Nanoparticle technology to deliver effective antimicrobials
Bacterial resistance to antimicrobials emerged only a few years after the commercial availability of antibiotics. Nanotechnology offers a means by which new antimicrobials can be developed, or the lifespan of current antimicrobials can be extended. Nanoparticles are loosely defined as particles with at least one dimension smaller than 100 nm; their specific surface area, chemical and biological activity can be tuned for a desired application. As such they have become attractive within a variety of fields including medicine and, in particular, antimicrobial therapy. Nanoparticles with specific surface chemistry and size can intimately interact with the microbial surface mediating an antimicrobial effect that does not necessarily rely on the release of chemically active components. Moreover, nanoparticles can be incorporated into polymers or applied as coatings on surfaces, such as indwelling medical devices, making them extremely versatile; combined with a slow rate of release this means that they offer sustained antimicrobial activity.
History
Published in
American Journal of MicrobiologyPublisher
Science PublicationsVersion
- VoR (Version of Record)
Citation
Maddocks,S. E., Barbour, M. E. and Collins, A. M. (2014) 'Nanoparticle technology to deliver effective antimicrobials', American Journal of Microbiology, 5 (2), pp. 35-36Electronic ISSN
1948-9838Cardiff Met Affiliation
- Cardiff School of Sport and Health Sciences
Cardiff Met Authors
Sarah MaddocksCardiff Met Research Centre/Group
- Microbiology & Infection
Copyright Holder
- © The Authors
Language
- en