Energy-Efficient Design and Control of a Vibro-Driven Robot.pdf (877.69 kB)
Download file

Energy-Efficient Design and Control of a Vibro-Driven Robot

Download (877.69 kB)
conference contribution
posted on 04.04.2022, 11:00 authored by Pengcheng Liu, Gerhard Neumann, Qinbing Fu, Simon Pearson, Hongnian Yu
Vibro-driven robotic (VDR) systems use stick-slip motions for locomotion. Due to the underactuated nature of the system, efficient design and control are still open problems. We present a new energy preserving design based on a spring-augmented pendulum. We indirectly control the friction-induced stick-slip motions by exploiting the passive dynamics in order to achieve an improvement in overall travelling distance and energy efficacy. Both collocated and non-collocated constraint conditions are elaborately analysed and considered to obtain a desired trajectory generation profile. For tracking control, we develop a partial feedback controller which for the pendulum which counteracts the dynamic contributions from the platform. Comparative simulation studies show the effectiveness and intriguing performance of the proposed approach, while its feasibility is experimentally verified through a physical robot. Our robot is to the best of our knowledge the first nonlinear-motion prototype in literature towards the VDR systems.

History

Presented at

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), available at https://doi.org/10.1109/IROS.2018.8594322

Published in

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Publisher

IEEE

Version

AM (Accepted Manuscript)

Citation

Liu, P., Neumann, G., Fu, Q., Pearson, S. and Yu, H. (2018) 'Energy-Efficient Design and Control of a Vibro-Driven Robot', In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Madrid, Spain. (pp. 1464-1469). IEEE.

Electronic ISSN

2153-0866

ISBN

978-1-5386-8094-0

Cardiff Met Affiliation

  • Cardiff School of Technologies

Cardiff Met Authors

Pengcheng Liu

Copyright Holder

© The Publisher

Publisher Rights Statement

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Language

en