SMP-4          

G Zero Zero SMP-5 SMP-5         

H NSB* NSB* SMP-6 SMP-6         

 

*NSB = Non-specific binding wells.  These may serve as blanks. Use is optional. 
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Step 2:  Keep the desired number of strips in the strip holder and place the remaining strips 
back in the foil pouch. If you choose to place non-specific binding wells in H-1, 2, remove 
strips 1 and 2 from the strip holder and break off the bottom wells. Place the strips back into 
the strip holder leaving H-1, 2 blank. Break off 2 NSB wells from the strip of NSB wells 
included in the foil pouch. Place in H-1, 2. Alternatively, NSBs may be placed wherever you 
choose on the plate. Reseal the foil pouch with unused wells and desiccant. Store at 2-8°C. 
 

Cautions: 1. Extra NSB wells should not be used for determination of standards, 
controls, or unknowns. 

   2.  Do not insert wells from one plate into a different plate 
 
Step 3:  Pipette 24 mL of Assay Diluent into the disposable tube. (Scale down proportionally if 
using less than the entire plate.) Set aside for Step 5. 
 
Step 4: 

• Pipette 25 μL of standards, controls, and saliva samples into appropriate wells.  

• Pipette 25 μL of Assay Diluent into 2 wells to serve as the zero. 

• Pipette 25 μL of Assay Diluent into each NSB well. 

 
Step 5:  Dilute the Enzyme Conjugate 1:1600 by adding 15 μL of the conjugate to the 24 mL 
tube of Assay Diluent. (Scale down proportionally if not using the entire plate.) Conjugate tube 
may be centrifuged for a few minutes to bring the liquid down to the tube bottom. 
Immediately mix the diluted conjugate solution and add 200 μL to each well using a 
multichannel pipette.  
 
Step 6:  Mix plate on a plate rotator for 5 minutes at 500 rpm and incubate at room 
temperature for a total of 1 hour.  
 
Step 7:  Wash the plate 4 times with 1X wash buffer. A plate washer is recommended. 
However, washing may be done by gently squirting wash buffer into each well with a squirt 
bottle, or by pipetting 300 μL of wash buffer into each well and then discarding the liquid over 
a sink. After each wash, the plate should be thoroughly blotted on paper towels before turning 
upright. If using a plate washer, blotting is still recommended after the last wash. 

 
Step 8:  Add 200 μL of TMB Substrate Solution to each well with a multichannel pipette. 
 
Step 9:  Mix on a plate rotator for 5 minutes at 500 rpm and incubate the plate in the dark 
(covered) at room temperature for an additional 25 minutes. 
 
Step 10:  Add 50 μL of Stop Solution with a multichannel pipette. 
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Step 11:   

• Mix on a plate rotator for 3 minutes at 500 rpm.  If green color remains, continue 
mixing until green color turns to yellow.  Be sure all wells have turned yellow. 

Caution: Spillage may occur if mixing speed exceeds 600 rpm. 

• Wipe off bottom of plate with a water-moistened, lint-free cloth and wipe dry. 

• Read in a plate reader at 450 nm. Read plate within 10 minutes of adding Stop 
Solution. (For best results, a secondary filter correction at 490 to 492 nm is 
recommended.) 

 
Quality Control 
 
The Salimetrics’ High and Low Cortisol Controls should be run with each assay. The control 
ranges established at Salimetrics are to be used as a guide. Each laboratory should establish 
its own range. Variations between laboratories may be caused by differences in techniques 
and instrumentation. 
 

Calculations 
 

1. Compute the average optical density (OD) for all duplicate wells. 
2. Subtract the average OD for the NSB wells (if used) from the OD of the zero, 

standards, controls, and saliva samples. 
3. Calculate the percent bound (B/Bo) for each standard, control, and saliva sample by 

dividing the OD of each well (B) by the average OD for the zero (Bo). (The zero is 
not a point on the standard curve.) 

4. Determine the concentrations of the controls and saliva samples by interpolation 
using data reduction software. We recommend using a 4-parameter non-linear 
regression curve fit. 

5. Samples with Cortisol values greater than 3.0 μg/dL (82.77 nmol/L) should be 
diluted with Assay Diluent and rerun for accurate results. If a dilution of the sample 
is used, multiply the assay results by the dilution factor. 

A new Standard Curve must be run with each full or partial plate. 
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