fspor-01-00053.pdf (1.32 MB)

Humans Optimize Ground Contact Time and Leg Stiffness to Minimize the Metabolic Cost of Running

Download (1.32 MB)
journal contribution
posted on 06.11.2019 by Izzy Moore, Kelly J. Ashford, Charlotte Cross, Jack Hope, Holly S.R. Jones, Molly McCarthy-Ryan
Trained endurance runners appear to fine-tune running mechanics to minimize metabolic cost. Referred to as self-optimization, the support for this concept has primarily been collated from only a few gait (e.g., stride frequency, length) and physiological (e.g., oxygen consumption, heart rate) characteristics. To extend our understanding, the aim of this study was to examine the effect of manipulating ground contact time on the metabolic cost of running in trained endurance runners. Additionally, the relationships between metabolic cost, and leg stiffness and perceived effort were examined. Ten participants completed 5 × 6-min treadmill running conditions. Self-selected ground contact time and step frequency were determined during habitual running, which was followed by ground contact times being increased or decreased in four subsequent conditions whilst maintaining step frequency (2.67 ± 0.15 Hz). The same self-selected running velocity was used across all conditions for each participant (12.7 ± 1.6 km · h−1). Oxygen consumption was used to compute the metabolic cost of running and ratings of perceived exertion (RPE) were recorded for each run. Ground contact time and step frequency were used to estimate leg stiffness. Identifiable minimums and a curvilinear relationship between ground contact time and metabolic cost was found for all runners (r2 = 0.84). A similar relationship was observed between leg stiffness and metabolic cost (r2 = 0.83). Most (90%) runners self-selected a ground contact time and leg stiffness that produced metabolic costs within 5% of their mathematical optimal. The majority (n = 6) of self-selected ground contact times were shorter than mathematical optimals, whilst the majority (n = 7) of self-selected leg stiffness' were higher than mathematical optimals. Metabolic cost and RPE were moderately associated (rs = 0.358 p = 0.011), but controlling for condition (habitual/manipulated) weakened this relationship (rs = 0.302, p = 0.035). Both ground contact time and leg stiffness appear to be self-optimized characteristics, as trained runners were operating at or close to their mathematical optimal. The majority of runners favored a self-selected gait that may rely on elastic energy storage and release due to shorter ground contact times and higher leg stiffness's than optimal. Using RPE as a surrogate measure of metabolic cost during manipulated running gait is not recommended.


Izzy Moore received funding for the Early Career Researcher and Practitioner Award from the British Association of Sport and Exercise Science.