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Abstract

Multiphase flows are of paramount importance in the oil and gas industry, considering that most
petroleum industries produce and transport oil and gas simultaneously. However, systematic
research on pipeline leakage conveying more than one phase at a time is lacking attention. In this
work, a numerical method is proposed to investigate the effect of two-phase gas-liquid leak flow
behaviour in a subsea natural gas pipeline. The results of the simulations have been validated
against the latest experimental and numerical data reported in the literature, and a good
agreement has been obtained. The effect of leak sizes, longitudinal leak locations, multiple
leakages and axial leak positions on the pressure gradient, flow rate and volume fractions in the
pipeline were systematically investigated. The results show that the flow field parameters
provide pertinent indicators in pipeline leakage detection. In particular, the upstream pipeline
pressure could serve as a critical indicator for detecting leakage even if the leak size is small.

Whereas, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is
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chosen for leak detection. The results also reveal that when two leaks with different sizes co-
occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the
large leak size. However, in the event of a double leak with equal sizes, the leak closer to the

pipe upstream is easier to detect.

Keywords: Loss prevention; Multiphase flow; Natural gas transportation; Numerical simulation;
Pipeline leak detection.

1. Introduction

Pipelines are one of the primary tools in the oil and gas industry, which play a unique role in the
process of gathering and delivering petroleum, hydrocarbon exploration and transportation (Sun
et al., 2019; Wang et al., 2021). The use of pipelines has extended over time because it provides
an effective system to increase energy supply and has been considered the safest and the most
economical and efficient means of petroleum transportation (Muggleton et al., 2020). For
example, the average estimated deaths due to accidents per ton-mile of shipped petroleum
products using trucks, ships and rails are respectively 87%, 4% and 2.7% more than those using
pipelines (Cramer et al., 2015; Adegboye et al., 2019). However, a leak in pipeline remains a
major concern for both safety and contamination in the environment (Li et al., 2019a) in daily
operation, and the likelihood of developing leaks increases with the ages and service time of the
pipeline (Li et al., 2018; Mohammed et al., 2019). Different factors that are accountable for
pipeline leakage include corrosion, defects during installation and erection work (Bolotina et al.,

2018).

A leak in subsea pipelines creates a serious problem in maintaining safe, reliable, and effective

offshore production facilities (Li et al., 2019b). Unlike leak on surface or water transportation
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pipeline, which are also of great concern. A leak in a subsea pipeline always puts the marine
environment at risk. It also causes devastating disasters, resulting in assets damage,
environmental pollution, human causalities, and corporate reputation loss (Ajao et al., 2018).
Besides the harmful effect of submarine pipeline leakage on the aquatic animals, subsea pipeline
leak often causes oil spills into the sea region, making the detection and diagnosis difficult (Li et
al., 2019b). Thereby, it costs a significant amount of money and time to clean up the

contaminated regions (Wei and Masuri, 2019).

Several safety regulations include the safety (PIPES) Act of 2006 and 2016 in the USA (Scott
and Scott, 2019), the United States of energy policy and safety regulation (Scott, 2018), British
Standard BS 8010 (Movley, 2005), among others have been established to ensure safe pipeline
operations (Kazeem et al., 2017; ljaola et al., 2020). Despite stricter regulations and maintenance
practice imposed by different governments, several pipeline leakages are often reported
worldwide (Dasgupta, 2016; Joling, 2017). The amounts of resources lost to these incidents are
enormous (Wei and Masuri, 2019). To reduce the effects of accidental pipeline leakage, it is
paramount to monitor pipelines for timely and accurate leak detection. The early leak detection
will aid quick response to seize petroleum discharge and mitigate associated risks such as fire,
explosion and system downtime, and thus will extend the petroleum transportation facilities

lifetime.

2. Related Works

Several studies on pipeline leak detection methods have been proposed in the literature (Ben-
Mansour et al., 2012; Karim et al., 2015; Wang and Ghidaoui, 2018; Syed et al., 2020; Wang et

al., 2021). Existing leak detection and diagnostic are classified into software and hardware
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approaches. In an effort to classify these technologies based on the technical nature, further
research efforts were made and led to the classification into three groups, namely external, visual
or biological and internal methods (Adegboye et al., 2019). The external technologies utilise
human-made sensing devices to achieve leak detection tasks at the exterior part of the pipeline.
The visual-based methods employ experienced personnel, trained dogs, pigs and drones to
inspect and detect pipeline leakage. This approach appears to be the most suitable for leak
detection and localisation. However, the operational time of these techniques is based on the
frequency of inspection. Readers are referred to Adegboye et al. (2019) for further details on the

review of pipeline leakage detection methods.

Many researchers have reported a collection of techniques to detect and localise pipeline leakage
for the internal-based leak detection methods. Generally, these methods employ computational
algorithms in conjunction with various sensors for monitoring parameters that quantitatively
characterise the fluid flow within pipelines. Some commonly used techniques include mass-
volume balance (Karim et al., 2015; Syed et al., 2020), negative pressure wave (Elaoud et al.,
2010; Datta and Sarkar, 2016; Chen et al., 2018), pressure point analysis (bin Md et al., 2011),
state estimator (Ali et al., 2015, Chen et al., 2021), and dynamic modelling (Yang et al., 2010; Li
et al., 2019b). Among these methods, dynamic modelling, also known as real-time transient
modelling, is the most sensitive method (Guerriero et al., 2016; Liu et al., 2019). This method
employs conservation equations for the fluid mass, momentum and energy to model the flow
within a pipeline and compares the predicted values with the measured data to determine and
characterise leakages. The flow parameters monitored in this method are flow rate, pressure, and
other fluid flow parameters. Pipeline leak detection using transient-based leak detection approach
has been extensively adopted in the research community (Aradjo et al., 2013; Aragjo et al.,
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2014; Lazhar et al., 2013; De Sousa and Romero, 2017; Fu et al., 2020; Ranawat and Nandwana,
2021), and it has been shown to be successful in detecting and locating pipeline leak position.
However, most of the work reported in the literature is limited to single-phase systems (Elaoud et
al. 2010; Yang et al., 2010; Lazhar et al., 2013; Aradjo et al. 2014; Ben-Mansour et al. 2012; De

Sousa and Romero 2017; Li et al., 2019; Wang et al., 2021).

De Sousa and Romero (2017) investigated oil leak influence on the pressure and flow rate
characteristics using ANSYS Fluent. The obtained results revealed how the leak impacted both
pressure and flow rate within the leak region vicinity. Molina-Espinosa et al. (2013) carried out
numerical modelling backed up by physical experiments for pipe leaks. In this study, transient
modelling of incompressible flow in short pipes with leaks was investigated. The obtained results
revealed good correlations between the simulation and experimental data in terms of pressure

drop within the vicinity of the leakages.

A relevant study on subsea pipelines by Zhu et al. (2014) simulated oil released from submarine
pipelines subjected to different leak sizes. In this study, the effects of oil leak rate, leak sizes, oil
density and water velocity on the oil spill behaviour were investigated using the Volume of Fluid
(VOF) method. This study revealed that small leak size, slow leaking and high fluid density led
to a long period for oil to reach the maximum horizontal migrate distance. In a similar study by
Li et al. (2018), a numerical investigation of submarine pipeline spillage was carried out using
ANSYS Fluent to forecast oil spill trajectory movement. The quantity and trajectory of spilt oil

under various operating pressure, current sea velocities and wavelengths were analysed.

Li et al. (2017) employed Computational Fluid Dynamics (CFD) models to describe underwater

oil release rate and its trajectory movement from the damaged subsea pipeline to the free surface
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of the water. The simulated results revealed that the developed model could provide a detailed
understanding of pipeline leakage, such as gas release rate, horizontal dispersion distance and
gas rising time in a subsea environment. However, gas movement trajectory behaviour can only
be predicted in a shallow ocean as the sea wave can easily alter the leaking fluid dispersion
movement. The approach to the subsea pipeline leakages reported in the literature (Zhu et al.,
2014; Li et al., 2017; Singh et al., 2017) shows that consideration of the impact of leaks on fluid

flow parameters within the pipeline in a subsea environment is yet to be well understood.

The extensive review reveals that literature on a multiphase pipeline leakage is rather limited.
Most of the available literature focuses on single-phase flow. Multiphase flow systems are
generally encountered not only in the oil and gas industry, nuclear, chemical process industries,
among others. As such, the development of an accurate leak prediction model is timely and
essential as this will aid in advancing rapid pipeline leak detection technologies for these critical

applications.

In the context of multiphase pipeline leak detection, the computational study by Kam (2010)
investigated the influence of leak sizes and the longitudinal locations of the leak on flow
parameters. However, this study was only limited to a 1-D pipeline, assuming that the pipeline
was made up of a series of small segments in which each node along the pipe modelled the local
flow characteristics. A similar study presented by Figueiredo et al. (2017) investigated the effect
of leakage on two-phase flow behaviour in nearly horizontal pipelines. In their study, the impact
of longitudinal leak location on stratified flows was investigated. The finding revealed that
pressure profiles commonly employed in monophase leakage's could be extended to the stratified

flow system. The limitation of this work, however, restriction to a 1-D pipeline. The empirical
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models do not adequately capture all the dynamics of the multiphase flow behaviour. These
analytical solution assumptions restrict their capability to consider different scenarios in which

leak may occur in 3-D pipelines.

The 3-D CFD modelling approach promises to be an effective tool to investigate complex
multiphase flow problems (Singh et al., 2017; Saeedipour et al., 2019; Alghurabi et al., 2021). It
avoids unrealistic assumptions usually adopted in the empirical models for multiphase pipeline
leakage. CFD models provide an opportunity to incorporate intricate pipeline configuration and
offer detailed information of multiphase flow systems that may be difficult to obtain using
analytical models or physical experiments. In particular, 3-D CFD models can readily investigate
the influence of the radial position of the leak along the circumference of the pipe relative to the
gas-liquid interface. Araujo et al. (2013) investigated leak influence in hydrodynamics of oil-
water two-phase flow in a horizontal pipeline. The simulation was performed in ANSYS CFX
using the Eulerian-Eulerian model by considering the oil as a continuous phase and water as a
dispersed phase. The authors varied the volume fraction of oil at the inlet of the pipeline. They
observed that the amount of oil discharged from the leak region reaches a stable value after
around 0.4 s for all the simulations reported in their study. However, their study is limited to the
leak effect before the flow stability time. Also, their study applicability may be limited since they
did not report a particular flow pattern. Besides, the effects of radial and longitudinal leak
locations, leak opening sizes and multiple leakages remain to be investigated. To better
understand the fluid flow behaviour induced by leak for the aforementioned effects, the present

study extends the multiphase pipeline leakage to both before and after the flow stability state.
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This study motivation is the lack of research that systematically investigates pipeline leakage
conveying more than one phase at a time. A number of studies have been carried out to
understand monophase pipeline leakages. However, not much is known regarding the multiphase
pipeline system. A recent study by Behari et al. (2020) noted that the available leak detection
techniques in the open literature fail to satisfactorily address multiphase pipeline leakage
phenomena. There is no guarantee that the information available for single pipeline leak cases
can be extended to multiphase pipeline system. This is evident that more insight into pipeline
transporting more than one is needed to attain a thorough understanding of pipeline leakage in

this context.

The present paper is primarily aimed at investigating accidental leakage of pipeline in a subsea
environment as a multiphase flow system. Plausible leak scenarios which may occur in the field
have been covered. A comprehensive assessment of different leak sizes, longitudinal leak
locations, radial positions, and multiple leakages are performed for a gas-liquid pipeline using a
3-D CFD model. Specifically, RANS equations are model to study pipeline leakage. The
perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is
expected to help in improving the understanding of multiphase flow behaviour induced by leaks.
The simulation results are validated against the numerical simulation by Chinello et al. (2019)
and experimental data reported in Espedal (1998). In particular, monophase and stratified flow
behaviours induced by leaks are compared and validated with the experimental data reported by
Monina-Espinosa et al. (2013). This study will lead to developing an improved multiphase
pipeline leak prediction system, providing guides for timely detection of multiphase pipeline

leakage, and preventing injuries and damage to properties.
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The rest of the paper is organised as follows: Section 3 presents the computational model used
for analysis, while Section 4 gives details of the numerical method and parameters. Detailed
simulation results will be analysed and discussed in Section 5. The summary and conclusion of
the research findings, including the recommendations for further work, are presented in Section

6.

3. Computational model

In order to describe multiphase flow modelling, it is required to solve the flow governing
equations together with the turbulence model. In this context, the flow governing equations and

turbulence model for air-water simulation are presented in this section.

3.1. Governing equations

The VOF method and k — w SST turbulence models are applied for modelling stratified gas-
liquid flow in the pipeline. The flow is assumed to be incompressible, isothermal and adiabatic.
The VOF method, which is a one-fluid approach, comprises the continuity and momentum

equations which are given in Equations (1) and (2), respectively (Chinello et al., 2019):

dp

s e (pD) = 1

Ve v =0 1)
a —- — — — — — =
a(pv)+l7-(pvv):—Vp+l7-(r+rt)+pg+F (2)

where p is the density of the mixing fluids, k g/m3; t is time, s; ¥ is velocity vector after

Reynolds averaging, m/s; p is static pressure, Pa; g is gravity force, m/s?; F is a source term

9
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accounting for the effect of surface tension. The molecular stress tensor 7 is given as (Chinello et

al., 2019; Li et al., 2019a):
—_ — —> 2 —
sz[(Vv+VvT)—§l7-v1 3)

where o7 is the transpose of the velocity vector, m/s .The turbulent stress tensor for the
Reynolds stress 7, defined with the Boussinesq eddy viscosity approximation is defined as

(Chinello et al., 2019):

_ L 2 -

T, = Ug [(\717 + 7o’ — §(|7 U+ pk)I] 4)
where I is unit tensor, ¥ is the transpose of the velocity vector, m/s. The surface tension force,
'F, is modelled using the Continuum Surface Force (CSF) method due to Brackbill (1992).

The VOF model concept is applied to treat the two-phase gas-liquid as one single mixture in
accordance with the previous studies by Lo and Tomasello (2010) and Chinello et al. (2019).

The density (p) and viscosity (u) are volume fraction weighted mixture quantities:
p=aip1t+azp; (5)
U= aiq + aly (6)
where a; and a, are the volume fractions of the primary and secondary phases, respectively.
a;+a, =1 (7

The volumetric transport equation for the secondary phase is determined using the following

equation:

10
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da, _,
a—tz-l-voVaZ:O (8)

The pressure gradient is determined as:
Vp =dp/dx 9)

where p is the pressure fields along the pipe; x is the position variable going along the length of

the pipe.
3.2. Turbulence modelling

Selection of an appropriate turbulence model is highly crucial in two-phase gas-liquid modelling
(Ali, 2017). Chinello et al. (2019) compared numerical simulations with the physical experiment
data conducted by Espedal (1998), which revealed that the k — w SST model yields better results
than both k — w and k — & models for the air-water flow simulation if turbulence is properly
damped at the gas-liquid interface. Therefore, the k — w SST model is employed in this study,

and its constitutive equations are defined as follows:

The turbulence viscosity is given as (Chinello et al., 2019):

pk 1
M =—"—""T7 cr 4 10
a alw

where k is turbulent kinetic energy, J/kg; w is specific dissipation rate, S is the strain rate

magnitude and is defined as:

11
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1\ [aV; aV;
= () =+ 12
SU (2) <0x] + 6xl~> ( )
where S;; is the average strain rate, V; and V; are the velocity components in x; and x; axis,

respectively. The transport equation for the turbulent Kinetic energy; k and the specific

dissipation rate w is defined as:

Dpk 0 e\ 0k , . )
oer _ 2 He\ Ok _ ~ .
Dt  Ox; (M+ak) dx; +min(uS%,10pB kw) — pB kw (13)
Dpw 0 Ue\ 0w a 5 . , L ok 9w
Dt~ oy ( Uw)f’xj +g,min(eS*, 10067 ke) = pPo® + 201 = F)p e o (14)
+ S,

and the additional source term, S,,, is given as:

Béu \?
(Sw) = AdnBp (ﬁp(—Alrll)Z) (15)

where 4n is cell height normal to the interface, g is turbulence model constant and B is a

turbulence damping tuning parameter. The term A is the interface area density.

The blending functions F; and F, are defined as follows;

Wk 5004\
U
F, = tanh (16)
1= tan [max<0.09wy'py2w>]
4
vk 500 4pk
F, = tanh {min [max , 2# , p+ (17)
0.09wy’ py?w) 6, ,DSy?

where vy is the distance to the closest wall surface, D} is dimensionless specific dissipation rate.

The model constants are selected according to the k — w SST model of Chinello et al. (2019).

12
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4. Computational field

Fig. 1 presents the flow field domain of the proposed pipeline leak assessment modelling. The
computational steps include mesh generation, boundary condition definitions, numerical method
and code validation. For the results presented in this and subsequent sections, the pipeline inlet is

treated as the reference location and all distances are measured relative to the pipeline inlet.

4.1. Mesh generation

The numerical simulations are conducted on a 3-D horizontal pipeline with and without a leak. A
pipe diameter of 0.06 m is employed in this study. The flow domain is divided into small discrete
cells and meshed using structured mesh. This grid type allows the mesh refinement to be closer
to the pipe wall and provides an opportunity to prevent singularities at the middle of the flow
domain (Akhlaghi et al., 2019). The mesh is generated such that the coarse mesh is in the centre,
while the fine mesh is at the region near the pipe wall, as recommended by Akhlaghi et al.
(2019). The mesh was developed using advanced functions, which resulted in its high quality
with an average orthogonal quality of 0.99 (closer to 1.0) and skewness of 0.06. A grid
dependence test was performed using various grid sizes to identify the most efficient grids for
this study. In the grid independence study, superficial gas and liquid velocities were chosen as
3.0 m/s and 0.32 m/s, respectively, which are similar to the numerical simulation values
employed in Chinello et al. (2019) and physical experiment on stratified flow conducted by

Espedal (1998).

The mesh independence analysis was performed by running simulation on grids with the smaller
cells number. The grids size was further reduced, which subsequently led to the increases in

grids number. Note that a mesh independent solution exists once changing in mesh size does not

13
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affect the final simulation. The grids sensitivity was performed by increasing the mesh sizes at
the cross-section of the pipe and along the pipe axis. Table 1 details the specifications of the
employed grids, including its cross-sectional number and axial mesh cells. The mesh density
effects are studied on the pressure drop characteristics. Fig. 2 (a) illustrates pressure drops at 1.5
m away from the pipe upstream for the 3 m pipe with the 60 mm diameter. The figures show the
pressure behaviours of mesh 1 to mesh 4 for the 20 s numerical simulation. The simulation
results show that increases in grid numbers from mesh 2 to mesh 4 has little changes on the
pressure drop, whereas the difference between mesh 1 and the other mesh sizes is massive. The
pressure drop per unit length for the different mesh sizes at locations 1, 2 and 3 is shown in Fig.
2(b). The figure indicates that the pressure drop does not change significantly between meshes 2,
3 and 4. Therefore, mesh 2 was chosen for the numerical simulation as it demonstrates the
optimum cells number for this study. Besides the simulation results' accuracy, simulation cost is
essential to consider before one chosen mesh sizes for the simulation study. Therefore, mesh 2
demonstrate the optimum mesh size for the present study as it satisfies both computational cost

and accuracy.
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Fig. 1. Depiction of the mesh duct and detail of (a) Mesh generation for modelling pipeline

leakage, (b) Cross-section view of the leakage and (c) Top view of the leakage
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278 Table 1: Grids specification for mesh sensitivity analysis
Mesh name Cross-sectional Axial cells Total
Mesh 1 511 400 204,400
Mesh 2 778 400 311, 200
Mesh 3 1067 400 426,800
Mesh 4 1603 400 641,200
279
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Fig. 2: Influence of variations in mesh density on model predictions: (a) mesh independency for
pressure drop at 1.5 m from the pipeline inlet, and (b) mesh size against pressure gradient across
selected locations along the pipe. Note that locations 1, 2 and 3 are setat 1.0 m, 1.5 mand 2.0 m,

respectively, away from the pipe upstream.

4.2. Boundary conditions

The pipeline inlet is set as a velocity inlet boundary defined by gas and liquid superficial
velocities. Injection of the two-phase into the computational domain can be done in two ways.
One method is to set the maximum velocity and non-slip volume fraction as boundary
conditions. After some distance, the separation between the mixed phases initiates along the
length of the pipe and distributes fluids into a specific pattern. In the second approach, which is
the method used in this study, the two phases are separately injected at the pipe inlet. One
significant advantage of this method is that flow can reach the fully developed condition sooner.

The gas is injected from the upper half cross-section of the pipe, while the liquid is injected from

17
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the bottom half cross-section of the pipe. This resembles a separate flow structure, where each
phase is separated into different layers, with the lighter fluid flowing on top of the denser fluid.
The gas and liquid velocities at the inlet are specified to attain the target superficial velocities of

the phases based on experimental data.

The physical properties of the fluid phases are presented in Table 2. The leak boundary is set as
pressure outflow. The no-slip condition is applied at the pipe wall. Since the flow is assumed to
be fully developed at the pipeline outlet, the backflow boundary pressure is imposed. The pipe is
assumed to be in underwater condition, and the leak orifice and pipeline outlet pressures are
defined constant, which is similar to that reported in Kam (2010) for pressure at 100 m below the
sea surface (Wei and Masuri, 2019). In this instance, the pipeline outlet and leak surrounding
pressures are scaled down to 400 Pa based on pipe diameter and simulation parameters in the

present study.

Table 2: Fluid phases of physical properties

Property Gas-phase  Liquid-phase

Density (p), kg/m3 1.225 998.2
Dynamic viscosity (u), Pa.s 0.00001823 0.00091

Interfacial tension, N/m 0.0715

4.3. Numerical method

The VOF modelling method is employed to simulate stratified gas-liquid flows. The computation
is performed using a pressure-based solver, while the pressure fields are coupled with the

velocity fields using SIMPLE pressure-velocity coupling scheme. The turbulence is modelled

18
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using the k — w SST model. The time-step used in the simulations is 0.001 s, and the simulated
for 20, which is 20,000 iterations. All the computation run on an Intel(R) Xeon(R) Gold 6230
CPU @ 2.10GHz, 16 Cores, 64.0 GB RAM. Please note that a single simulation required five
days on average to complete on this computer. The momentum, turbulent Kinetic energy and
specific dissipation rate equations are discretised in space for the advection terms using a second-
order upwind scheme in accordance with the study of Chinello et al. (2019). The discretisation of
the volume fraction is performed using high-resolution interface capturing (HRIC) scheme
(ANSYS, 2017). A first-order implicit temporal discretisation scheme is used to solve the
governing equations. This method has been demonstrated to be reliable for evaluating pressure
gradients and flow rates which are of interest in this work (Chinello et al., 2019). The implicit
algorithm is applied because the time derivative estimation can be obtained from neighbouring
cells, which allows numerical calculation stable unconditionally with respect to the time-step

size (Ali, 2017).

4.4 Comparison with experimental data from the literature

4.4.1 Code validation

The CFD code used in this study has been validated against the published experimental data in
Espedal (1998) and numerical simulations reported in Chinello et al. (2019), which also
employed the VOF model in ANSYS. Simulations are conducted using the VOF model for
stratified air-water flow in a 3D pipe with the same experimental conditions as in these studies.
The pipe used for the simulations is 18 m in length with a diameter of 0.06 m. The values of the
model parameters for the density, interfacial tension and dynamic viscosity are given in Table

2. The k — w SST turbulence model with the damping factor (B) of 250 is employed. Four sets of
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numerical simulations were performed using the superficial gas velocity of 3 m/s, while the
superficial liquid velocities were chosen as 0.12 m/s, 0.18 m/s, 0.26 m/s and 0.32 m/s. The
pressure gradients are computed and compared against the experimental data. Fig. 3(a) shows the
comparison of the present simulation results against the numerical simulations reported in
Chinello et al. (2019), and experimental data reported in Espedal (1998). The obtained results
demonstrate good agreement with the published CFD simulation results and experimental data.
As shown in Fig. 3(a), the pressure gradient in the present simulation is more consistent with the
experimental data than the simulation results reported in Chinello et al. The reason for the
underestimation of liquid levels in Fig. 3(b) could be inherent from the liquid injection surface
area of the pipe (see Fig. 1 for the inlet cross-section plane in boundary condition). Therefore, it
should be admitted that there is a discrepancy in liquid levels obtained in both simulation and
experiments due to the possible difference in the surface area of injection of the liquid phase.
This validation has been undertaken to demonstrate the adequacy of the mesh and numerical
schemes employed. In order to further ascertain the validity of our model, the predictive
accuracy of the present simulations was tested against the experimental data of Strand (1993).
Fig. 4 show comparisons of the pressure gradient between the current simulation and
corresponding experiments data of Strand (1993). As shown in Fig. 4, the prediction matches the

measurement data very well, with a deviation of less than 5%.
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4.4.2 Pipeline leaks comparison against experimental data

Experimental data focused on the multiphase pipeline with the leak is seldomly reported and it is
not easy to set up flow ring similar to the one reported in Molina-Espinosa et al. (2013), to test
the gas-liquid, such as hydrocarbon and oil physical facility. The experimental data obtained
from the same geometric model and simulation conditions in monophase systems employed to
verify that the boundary conditions. The pressure distribution proved effective and scientific to
characterise stratified flow behaviours in this study. The effect of leak on stratified flow
behaviours induced by leaks has previously observed similar to the monophase pipeline leakage
in the previous study (Figueiredo et al. 2017). They concluded that the leak localisation strategy
based on the upstream and downstream pressure profiles commonly employed in monophase
flow pipeline leakage could be extended to the stratified-flow system. However, all the data

reported in that study was based on the 1-D pipeline.

The present stratified flow model carried out in a 3-D pipeline is compared with the monophase
flow system and validated with the experimental data reported by Molina-Espinosa et al. (2013).
Molina-Espinosa et al. (2013) measured pressure distribution for the leak-free and leak diameters
of 0.0033, 0.0052 and 0.0074 m, which form the leak sizes considered for the validation in the
present study. The pipeline could be hundreds or thousands of meters long in reality; however,
irrespective of the length of the pipeline, the pressure gradient would remain the same under
normal flow condition. Therefore, a comparison between the simulation results obtained from the
pipeline length considered in the present study and experimental data presented in (Molina-

Espinosa et al. 2013) is scientifically sound.
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The comparison of the pressure profile between experimental data and monophase results is
shown in Fig. 5. The pressure profile without leak is illustrated in Fig. 5(a), and the resulting
pressure profile with leak sizes 0.0033, 0.0052 and 0.0074 m are shown in Fig. 5(b), Fig. 5(c),
and Fig. 5(d), respectively. Fig. 6 compares stratified flow against monophase results in Fig. 5.
The monophase and stratified flow models are set up based on the experimental configuration for
validation (Molina-Espinosa et al., 2013). As shown in Fig. 5, the monophase simulation results
agree with the experimental data conducted on a single-phase scenario at a higher degree. The
pressure profile correlation in Fig. 6 reveals a slight divergence. The reason is that the stratified
model is made up of gas-liquid phases, leading to the gas release rate probably higher than the
liquid quantities under the same leak size. Statistical tests are applied to verify the consistency
among pressure data obtained from the monophase simulation, stratified flow simulation and

experiments reported in Molina-Espinosa et al. (2013).
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Fig. 6: Comparison for the pressure profile between the monophase flow and the stratified flow
model; (a) leak free, (b) 0.0033 m leak, (c) 0.0052 m leak, (d) 0.0074 m leak.

The statistical analysis was computed in MATLAB 2018b using one-way Analysis of Variance
(ANOVA) to compare the pressure gradient before and after the leak. The summary of the
hypothesis test results for the monophase simulations, experimental data and stratified model is
presented in Table 3. The p-values measure how much the means different of the three data
disagrees with the null hypothesis (the sample means of data taken from the 3 groups are equal).
As is clearly shown, the p-values for all the cases are range from 0.131 to 0.734, using 0.05
significance (a) level. These indicate that the mean difference between the three data are not
statistically significant and demonstrate strong evidence for the null hypothesis. We fail to reject

the null hypothesis at the significant level of 0.05.
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Table 3: Numerical (monophase and stratified) simulations and experimental data comparison
using one-way ANOVA; 0.05 significance (a) level

Leak scenario  Pressure gradient p-values
Leak free Upstream pressure 0.734
Downstream pressure 0.747
Leak 1 Upstream pressure 0.382
Downstream pressure 0.365
Leak 2 Upstream pressure 0.473
Downstream pressure 0.354
Leak 3 Upstream pressure 0.365
Downstream pressure 0.131

The linear regression plot shown in Fig. 7 demonstrates the adequate closeness of the
experimental and monophase simulation data points to the regression model. The average
variance of the experimental data from the fitness model is calculated using Mean Absolute
Deviation (MAD). The obtained results are presented in Table 4. From these results, the highest

MAD value is 0.263, which shows good agreement between the two data.
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440 Table 4: The results of computed Mean Absolute Deviation (MAD) of experimental data from

441 monophase simulation regression model.
Leak scenario Pressure gradient MAD
Leak free Upstream pressure 0.060
Downstream pressure 0.123
Leak 1 Upstream pressure 0.234
Downstream pressure 0.060
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Leak 2 Upstream pressure 0.263

Downstream pressure 0.089
Leak 3 Upstream pressure 0.149
Downstream pressure 0.061

Table 5 also presents the results of the hypothesis tests performed to determine whether the
constants and coefficients of linear regression models of the monophase and stratified pressure
gradients variation before and after the leak are statistically significant. As demonstrated in the
results shows in Table 5, the high R-square values indicate that the fitted linear regression
models approximate the process which generates the data well. It is important to notice that the
least R-squared value is 0.997 despite the multiphase coefficients p-value higher than 0.05. This
indicates the possible disband among the stratified data due to the transient state of the
multiphase model. These results agree to the previous study (Figueiredo et al. 2017) that
concluded a leak localisation strategy based on the upstream and downstream pressure profiles
commonly employed in monophase flow pipeline leakage could be extended to the stratified-
flow model. Therefore, the numerical models and simulation method used in this study have
good quality and can well describe the fluids flow parameters distribution of pipeline leakage.
Similarly, since multiphase flow system span beyond stratified flow pattern in order to have a
better understanding of leak effect in all the multiphase system, comparison of other multiphase

flow regimes such as bubble, slug, annular, etc. should be considered in future.
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Table 5: Regression hypothesis results for monophase and stratified simulations comparison

Leak scenario R-Square RSME Constant Mono. Coef. Multiphase

p-value p-value Coef. p-value

Leak  Upstream 0.998 0.033  1.0295x 10713 0.043353 0.28861
free pressure

Downstream 1.000 0.005 1.7711x 10720 0.0005064 0.054394
pressure

Leak  Upstream 0.998 0.011 1.902x 10712 0.0020 0.2820
1 pressure

Downstream 1.000 0.004  4.4253x 10720  3.7577x 107%° 0.57519
pressure

Leak  Upstream 0.998 0.009 4.774x 10713 0.0020 0.0690
2 pressure

Downstream 0.998 0.014 7.8827x 10719 1.2721x 1079 0.75957
pressure

Leak  Upstream 0.998 0.012  1.305x 10711 0.0010 0.1890
3 pressure

Downstream 0.997 0.021  3.1492x 1071 0.0008683 0.84597
pressure

5. Results and Discussions

Numerical simulations are performed on a 3-D horizontal pipe with different leak scenarios.
Holes on pipe which are sources of leaks are assumed to be circular, and its distribution sizes are
determined based on International Association of Oil and Gas Producers (IOGP) recommended
hole sizes for subsea pipelines (Li et al., 2018). According to the pipeline opening sizes
description specified in Li et al., for a standard subsea pipeline with an average diameter of
0.334 m, a leak diameter of less than 0.02 m is regarded as a low leak. Moreover, a leak size
between 0.02 to 0.08 m is classified as medium leakage, while a leak diameter higher than 0.08
m is regarded as a large leak. The computed pipe opening dimensions for the 0.06 m diameter
pipe employed in this study follow the recommended values in IOGP and they are listed in Table

6. The superficial gas and liquid velocities used for pipeline leak modelling are 4.5 m/s and 0.5
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m/s, respectively, while the pipeline length is 50 times the diameter. These values are determined
using the horizontal gas-liquid flow regime map so that stratified flow pattern is observed (Kanin
et al.,, 2019). The effect of leak sizes, longitudinal leak locations, axial leak positions and
multiple leakages are investigated, and results are presented for the flow rate, pressure gradient

and volume fractions in this section.

Table 6: Hole diameter used for the simulations

Hole size classes Values (mm) Leak size (percentage

of pipe diameter)

Low 1.5 2.5%
Medium 9 15%
Large 145 24.2%
Rupture 18 30%

5.1. Effect of leak magnitudes

Leak size has a significant impact on the behaviour of fluids flow in the pipeline. In order to
study the effect of leak magnitude on the multiphase flow behaviour induced by the leak,
simulations of pipeline leakages for the different leak scenarios corresponding to the low,
medium, large and rupture scenarios are conducted and analysed. The leak is placed at the top-
middle part of the pipe, as shown in Fig. 1. Table 6 presents the values of the leak sizes
considered and its corresponding categories. The effects of leak size on the pressure gradient, the

flow rate and the volume fraction (gas void fraction and liquid holdup) at selected planes along
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the pipeline are presented. The pressure response to the pipeline leak and how the response
changes with leak sizes is shown in Fig. 8(a). As seen in Fig. 8(a), the pressure gradient remains
identical under the leak-free scenario. The occurrence of leak leads to the reduction in pressure
fields as the fluids try to escape through the leak. Although the existence of small leak leads to
the decrease in pressure at the upstream of the pipe, the effect of the small leak is not significant
at the leak location. This agrees with the analytical calculation in Kam (2010), which affirmed
that the presence of a small leak is not visible at the location of the leakage. However, as the pipe
leak opening size increases, more fluids tend to discharge through the orifice region. The similar
pressure response can also be observed in physical experiment data reported in Molina-Espinosa

et al. (2013) conducted on single-phase leakages.

As exemplified in Fig. 8(a), the magnitude of the pipeline opening size affects the rate of fluids
discharge in the leak neighbourhood. The increase in fluids escaping from the leak medium leads
to the rise in pressure drop, particularly within the vicinity of the leakage. This implies that the
pressure profile around the neighbourhood of the leak can aid the accurate identification of leak
location particularly when the leak is medium size or large. The presence of large leak size
reveals that the larger the size of the leak, the more the fluids tend to discharge from the pipeline
until it reaches the rupture stage. The effect of leak sizes on total flow rate characteristics based
on various leak diameters is depicted in Fig. 8(b). It can be observed that the maximum decrease
in flow rate suddenly occurs immediately after the leak position. There is no much significant
variation in flow rate before the occurrence of leakage, but as the size of the leak increases, the
fluids flow rate also reduces dramatically starting from the leak location. Therefore, the increases
in pipe opening size result in the decrement of total flow rate downstream of the leak. This
implies that flow rate decreases with increasing leak size. From the flow responses depicted in
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Fig. 8, we conclude that upstream pressure serves as a pertinent indicator to detection of leakage
as it appears to be the most sensitive indicator even if the size of the leak is small. Whereas,
downstream flow rate response will be more favourable for leak detection if the flow transducer

is deployed downstream.

Fig. 9 presents the volume fraction contours at 2.5 m along the pipe under the same leak
scenarios shown in Fig. 8. The blue colour denotes the air void fraction, while the red indicates
the liquid holdup. As seen in Fig. 9(a), the air void fraction and the liquid holdup are distributed
equally in the absence of leakage. The occurrence of leak leads to the reduction in air void
fraction downstream of the pipe, which causes an increase in the liquid holdup. By comparing
the fluids volume fraction under different leak sizes shown in Fig. 8, it shows that leak size has a
significant influence on the saturation of fluids flow. Overall, the larger the leak size, the more
the relative amount of gas discharged from the pipeline if the leak is located at the top upper part
of the pipe. Therefore, the gas void fraction downstream of the leak becomes lower, which
eventually increases the liquid holdup. This occurs because the gas is less dense and more mobile

than liquid leading to the liquid replacing the escaped gas in the pipeline.
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529 Fig. 8. Leak sizes variation simulations response; (a) pressure distributions, (b) flow rate. Note

530 that the flow rate represents the total flow rate for the two-phases. Note that leak is located at
531 x/2, where x is the pipe length.
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Fig. 9. Liquid volume fraction contour plots at 2.5 m for different leak opening sizes (Red and

blue colours indicate water and air, respectively)

5.2 Effect of longitudinal leak location

Various challenges may be experienced in the process of identifying the position of leakage
along a pipe, especially if the pipeline is installed underground or in a subsea environment.
Therefore, it is important to investigate the effect of leak on different locations along the pipe
length for enhancing leak assessment and emergency planning. In this study, the effect of leak on
different longitudinal locations is investigated and analysed. The leak location 1, location 2 and
location 3 are set at 0.75 m, 1.75 m and 2.5 m, respectively away from the pipe upstream. Fig. 10
presents the effect of longitudinal leak detection on the medium pipeline opening size for the
pressure and flow rate responses. Fig. 10(a) shows the effect of different longitudinal leak
locations on the pressure profile. As seen in Fig. 10(a), the occurrence of leakage toward the
downstream of the pipe (at 2.5 m) has little effect on the pressure gradient. However, as the leak
is positioned more towards the upstream section of the pipe, the leak effect become pronounced.
Similar responses have also been observed in the analytical solution in multiphase pipeline

leakage reported by Kam (2010).

As it can be observed in Fig. 10(b), the occurrence of leak leads to the flow rate decrement
starting from the leak position downward to pipeline outlet. The leak occurred at 2.50 m away
from the upstream pipeline cause about 0.00024 m3 /s flow rate reduction. By positioning a leak
further upstream of the pipeline, the effect of a leak becomes more pronounced. This agrees with
the analytical solution reported in Kam (2010). If a leak occurs closer to the pipeline upstream, it

is more favourable to detect the leak using the inlet pressure monitoring. The result of the liquid
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holdup is illustrated in Fig. 10(c). As it is clearly shown, the loss of pressure as the leak location

closer to the upstream of the pipe reveals increases in liquid holdup accordingly. Fig. 10(d)

shows a comparison of published liquid holdup (Figueiredo et al. 2017) against the result in Fig.

10(c). the figure reveals a correlation in relative jump, particularly as the leak closer to the

pipeline downstream.

The volume fraction contour plots at 2.75 m for the longitudinal locations are illustrated in Fig.

11. By comparison, a significant difference can be found in volume fraction as the location of

leakage changes from the pipe upstream to the outlet. In the absence of leakage, the fraction of

each phase distributes equally. However, the variation in leak position results in liquid

accumulation increasing as the leak location changes toward the upstream of the pipeline.

~ 1400

Pressure (Pa

1300

1600 1

= -

[=] N

=] o

=1 o
’

800 4

600 1

400 1

200 \ T

—— |eak-free
—— 0.75m
—— 1.75m
—— 2.50m

Flow rate (m3/s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Distance (m)

(@)

35

0.0144

0.0142 -

0.0140
0.0138
0.0136 - 0.75m __._._._._.__.’,.——-0/‘
- 175m
—— 2.50m
0.01341 4 |eak-free
0.0 0.5 1.0 15 2.0 2.5 3.0

Distance (m)

(b)



1.0
o e B Present work
. . 1.4167 ..
n g' B Figuiredo et al 2017
Bos: ——t 14 1.1991
o I,’ __________________________ :51.2 .0357 0321 1.06891 0285
307 / . g1
_g 064 ’f‘ A T Sos
R L / 206
3 05| — leak-free \““i—\ ;
g |- omm 204
04{ == 175m ‘T‘jo.z
------ 2.50 < ,
0|3 T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 1 2 3
572 Distance (m) Leak location
573 (c) (d)
574 Fig. 10. Effect of longitudinal leak locations; (a) pressure distributions, (b) flow rate, (c) liquid
575 holdup, (d) liquid holdup comparison with published data. The legend shows different locations
576 of leakage from pipe upstream to the downstream. Note that the flow rate represents the total
577 flow rate for the two-phases.
578
1.00e+00 1.00e+00
9.00e-01 9.00e-01
8.00e-01 8.00e-01
7.00e-01 7.00e-01
6.00e-01 6.00e-01 [
5.00e-01 5.00e-01
4.00e-01 4.00e-01
3.00e-01 3.00e-01
2.00e-01 2.00e-01
1.00e-01 1.00e-01
579 0.00e+00 0.00e+00
580 (@) leak-free (b) 250 m

36




581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

1.00e+00
I 9.00e-01

8.00e-01

1.00e+00
I 9.00e-01

8.00e-01

7.00e-01 7.00e-01

6.00e-01 6.00e-01

5.00e-01 5.00e-01

4.00e-01 4.00e-01

3.00e-01

2.00e-01
1.00e-01
0.00e+00

3.00e-01

2.00e-01

1.00e-01

0.00e+00

@ 1.75m (b) 0.75m

Fig. 11. Volume fraction contour plots at 2.75 m for different longitudinal leak locations. (Red

and blue colours indicate water and air, respectively).

5.3 Effect of axial leak positions

In the previous section, the leak was set to locate in the gas phase. Knowledge about pipeline
leak position, namely gas-phase, liquid-phase or interface of the two phases is important for
enhancing the understanding of leak effect on a multiphase pipeline system. The leak scenarios
for the medium and large sizes are considered to study hydraulic behaviours induced by leak at
different fluid phases. The leak is located at the middle of the pipe, as shown in Fig. 1. The
legend indicates the fluid phases where the leak occurred. The flow parameters that are
investigated include the pressure gradient, the total flow rate and the volume fraction of the
fluids within the pipeline. The flow parameters variation for the medium leak size under different
leak positions is presented in Fig. 12(a). The legend indicates the fluid phases where the leak
occurred. As seen in these figures, it is apparent that the location of leakage on the multiphase

pipeline affects the flow pressure profile in the pipeline. A significant effect exists when the leak
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is situated on the liquid-phase side. Similarly, the flow rate responses in Fig. 1(a) imply that the
maximum total flow rate drop occurs at the liquid-phase axis, while the least drop is observed at
the gas-phase position. Similar behaviour for the case of large leak can also be observed in Fig.
12(b).

By comparison, we can find that the influence of pipeline leakage is more pronounced on the
liquid phase than gas or gas-liquid interface, and the reasons are two-fold. Firstly, the leak at the
bottom of the pipeline (liquid-phase) favours the quantity of the pipeline's fluid discharge.
Secondly, the fluids' physical properties could also be another reason for the higher pressure drop
in the liquid phase. For instance, the high density of the liquid may be one of the factors
contributing to the higher pressure drop when the leak is situated in the liquid phase. The gas-
liquid volume fraction distribution for the leak at the gas-phase, liquid-phase and interface of the
two phases are examined using contour plots at 2.5 m away from the pipe upstream. Fig.13
shows the responses of fluids fraction for the same leak scenarios as in Fig. 12(b). The absence
of leak shows that the void fraction and liquid holdup is nearly uniform with the clear interface
between the liquid and gas phase as previously observed in Fig. 12(a) and (b) for the pressure
profile and flow rate responses, respectively. However, Fig. 13(b) shows that the occurrence of a
leak at the gas phase attracts liquid moving from the bottom of the pipeline toward the leak
region. Fig. 13(c) and (d) present the fluids saturation for the leak event at the gas-liquid
interface and liquid phase. The occurrence of a leak at the gas-liquid interface allows air to

diffuse into the water as both phases discharge simultaneously from the pipeline.

38



1800

—+— Leak Free
1600 1 —e— Gas-phase 00141
. 1400 —e— Interface T
[ —— Liquid-phase w
2 1500 E 0.013
v
5 1000 2
a B o012
o 800 3
E 2 —+— Leak free
600 i g1 | —* Gas-phase
200 —— Interface
—— Liquid-phase
200 ; ; ; ; : 0.010 ; : . . .
0.0 0.5 10 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 25 3.0
619 Distance (m) Distance (m)
620 (a)
1800
—+— Leak Free
1600 1 —e— Gas-phase "N
- 1400 - —— Ilftel:face :"E
E: 1200 —»— Liquid-phase ME 0.013 4
w '
5 1000 3
o]
] v 0.012 1
o 800+ 3
o 5 —— Leak free
& oo i o011, —* Gas-phase
400 - —+— Interface
—— Liquid-phase
200 ; ; ; ; ; 0.010 . . . . :
0.0 0.5 L0 15 2.0 25 3.0 0.0 0.5 10 15 2.0 25 3.0
621 Distance (m) Distance (m)
622 (b)
623 Fig. 12. Effect of axial leak positions; (a) medium size, (b) large size. (Pressure distributions
624 (left) and flow rate (right)). Note that the flow rate represents the total flow rate for the two-
625 phases.

626

39



1.00e+00 1.00e+00

9.00e-01 9.00e-01

8.00e-01 £.00e-01

7.00e-01 7.00e-01
6.00e-01 6.00e-01

5.00e-01 5.00e-01

4.00e-01 4.00e-01

3.00e-01 3.00e-01
2.00e-01 2.00e-01

1.00e-01 1.00e-01

' vi’ ;

628 (@) leak-free (b) gas-phase

1.00e+00
I 9.00e-01

8.00e-01

0.00e+00 0.00e+00

627

1.00e+00

9.00e-01

8.00e-01
7.00e-01
7.00e-01

6.006-01 6.00e-01

5.00e-01 5.00e-01

- 4.00e-01 4.00e-01
629 I 000000 N 0000300
630 (@) interface (b) liquid-phase
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633 pipeline).

634 5.4 Effect of multiple leakages

635 The emergence of double leaks on a single pipeline can easily affect the accuracy of detecting
636  pipeline leakage. Therefore, the investigation of multiphase flow in pipe with multiple leaks
637 plays a crucial role in determining the size of the leaks and identify the location of pipeline
638 leakage accurately. The impact of double leaks on pipeline leak detection and localisation has

639  been considered and analysed in this study. Fig. 14 illustrate the pressure gradients and the flow
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rates in various multiple leak scenarios. The first leak location is set at 0.75 m away from the
pipe upstream, while the second leak is located at the 1.5 m, which is the mid-point of the
pipeline. The two leak sizes are chosen among small, medium and large. In all scenarios, the
second hole is chosen to have a medium size. Fig. 14(a), shows the double leak scenario where
the first leak has a small size. The flow responses behave significantly differently with different
leak sizes. The pressure drop for the medium leak size is more significant than that of small size.
It is observed that a small leak position at 0.75 m is difficult to locate if the pressure profile is

employed as an indicator for detecting or locate leak position.

Fig. 14(b) illustrates low-medium leak scenarios with equal (medium-medium) leak sizes. The
system responses show that the emergence of the second leak does not cause significant effects
on the pressure drop compared to leak closer to the upstream of the pipeline. A leak closer to the
pipe upstream always results in higher drop in pressure and flow rate than the second leak.
Similar responses are also observed in Fig. 14(c) for the leak scenario with the large-medium
leak located at 0.75 m and 1.5 m away from the upstream of the pipe, respectively. There are two
major observations from the double leak scenarios: Firstly, when there are two leaks with
different leak sizes, the large leak easily masks out the small one. This is because more fluid
tends to escape through the large opening size. Therefore, it causes an increase in pressure drop
around the large leak region. Secondly, in the event of double leaks with equal size, a leak closer
to the pipe upstream has a dominant effect on the flow. This could be linked to higher pressure in
the upstream section of the pipe, leading to more significant loss on the leak closer to the

upstream of the pipe.
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6. Summary and conclusions

This paper presents a comprehensive simulation and assessment of multiphase flow behaviours
induced by leaks in a subsea pipeline. A 3D CFD model was established to simulate different
scenarios in which leak(s) may occur in subsea pipeline conveying more than one phase at a
time. The VOF model and SST k- turbulence modelling scheme were applied to simulate the
gas-liquid stratified flow in a horizontal subsea pipeline with a diameter of 60 mm. The
superficial inlet velocities were chosen such that the stratified flow regime was formed. The
simulation results were validated by comparing CFD results with simulation and experimental
data found in the literature. The effect of leak sizes, longitudinal leak locations, multiple
leakages and axial leak positions were analysed in terms of pressure gradient, flow rate and
volume fractions of the gas and liquid phases. The simulation results showed that numerical
simulation could help compile a set of guidelines for conducting prior leak assessment and

contingency planning of accidental leakage of subsea pipeline.

It was found that when a pipeline leakage occurs, the fluids flow parameters experienced a
fluctuation, particularly within the vicinity of the leak regions, which makes it possible to detect
and locate the leak position. Leak size has a significant impact on the amount of fluids
discharged through the leak region, which increases with the leak size. The flow parameters
investigated as possible leak detection and localisation indicators are pressure drop, flow rate and
volume fractions. In all cases studied, it was observed that the outlet flow rate is better for leak
detection if the flow transducer is considered as an indicator for pipeline leak detection.
However, upstream pressure is preferred if the pressure transducer is used as a pipeline leak

detection sensor. The volume fractions are believed to be effective for quantifying the leak sizes
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in the multiphase flow system. Overall, the detection of pipeline leakage appears to be easier if
the pipe opening size is large and located closer to the pipe upstream. However, the impact of the
leak on flow parameters is less significant when the size of the leak is small and closer to the
pipeline outlet. The influence of multiple leakages on a single pipeline is investigated in different
with different hole sizes, which show that effect of the leak in the region closer to the inlet of the
pipeline is more significant than the second leak. Conversely, when double leaks with different

sizes occur, a leak with large size is more detectable than the other.

The emphasis of this paper is to investigate the impact of leaks on two-phase gas-liquid flow
behaviours and its consequences in different leak scenarios to improve the understanding of the
leak effect on a multiphase subsea pipeline. The modelling and assessment presented in this
study can be useful for risk assessment and improve the emergency management level.
Therefore, reduce the rate of failure through early detection and localisation of pipeline leakage.
The scope of this study is limited to the modelling of pipeline leakage using a CFD-based
approach. Nevertheless, some areas can be further investigated in future, such as incorporating
effects of temperature, gas compressibility, inlet gas volume fraction, inlet pressure and flow
rate. The potential synergy of Internet of Things (loT), digital twins and artificial intelligence
(Al) technology which is expected to achieve real-time and dynamic monitoring as assessment,
early notification and decision making for subsea pipeline leak detection, can be explored in the

future.
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714

715  Appendix A. Nomenclature

A Interface area density

ANOVA Analysis of Variance

B Damping factor

CFD Computational Fluid Dynamics

CSF Continuum Surface Force

F Surface tension force

g Gravity acceleration force, m/s?

HRIC High-resolution interface capturing

IOGP International Association of Oil and Gas
Producers

I Unit tensor

k Turbulence kinetic energy, m?/s?

MAD Mean Absolute Deviation

p pressure

RANS Reynolds-Averaged Navier-Stokes

SST Shear Stress Transport Model

Sij average strain rate

Se source term

t time, s

VOF Volume of Fluid

v velocity vector, m/s

vl Transpose of the velocity vector, m/s

) Specific dissipation rate, 1/s

X Pipe length

1-D One-dimensional

3-D Three-dimensional

Greek symbols

p density of fluid

v Gradient operator

T molecular stress tensor

Tt turbulent stress tensor

U viscosity

Ue dynamics viscosity

a, volume fractions of the secondary phase
a;y volume fractions of the secondary phase
B turbulence model constant

D, dimensionless specific dissipation rate
o Alpha

716
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Highlights

1.

The accidental leakage effect on stratified flow behaviours induced by leak
investigated.

Presented the pressure gradient, flow rate and volume fractions distribution of the fluids flow
under different leak conditions.

The comparison is made between mono-phase and stratified flow behaviour induced
by leaks and validated with the physical experimental data.

The effect of multiple leakages of different sizes on flow parameters has been systematically
analysed.

As the leak position shifts upstream, it becomes easier to detect using both pressure and flow
metering transducers.
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